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ABSTRACT 

 

Multi Input Multi Output (MIMO) interactive process is more complex than Single Input Single Output 

(SISO) systems. We consider two inputs and two outputs for four tank process, which is also called Quad-

ruple Tank Process (QTP). It consists of two inputs as voltages fed to motor pumps and water levels in the 

lower tanks are the two outputs. The inputs are manipulated by setting of valves. It has four tank interactive 

loop operation consisting of two lower tanks and two upper tanks. The Model Predictive Control (MPC) 

technique is more suitable and gives optimized operational control in calculating present and future values of 

output. It tunes output and inputs simultaneously to provide more stable (optimized) output within the per-

missible limits of tolerance / error. MPC can stabilize all linear processes effectively and efficiently. It can 

also work with nonlinear processes under extreme conditions. It offers an optimized result under Predictive 

control “P” and Horizon control “M”, by tuning P and M and its application to QTP as a Nonlinear Model 

Predictive Control. 

Keywords: Nonlinear Model Predictive Control, Optimized, QTP, Predictive Control P, Horizon   Control 

M 

1. INTRODUCTION 

MPC technique is more applicable for obtaining 

optimized performance and is attractive as it offers 

feedback strategy for linear processes. This same 

method can be applied to nonlinear systems and 

obtain equally good response or result.  This is 

referred to as moving horizon or receding horizon 

control. MPC methods use linear or nonlinear 

models, to calculate present and future values of 

dynamic systems. Linear MPC theory is quite 

mature and has wide ranging applications from 

chemicals to aerospace industries. Most of the 

physical systems are inherently nonlinear in 

existence because of economical constraints and 

quality of product in process industry. This requires 

maintaining and operating the system within the 

admissible operating region which is part of the 

boundary.  

MPC techniques was introduced and 

implemented in industries since 1960’s. Frank 

Allgower et al [8] provided basic mathematical 

properties and formulation of Nonlinear Model 

Predictive Control. Jorge L. Garriage et al[5] 

provided optimized solution of tuning parameters 

and applied various new tuning methods based on 

process response and analysis. Rahul Shridhar et al 

[6] delivered Strategy of Unconstraint for multiple 

variable input and output for non linear model. 

Leonidas G.Bleris et al [4] proposed that 
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Optimization is part of MPC, where optimal 

controls are inputs for a process for real time and 

modeling system. Alberto Beporad [7] discussed 

about MPC controller design for different set points 

for evaluation of closed loop performance. 
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Figure 1: Basic principle of Model Predictive Control 

K. H. Johansson [1] motivated the 

implementation of four tank process with an 

adjustable zero. Sivakumaran et al [2] explained 

about neural model predictive control for multi 

variable process. S.M. Mahadi Alvani et al [3] 

elaborated feedback network for QTP. This work 

focuses on the application of MPC techniques to 

nonlinear model of QTP [1], [2]. The basic principle 

of MPC is as shown in fig 1.  

It depicts the dynamic behavior of system over 

predicted horizon P and control horizon M and 

determines the predefined open loop performance 

objective function which has to be optimized. 

Performance measure is obtained at time t, the 

controller predicts the future values by tuning for P 

greater than l. MPC has two methods of approach, 

one is for non linear model of QTP and the other is 

a linear model of QTP [1], [2].  Linear MPC 

approaches the operating points by tuning objective 

function. Nonlinear MPC approaches the problem 

without consideration to the operating point by 

tuning of objective function for nominal values. 

This is applied for QTP with optimized technique 

for MPC of two methods. 

MPC method has two ways of tuning. The first 

method is based on simulation of process model [11] 

or adjusts parameters based on process dynamics, 

which is approximately adjustable. Similarly second 

one is by explicitly deriving formulas considering 

various parameters of the process model with 

respect to dynamics. The controller design has to set 

prediction horizon P, control horizon M, weights on 

the output Q, weights on the rate of change of input 

λ, the reference trajectory parameter α and some 

constant parameters[5]-[7]. 

These are tuned by two fundamental concepts:    

Act of tuning is primary to develop appropriate 

parameters for process model. If the model exhibits 

poor performance, then continue tuning till the 

model satisfies the output requirements. If model is 

accurate enough, then rest of tuning is not essential. 

Substitution between robustness and performance 

is the second action. Most MPC users in industry 

design either automatic or detune controller, so that 

controllers always stay stable at various and 

different operating points. 

This work is mainly focused upon modeling a 

four tank processor with constant inputs from two 

pumps however the response is stabilized through 

manipulation of control valves. Here the inputs u1, 

u2 are set for constant flow rate but the valve 

manipulation is done irrespective of the two phases 

using MPC controller, through different tuning 

methods for obtaining an optimized solution. The 
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main emphasis is to tune the parameters of 

nonlinear model Quadruple Tank Process through 

optimized NMPC. It provides for broad treatment of 

available method and also develops new methods to 

tune QTP. 

This paper is organized as follows: section 2 

gives description of four tank process. The 

explained formulation of MPC and stability is 

explained in 3 & 4. Optimization and tuning 

methods are given in 5& 6.The analysis and 

simulation results are given in section 7. Finally the 

conclusion is given in 8.  

2. DESCRIPTION OF FOUR TANK PRO-

CESS 

Quadruple-tank process consists of four 

interconnected water tanks and two pumps as shown 

in Figure 2. The target is to control the level in the 

lower two tanks with two pumps. The process 

inputs are v1 and v2 (input voltages to the pumps) 

and the outputs are 1 1
y k hc=

 and 2 2
y k hc=

 

(voltages from level measurement devices). Mass 

balances and Bernoulli’s law yield the following 

model [3], [4]: 
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Where, γi is the flow distribution to lower and 

diagonal upper tank, Ai is the cross-section area, ai 

is the outlet hole cross section and hi is the water 

level, in tank i respectively. The voltage applied to 

pump i is ui and the corresponding flow is kiui 

The parameters 
( )1 2

, 0,1γ γ ∈
 are determined 

from how the valves are set prior to an experiment. 

The acceleration of gravity is denoted by ‘g’. The 

parameter values for the process are given in Table 

1.    

TABLE 1: Parameter Process Values 

parameters Units Values 

1 3
,A A

 

2
cm    

28 

2 4
,A A

 

2
cm    

32 

1 3
,a a

 

2
cm    

0.071 

2 4
,a a

 

2
cm    
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c
k

 
V

c m
 
   

0.5 

g 
2

c m

s

 
    

981 

 

The QTP has minimum phase and non minimum 

phase condition under multivariable zero location at 

two operating points based on two phases. Normally 

it works either in minimum phase or non minimum 

phase at two operating points based on the control 

valve settings while the flow rate distribution is 

dependent on control valve settings alone. 
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Figure 2: Diagram for Quadruple Tank Process 

3. FORMULATION OF NMPC 

Consider the non linear differential equation for 

stabilizing the problem [9]. 

( ) ( )( ), ( ) ,x t f x t u t=&   ( )( ) 0
0

x t x=

 
 (2) 

( ) ( ) ( )( ),y t g x t u t=

              
(3) 

( ) , 0u t u t∈ ∀ ≥ , ( ) , 0x t x t∈ ∀ ≥
 

( ) , 0y t y t∈ ∀ ≥
  

                 (4) 

Where 
( ) n

t Rx ⊆
and 

( ) m
u t R⊆

 determine 

the vector of states and inputs. Denotes x and u are 

feasible set of inputs and states and y is estimated or 

measured output. 

We assume a set of feasible assumptions i.e., x 

and y as follows: 

Assume 1: In its simplest form, u and x are given 

by constraints of the form  

maxmin
u u u≤ ≤        (5a) 

  maxmin
x x x≤ ≤      (5b) 

Assumption 2: The vector field 
( )( ), ( )f x t u t

 is 

continuous and satisfies
( )0, 0 0f =

 at initial 

condition. 

Assumption 3: Equation 2 has a unique 

continuous solution for any initial condition in the 

region of interest and continuous manipulated input 

function
( ) [ ]: 0,u t M u→

  and continuous 

predicted state function 
( ) [ ]: 0,x t P x→

 

Real systems and models are mainly used for 

predicting the future values within the limits 

selected by the controller.  The finite horizontal 

open loop described above is mathematically 

formulated as follows. 
( )tu

 is represented as 

internal controller  

( ) ( )( ), ; ,min
( )

J x t u t M P

u t

( ) ( )( ) ( ) ( )( )

( )( )

, ; , : ,

t P
J x t u t P M f x t u t dt

t

t M
g u t dt

t

+
= +∫

+
∫       

              

                                         (6)  

 

Subject to:      

 ( ) ( )( )( ) , ,x t f x t u τ=  ( )( )x t x t=

  
 (7a)  

 ( ) ,x t x∈   [ ],t t t P∀ ∈ +
 
      (7b)  

( ) ,u t u∈   [ ],t t t M∀ ∈ +
   

      (7c)  

( ) ( ) ,u u Pτ τ= +   [ ],t t M t P∀ ∈ + +
 
(7d) 

4. STABILITY 

Comparing the predicted result of open and 

closed loop behavior is always different. An NMPC 

strategy that achieves stability independent of the 

choice of performance measure, cost function and 
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constraints of model is desirable. We assume that 

the prediction horizon and control horizon if set 

such that ,P M≠  and P M<  will result in 

instability [8]. The one way to achieve stability is 

the use of an infinite horizon cost function, i.e., P in 

Equation 6 is set at ∞. Practically as well as 

theoretically this may not determine the response. 

More appropriate and feasible condition is P M>  . 

Similarly examine the model under non feasible 

conditions, where ,P M= P M< . Whereas P M=  

exhibits somewhat admissible response, exhibits a 

more aggressive response where  P M<  . 

The input computed as the solution of NMPC 

optimization problem is equal to the closed loop 

trajectory of non-linear system at any given instance 

of time. Basic steps for infinite horizon proof are 

based on use of value functions [7], [8]. Feasibility 

at one sampling instance does impel for next 

sampling instance for the normal case.  

5. OPTIMIZED THEORY FOR MPC 

The designer needs to optimize control algorithm 

to minimize cost and maximize performance 

measure. These depend on the system variables, 

which are states x, output y, tracking error e and 

control u. 

Describe the process state equation of nonlinear 

time invariant [12], [8] and [9] 

           
( ) ( ) ( )( , )x t f x t u t=&

  
   (8) 

         
( ) ( ) ( )( , )y t g x t u t=

      
(9) 

Performance function:  

( ) ( ) ( )( ) ( ), , , ,

0

t
f

J x t u t y t w x y u dtxyu
t

= ∫

   

(10) 

Is minimized to the dynamic system which is 

represented as maximized performance [12] 

measure for determining control law with penalty 

term
( )( )h x t f

 

( )( ) ( ) ( )( ),

0

t
f

J h x t f x t u t dt
t

= + ∫

      

(11) 

ft  =final time
, 0
t = initial time;   

0
t t t

f
≤ ≤  

Optimal solution to optimized problem is denoted 

u*(t) and repeatedly solved at sampling instants 

t=kδ K=0, 1, 2... for open loop control problem. 

Admissible optimal control law is defined for closed 

loop control for Equation 2 at sampling instants 

( ) ( )( )* *
, , , ,u t u x t P Mτ= [ , ]tτ δ∈

        

(12) 

The optimal value of NMPC open loop optimal 

control as a function of the state will be denoted in 

the following as value function 

 

( ) ( ) ( )( )*
, , , , ,V x P M J x t u t P M=

     
(13) 

In a similar method, we obtain performance 

measure form, from equations (11) to (13) 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

, , ,

0 0
,

0 0

J x t u t P M h x P

t P t M

f x t u t d t g u t d t
t t

= +

+ +

+∫ ∫

                      (14) 

The admissible controls are constrained to lie in a 

set
;U

i.e. u U∈ . We first approximate the 

continuous operation of equation (8) by a discrete 

system. 

( ) ( )
( ) ( )( ),

x t t x t
f x t u t

t

+ ∆ −

≈

∆      

(15) 

( ) ( ) ( ) ( )( ),x t t x t tf x t u t+ ∆ = + ∆
    

(16) 



Journal of Theoretical and Applied Information Technology 
 20

th
 September 2014. Vol. 67 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                         www.jatit.org                             E-ISSN: 1817-3195      

 
321 

 

Shortening the above notion 

( ) ( ) ( ) ( )( )ˆ1 ,x k x k f x k u k+ = +

  
    (17) 

( ) ( ) ( )( )ˆ1 ,x k f x k u k+ ≈

          (18)
 

In a similar manner, we get performance measure 

form as 

( )( ) ( )( )
1
( ( ( ), ( )) )

0

N
J h x k f x k u k g u k

k

−
∑= + +
=

 

(19) 

To minimize the deviation of the final state of 

system from its desired values, there are more 

analytical squared terms much more analytically 

solvable than other types. Because positive & 

negative deviations are equally undesirable, so 

absolute value could be used in quadratic form. 

Using matrix notation: 

( ) ( ) ( ) ( ) ( ) ( ))(
1

0

NT T T
J x k Hx k x k Qx k u k Rx k

k

−
∑= + +
=

                                    

(20) 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

, , , min( ( )
0

( ) )
0

P T
J x k u k T T x k Qx k

P C

M T T
u k Ru k x k Hx k

∑=

∑+ + (21) 

Optimized solution for equation (21) with 

number of intervals 

( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

/ 1 , / 1 , ,

m in ( ( / 1 / 1 )
0

( / 1 / 1 )
0

/ 1 / 1 )

J x k k u k k P M

P T
x k k Q x k k

M T
u k k R u k k

T
x k k H x k k

− − =

∑ − − +

∑ − − +

− −
                  

                                (22)

 

Here if, k is present, k-1 is past, if k-1 is present 

then k is future. Here k is described as discrete or 

continuous function Q, H; R is real symmetric 

positive semi-definite n n× matrix. Q is output 

weighted matrix and R input weighted matrix. H is 

solution of Ricatti equation from linear standard 

state space equation (23) 

( ) ( ) ( )

( ) ( ) ( )

1x k A x k B u k

y k C x k D u k

+ = +

= +

     

(23) 

( )
1

T T T
H A HA A HB B HB R BHA Q

−

= − + +                                             

(24) 

6. TUNING METHODOLOGY OF NMPC 

MPC optimization is a function of input u and 

state variable x; these two parameters are tuned 

externally by P, M and internally by Q, λ, R as per 

equation (22). All these parameters are however 

described underneath in the following sections. 

6.1 Prediction Horizon P 

 Different outputs will be obtained because of the 

input values of P as settling time, rise time is quite 

different. Increasing the value of P tends to 

minimize controller aggressiveness [6]. This section 

provides various techniques to tune the prediction 

horizon by Reference [5], [6]. The final horizon is 

set to be finite or infinite to ensure stability. In this 

case, the final horizon is described based on tuning 

result for closed loop stability of control system or 

process. List of guide lines are collected from 

reference [5] 

            1P N M= + −     (25) 

           

1
60 95

P t t T
s

= + −      (26) 

         

80 90
2

t t
P Ts

+
=

           

(27) 

          

9 5
P t T

s
=        (28) 

          
P t T

r s
η < ≤

        
(29) 

          
P M t Td s> +

          
(30) 
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All the parameters of any SISO or MIMO process 

are based upon the poles and zeros of transfer 

function and no of outputs as well as inputs. 

Stability, of course is a function of the transfer 

function of process. Tuning the value of P affects 

the stability value so as to make the system reach 

the steady state of the reference value, based on 

values of settling time and rise time. Normally the 

number of outputs and order are constant while the 

response stands different for different locations of 

poles and zeros. Proposed new tuning methods for 

NMPC of P are elaborated below. 

          
P k t Tr sη η= +

         
(31) 

        
( )int 1P M C kη≥ + + ±

       
(32) 

        
( )t P T k orpr

η< <

       
(33) 

By default P = 10 is probable value of objective 

function, as per stability criterion P is tuned from 

the various parameter, like, settling time ts, rise time 

tr , no of outputs k , higher order of process η ,  no 

of controllers C, process response time tp, sampling 

time TS, delay time td and response of rise time 

60,80,90,95 w.r.t tp. P value is calculated as average 

of number of outputs. 

6.2 Control Horizon M  

Evaluating the value of M, if it increases in value, 

it tends to become more aggressive over the 

prediction horizon (M>P). This is to monitor and 

control the response of data from output by 

adjusting the manipulated variable. This leads to a 

trade-off between increasing performance and 

robustness of formulation of control law, as a 

default control horizon is equal to 1. Formulate 

control horizon without more aggressiveness and 

existing robustness of permissible computation load. 

Collecting tuning methods are from reference5 and 

exhibit the result of the model. Implement those 

collected from reference [5] as listed below. 

          

60
M t T

s
=         (34)

 

        

( )in t
4

PM =         (35) 

M is different from P and oppositely working. 

Response of process depends on rise time and 

settling time. The value of M effectively tunes 

inputs or manipulated variable of equation (22) and 

is inversely proportional to the rise time and settling 

time and is dependent on P as well. A high value of 

P minimizes the effect of M on the response. 

Apply new tuning methods based on the above 

equations, which are designed mainly based on 

parameter settling time ts, rise time tr, number of 

outputs k, higher order of process η, sampling time 

Ts .    

     

( ) ( )( )min int 2 ,int 4 1M t Ps= ±  (36) 

      

( )in tM kn t s=       (37) 

        
M k tr∝

              (38) 

         s
M tη∝

            (39) 

6.3 Output weighted matrix is represented by Q  

The output variables are relatively weighted 

according to their significance in the process model. 

It provides individual significance relative to output 

variable, with the most important variable having a 

larger weight compared to others. Increasing 

linearly the weight on the upper limit of output to 

achieve a smooth response till the desired output is 

obtained. The elements of Q that correspond to 

corrected error have nonzero weight to help in 

relative prediction. Derived expression for the 

output weight for minimum phase also works for 

non minimum phase for the closed loop; the 

bandwidth is made “small” enough as explained in 

the reference [5] below  
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T

Q C C=              (40)

 
Based on above expression and output weights 

also consider smoothness, expression for both non 

minimum and minimum phase will be 

      1Q <                 (41)

 

    det
T

Q C C≤            (42)

 

 Here C is output matrix of linear state space 

equation. 

6.4 Weights on the magnitude of the inputs R  

In similar fashion, R allows to be weighted for 

input variable according to their relative importance. 

R is normally considered as diagonal matrix with 

diagonal elements of rM rM× matrix. It is referred 

as input weighting matrix or move suppression 

matrix. It is more convenient for tuning parameters 

based on parameter of ij
r

as suppression factor [5], 

[6] and [10]. 

6.5 Weights on the rate of change of inputsλ  

This section discusses existing and new 

approaches for tuning the weights on the rate of 

change of inputs. Penalizing the rate of change 

produces a more robust controller but at the cost of 

the controller becoming more sluggish.  Small 

value adjustments yield a more aggressive controller. 

We consider tuning guideline from reference [5], [6] 

as follows. 

    

1 mPλ <              (43) 

Based on the above approach and analyzing 

various guidelines, even a small change exhibits 

overshoots, but decrease in rise time and settling 

time. This is compensated by output weights 

 

  

1 Pλ η<             (44) 

6.6 Reference Trajectory parameters  

In MPC application, reference trajectory provides 

the necessary path to reach final desired set point 

[10]. It can be specified in several different ways. It 

is designed between initial value and final value 

between
0 1jβ≤ <

, j=1…P.  

j s s
closedloopt openlooptβ =    (45) 

0 1
j

β< <                     (46) 

7. SIMULATION ANALYSIS 

We discussed extensively the application of non 

linear processes to QTP for the lower two tanks. By 

giving appropriate weights to the tuning system we 

generate conditions that are applicable for 

representation as for non linear differential 

equations. Response is plotted for step input for 

different tuning conditions. Responses are 

calculated from tuning equations for optimized 

solutions of NMPC for lower two tanks. It was 

observed that the responses of different tuning 

methods are based on different conditions and 

tuning parameters. Same rise time and settling time 

w.r.t P, M, Q and λ are obtained 

The responses of non linear processes on 

comparison found to exhibit almost same responses 

for small deviation, because if P increases, at same 

time M also increases however the value of P 

minimizes the effect of aggressiveness of M. If the 

value of M is kept constant while the values of other 

parameters are varied slightly- the responses 2, 3, 4, 

5 obtained remain almost same as illustrated in fig 

3. 
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Figure 3:  Response Of Lower Tanks H1, H2 

Response 1 is calculated for P from equation (27), 

for M equation (35), for Q from equation (41), and λ 

from equation (43). Response 2 is calculated for P 

from equation (26), for M equation (35), for Q from 

equation (41), and λ from equation (43). Response 3 

is calculated for P from equation (28), for M 

equation (35), for Q from equation (41), and λ from 

equation (43). Response 4 is calculated for P from 

equation (31), for M equation (37), for Q from 

equation (41), and λ from equation (44). Response 5 

is calculated for P from equation (32), for M 

equation (37), for Q from equation (41), and λ from 

equation (44). 

Values for responses as follows and plots 

response as shown in figure 3, tuning of input as 

shown in figure 4. 

Response 1 is defined by P=16, M=4,C= 0.25, 

Q= 0.9,λ= 0.03125. Response 2 is defined by P=9, 

M=2,C= 0.25, Q= 0.8,λ= 0.0554.Response 3 is 

defined by P=11, M=2,C= 0.25, Q= 0.85,λ= 0.045. 

Response 4 is defined by P=10, M=2,C= 0.25, Q= 

0.67,λ=0.025.Response 5 is defined by P=11, 

M=2,C= 0.25, Q= 0.7,λ=0.02273. 

 

Figure4:  Tuning Of Input Parameters 

As per stability criteria from section (4), the way 

of response for NMPC of QTP is illustrated in 

figure 5. Results of simulation provided very 

aggressive response as shown in fig 5 for unstable 

condition also. Because of optimality for MPC can 

provide somewhat aggressive response when 

compared with remaining conditions. 

Examined the QTP for stability 

conditions, P M> , ,P M= and P M<  is plotted 

for step response. Response 1, 2 & 3 is calculated 

for P from equation (32), M from equation (37), Q 

from equation (41), and λ from equation (44).  
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Figure 5: Response of lower tanks H1, H2. 

Values for responses as follows and plotted 

response as shown in fig 5, tuning of input is shown 

in fig 6. 

Response 1 is defined by P=11, M=2,C= 0.25, 

Q= 0.7,λ=0.02273. Response 2 is defined by P=11, 

M=11, C= 0.25, Q= 0.7, λ=0.02273. Response 3 is 

defined by P=2, M=11, C= 0.25, Q= 0.7, λ=0.125.  

Figure 6: Tuning of input values numbers 

8. CONCLUSION 

This work provides elaborate tuning methods for 

Quadruple Tank Process through Nonlinear Model 

Predictive Control with several conditions and 

constraints. We generated different responses with 

minute deviations for obtaining steady state 

conditions. Verified all possible stability conditions 

based on control and predicted horizon. When 

control horizon is more than prediction horizon, it 

exhibits aggressive response. Proposed new tuning 

methods for NMPC, provides stable response. The 

usage of MPC regularly exhibits smooth response 

under all tuning parameters. Because optimality of 

MPC can be provide somewhat aggressiveness 

response for unstable comparing of remaining 

conditions.  
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