
Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

FLOW BASED ANALYSIS TO IDENTIFY BOTNET

INFECTED SYSTEMS

1
R.KANNAN,

2
A.V.RAMANI

1Associate Professor in Computer Science, SRMV CAS, Coimbatore-20, Tamilnadu, India.

2Associate Professor in Computer Science, SRMV CAS, Coimbatore-20, Tamilnadu, India.

E-mail: 1dhiyakanna@gmail.com 2avvramani@yahoo.com

`

ABSTRACT

Botnet most widespread and occurs commonly in today’s cyber-attacks, resulting in serious threats to our
network assets and organization’s properties hence there is a high need to detect and prevent the adverse
effects of bots. Botnets are collections of compromised computers (Bots) which are remotely controlled by
its originator (Bot-Master) under a common Command-and-Control (C&C) infrastructure. This paper
focuses on classifying the bots and the regular hosts in the network through the classification based on
their behavior. The goal is to develop a live version of the botnet detection system which identifies a
botnet activity in a network, based on traffic behavior analysis and flow intervals which does not depend
on packet pay load i.e., they can work on encrypted network communication protocol. The approach is to
classify packets based on source IP, destination IP, number of packet, etc., using decision tree which is a
classification technique in machine learning. The attribute selection is mainly based on packet attribute
and does not consider the data part. The feasibility of the approach is to detect botnet activity without
having seen a complete network flow by classifying behavior based on time intervals.

Keywords: Botnet, Machine learning, Malicious, Intrusion, Network flow.

1. INTRODUCTION

The term botnet is used to define networks of
infected end-hosts, called bots or zombies (a bot is
defined as a set of small scripts used to perform
automated function), which are under the control of
a human operator commonly known as a bot-
master (a person or a group of person which
controls a remote bot). A collection of bots, when
controlled by a single command and control (C&
C) infrastructure, form what is called a botnet. The
main difference between Botnet and other kind of
malwares is the existence of Command-and-
Control (C&C) infrastructure. Bots interact over
legitimate communication channels. Internet Relay
Chat (IRC) used to be the most prevalent
communication scheme among traditional botnets
until the early 2000s, HTTP is also used because
web traffic is generally allowed in most networks.
After infection, the bot will locate and connect with
an IRC server. The bot master will use established
IRC command and control (C&C) channels to
communicate and control the bots.

The centralized C&C mechanism of such Botnet
has made them vulnerable to being detected and
disabled. Therefore, new generation of Botnet
which can hide their C&C communication have
emerged, Peer-to-Peer (P2P) based Botnets. The
P2P Botnets do not suffer from a single point of
failure, because they do not have centralized C&C
servers. This architecture is very difficult to locate.
Among all the form of malware, botnets in
particular have recent distinguished themselves as
the primary platform on cyber criminals create
global cooperative networks to support on-going
growth of criminal attacks and activities such as
DDos, spam, phishing and information theft.

 According to the Command-and-
Control(C&C) channel, we categorized Botnet
topologies into two different models, the
Centralized model and the Decentralized model.

 In centralized model, Bot-Master chooses a
host to be the central point (C&C) server of all the
Bots. The C&C server runs certain network
services such as IRC or HTTP. Since all
connections happen through the C&C server,

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

therefore, the C&C is a critical point in this model.
Fig 1 shows the basic communication architecture
for a Centralized model. Botnet based on IRC: The
IRC is a form of real-time Internet text messaging
or synchronous conferencing. The protocol is based
on the Client-Server model, which can be used on
many computers in distributed networks.

Fig. 1: Centralized Model

Botnet based on HTTP: The HTTP protocol is
another popular protocol used by Botnets. Since
IRC protocol within Botnets became well-known,
more internet security researchers gave attention to
monitoring IRC traffic to detect Botnet.

Due to main disadvantage of Centralized model
attackers started to build alternative Botnet
communication system that is much harder to
discover and to destroy. Hence, they decided to
find a model in which the communication system
does not completely depending on only some
selected servers and even discovering and
destroying a number of Bots. As a result, attackers
exploit the idea of Peer-to-Peer (P2P)
communication as a Command-and-Control(C&C)
pattern which is more resilient to failure in the
network. In the P2P model, as shown in Fig 2, there
is no Centralized point for communication. Each
Bot keeps some connections to the other bots of the
botnet. A new Bot must know some addresses of
the Botnet to connect there. If Bots in the Botnet
are taken offline, the Botnet can still continue to
operate under the control of Bot-Master.

Fig. 2: Decentralized Model

 Some P2P botnets operates in completely
decentralized or decentralized to some extend.
Those Botnets that are completely decentralized
allow a Botmaster to inject a command into any
Bots, and have it either be broadcasted to a
specified node. Since P2P botnets usually allow
commands to be injected at any node in the
network, the authentication of commands become
essential to prevent other nodes from injecting
incorrect commands. Hence P2P have their own
limitations rooted mainly in the higher latency
underlying C&C transmission and the impact of
such relation leads to bot synchronization.

The rest of the paper is structured as follows.
Section 2 describes some related work of botnet
detection, section 3 shows the system overview and
how to implement using various tools and
technique, in section 4 analysis of the work is done
and the results are compared to various time
windows and conclusion are drawn in the last
session along with the future work.

2. RELATED WORK

 A significant amount of literature has made on
botnet detection, and the flow based analysis is
emerged over the last decade.

BotHunter [2] is a system for botnet detection
which correlates alarms from the Snort intrusion
detection system with bot activities. Specifically,
BotHunter exploits the fact that all bots share a
common set of underlying actions as part of their
lifecycle: scanning, infection, binary download,
C&C and outbound scanning. BotHunter monitors
a network and captures activity related to port
scanning, outbound scanning and performs some
payload analysis and malware activity detection
based on Snort rules, and then uses a correlation
engine to generate a score for the probability that a
bot has infected the network. Like many behavior

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

correlation techniques, BotHunter works best when
a bot has gone through all phases of its lifecycle,
from initial exploit to outbound scan. BotHunter is
also vulnerable to encrypted command and control
channels that cannot be detected using payload
analysis. Payload based analysis need to phrase
large amount of data and generally slow. User
privacy is also disrupted when payload is
inspected.

BotMiner [4] relies on the group behavior of
individual bots within a botnet for its detection. It
exploits the underlying uniformity of behavior of
botnets and detects them by attempting to observe
and cluster similar behavior being performed
simultaneously on multiple machines on a network.
BotMiner performs ‘C-plane’ clustering to first
group network traffic behaviors which share
similarities. Flows with known safe signatures
(such as for some popular protocols) are filtered
out of their list to improve performance. Once
similar flows have been identified, BotMiner uses a
second ‘A-Plane’ clustering technique which
groups flows by the type of activities they represent
using anomaly detection via Snort. By examining
both the A-Plane and C-Plane, BotMiner correlates
hosts which exhibit both similar network
characteristics as well as malicious activity and in
doing so identify the presence of a botnet as well as
members of the network. Experimentally,
BotMiner was able to achieve detection accuracies
of 99% on several popular bot variants with a false
positive rate around 1%.

Similar work for detecting botnet based on
network behavior is given in [5]. It first eliminates
the traffic that’s unlikely to be the part of a botnet,
and remaining into another group which are likely
to be the part of a botnet. From that the activity of
the botnet is identified by correlating the likely
traffic which has common communication pattern.

Wurzinger et al. (2009) proposed an approach
for detecting individual hosts in a network that are
members of a botnet by observing and correlating
commands and responses in network traces. It first
identifies a responds in network flow and then
analyze the traffic to find the specific command.
From the response and the commands detection
model are built. The detection model is evaluated
using 18 bots.

3. SYSTEM OVERVIEW AND

IMPLEMENTATION

Two prerequisites for the analysis are data
collection (i.e. identifying and collecting data of

interest) and tool acquisition and selection (i.e.
identifying and deploying data mining techniques).
The acquired data requires a pre-processing phase
to move it into the form necessary for decision tree
algorithms. Once the data is processed for various
time windows, decision trees can be trained using
the processed data and tools. Executing and
analyzing the result of this data is an important next
step to understand the resulting model and its rule
sets.

Procedure to classify normal traffic from
malicious traffic and to implementing decision
trees can require some network data for that ISOT
botnet dataset is used.

Implementing decision tree requires various
tools, feature extraction tools used during the data
pre-processing phase For this wire shark tool is
used to perform feature extraction from pcap files.
Data mining analysis tool: Weka is used for this
purpose. Of all the open-source tools, Weka has
been described as “perhaps the best-known open
source machine learning and data mining
environment”.

Fig. 3: Botnet Detection Framework

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

A) Traffic Analysis:

A network flow between two hosts may run for a
few seconds to several days. Obtaining real world
dataset of botnet malicious activity is very difficult.
Many publically available dataset may not reflect
real world usages. In order to evaluate the system, a
set of network traces which contains malicious and
non-malicious traffic is generated.

The network traffic is collected from the ISOT
Botnet dataset. The collected packet will be in
unreadable format. Using Wire shark tool, which is
a network protocol analyzer, separate the traffic
based on user conditions like source IP, destination
IP, and payload length and so on.

 Real network traffic data can also be generated
using sensors. Sensors will monitor the complete
network exchanges. Fig 4 and 5 show the raw
network packets and filtered packets respectively.

Fig. 4: Raw Network Packets

Fig. 5: Filtered Packets

B) Feature Extraction:

The network characteristic of the flow is
calculated for different time window T and also
two observations are made on the time window.

First, if a time window is too small, we may fail to
capture unique traffic characteristics that only
become apparent over a longer period of time. If a
time window is too large, the decision cannot be
made until the window size is met. Thus the
selection of time window size will be based on a
compromise between detection accuracy and speed.

C) Attribute Selection:

An attribute is some characteristic of a flow or a
collection of flow in a given time window T which
may be represented as a numeric or nominal value.

An attribute is some characteristic of a flow or a
collection of flows in a given time window T which
may be represented as a numeric or nominal value.
The set of 13 attributes like source IP, source port,
destination IP, destination port and protocol field
can be directly derived from the network packet
and Average payload length for time interval,
Variance of payload packet length for time interval,
Number of packet exchanged for time interval,
Number of packet exchanged per second in time
interval, Size of the first packet in the flow,
Average time between packets in time interval,
Number of reconnect for the flow, Number of
flows from this address over the total number of
flows generated per hour, rest of the attributes are
calculated with the help of time and length fields
for specific time interval. After extracting the
network flow attributes from ISOT botnet dataset
each packet need to labeled as malicious or non-
malicious as per the description given in the
document. The document describes about the
system which generates the malicious or non-

malicious packets.

Fig. 6: Network Flow Attributes

D) Classification Model:

After extracting the network flow attributes the
profile is given to the classifier for building the

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

model. In order to support real time detection goals
while at the same time exhibiting high detection
accuracy a popular machine learning approach
decision tree classifier is used. The total numbers
of flows used for classification process are

Table: 1

Class Info Unique Flows

Malicious 3, 71,385(73.81%)

Non-Malicious 1, 31,834(26.19%)

Total 5, 03,219(100%)

E) Decision Tree Learning:

 The decision tree is very powerful and popular
data mining algorithm for decision-making and
classification problems. Automated decision tree
classifiers uses a decision tree as a predictive
model, taking in a series of observations and
generating a value for those given inputs. Leaf
nodes in a decision tree represent a class or a node
linked to two or more sub trees called a test node.
At a test node, some outcome is computed based on
the attribute values of an instance, where each
possible outcome leads to one of the sub trees
rooted at the node. To implement this framework
the popular weka machine learning framework and
libraries are used.

4. ANALYSIS OF RESULT

After the decision tree is created, the resulting
model must be analyzed. The accuracy of the
model and the insights gained from the resulting
tree are important to consider. Model accuracy is
usually straightforward to measure techniques such
as k-fold cross validation can test model accuracy
in a meaning way.

Cross validation calculates the accuracy of the
model by separating the data into two different
populations: a training set and a testing set. The
decision tree model is created from the training set
and its accuracy is measured based on how well it
classifies the testing set. This testing process is
continued k times to complete the k-fold cross
validation procedure.

As an example of k-fold cross validation,
consider that k=2, meaning that we have 2-fold
cross-validation. The 2-fold cross validation starts
its first iteration. The entire dataset is divided in
two, with half of the elements belonging to a
training set and half belonging to a testing set. A

decision tree is created from the training set and it
attempts to correctly identify elements from the
testing set, a set of data the tree has not seen up to
and this accuracy is recorded. The first iteration of
the validation is complete. With the second
iteration, the training set and the testing set are
switched. A decision tree is built from the new
training set (the testing set in iteration 1) and
attempts to correctly classify elements in the new
testing set (the training set in iteration 1). The
accuracy of this classification is captured and the
second iteration is completed. To assess the
accuracy of the entire decision tree model, an
average of the first accuracy score and the second
accuracy score is presented.

The following table demonstrates the accuracy
of the classification process being used in detecting
the botnets.

Table: 2

Time

Window

Size(Sec))

Correctly

Classified
Incorrectly

Classified

10 4, 97,393
(98.84%)

5,826 (1.16%)

300 5, 03,216
(99.994%)

3 (0.006%)

1000 5, 03,219
(100%)

0 (0%)

The k-fold cross validation accuracy measure
provides a meaningful estimation of the overall
accuracy of the classifier. When model
performance is poor, this may imply that there are
no meaningful patterns in the feature data extracted
for the experiment or that a different classification
algorithm should be used.

The model itself often provides insight into the
problem of botnet detection. For example, a
decision tree presents a set of rules that
differentiate between malicious and benign traffic.
The rules may highlight specific ports, IP
addresses, or other features extracted from data of
interest. These insights can help an intrusion
detection team work towards follow-on action
based on the model result.

The constructed model using decision tree
classifier produced very high (around 100%).
These results indicate that there are indeed unique
characteristics of the evaluation botnets when
compared to everyday network traffic.

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

Fig. 7: Effect of time window size

The true positive rate for different time window
(10, 300 1nd 1000 Sec) are also calculated which
increases sharply when time window T is more
than 300 Sec and saturated beyond 1000 Sec. from
this the optimal time window can be calculated for
monitoring the network traffic.

5. CONCLUSION

The result showed that using decision tree
classifier, the system able to successfully detect
botnet activity with high accuracy by simply
observing small portions of a full network flow,
allowing us to detect and respond to botnet activity
in real time. The existing systems to detect botnets
are less efficient as they tend to identify only the
regular botnets. This disadvantage is overcome by
forming new rules to detect the botnets in the
proposed system, hence improving the efficiency
and. The system is modeled in such a way that the
bots can be detected even if the communication is
encrypted. The Experimental evaluation under
various settings shows that our detector is able to
achieve a true positive rate of over 95%. While
both the performance and accuracy of our
classifiers are satisfactory for real time detection, it
must be noted that the system may be sensitive to
new behaviors from bots implementing highly
varied protocols. To prepare for such risk, a
technique for web preparing and nonstop
refinement of the classifiers must in case de
actualized.

REFERENCES

[1] David Zhao, IssaTraore, BassamSayed, Wei
Lu, SherifSaad, Ali Ghorbani and Dan Garant.
“Botnet detection based on traffic behavior
analysis and flow intervals”, Computers and
Security in year 2013.

[2] GuofeiGu, Phillip Porras, VinodYegneswaran,
Martin Fong, Wenke Lee “BotHunter: detecting
malware infection through IDS-driven dialog
correlation”. In: Proceedings of the 16th
USENIX security symposium, Boston, MA,
USA 2007.p.167e82.

[3] Gu G, Zhang J, Lee W. “BotSniffer: detecting
botnet command and control channels in
network traffic”. In: Proceedings of the 15th
annual network and distributed system security
symposium 2008.

[4] Gu G, Perdisci R, Zhang J, Lee W. “BotMiner:
clustering analysis of network traffic for
protocol- and structure-independent botnet
detection”. In: Proceedings of the 17th
USENIX security symposium, San Jose, CA,
USA 2008.

[5] W. Timothy Strayer, David Lapsely, Robert
Walsh, Carl Livadas. “Botnet Detection Based
on Network Behavior” In: Advances in

Information Security, Springer, Volume 36,

2008, pp 1-24.

[6] Feily M, Shahrestani A and Ramadass S, “A
survey of botnet and botnet detection”, In:
Proceedings of the third international
conference on emerging security information,
systems and technologies. IEEE Computer
Society, 2009. p. 268e73.

[7] Julian B Grizzard, Vi kram Sharma, Chris
Nunnery, Brent ByungHoon Kang, David
Dagon. “Peer-to-peer botnets: overview and
case study”, In: Proceedings of the first
workshop on hot topics in understanding botnet
(HotBots’07), Cambridge, MA, April 2007.
Berkeley: USENIX Association, 2007.

[8] ISOT Botnet Dataset. URL:
http://www.isot.ece.uvic.ca

[9] Wurzinger P, Bilge L, Holz T, Goebel J,
Kruegel C, Kirda E. Automatically generating
models for botnet detection. In: Proceedings of
the 14th European conference on research in
computer security (ESORICS 2009). Lecture
Notes in Computer Science, vol. 5789. Springer
Verlag; 2009. p. 232e49.

[10] The Honeynet Project. French Chapter [Online]
http://www.honeynet.org/chapters/france.

