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ABSTRACT 

 
Botnet most widespread and occurs commonly in today’s cyber-attacks, resulting in serious threats to our 
network assets and organization’s properties hence there is a high need to detect and prevent the adverse 
effects of bots. Botnets are collections of compromised computers (Bots) which are remotely controlled by 
its originator (Bot-Master) under a common Command-and-Control (C&C) infrastructure. This paper 
focuses on classifying the bots and the regular hosts in the network through the classification based on 
their behavior. The goal is to develop a live version of the botnet detection system which identifies a 
botnet activity in a network, based on traffic behavior analysis and flow intervals which does not depend 
on packet pay load i.e., they can work on encrypted network communication protocol. The approach is to 
classify packets based on source IP, destination IP, number of packet, etc., using decision tree which is a 
classification technique in machine learning. The attribute selection is mainly based on packet attribute 
and does not consider the data part. The feasibility of the approach is to detect botnet activity without 
having seen a complete network flow by classifying behavior based on time intervals.  

Keywords: Botnet, Machine learning, Malicious, Intrusion, Network flow. 

 

1.  INTRODUCTION 

The term botnet is used to define networks of 
infected end-hosts, called bots or zombies (a bot is 
defined as a set of small scripts used to perform 
automated function), which are under the control of 
a human operator commonly known as a bot-
master (a person or a group of person which 
controls a remote bot). A collection of bots, when 
controlled by a single command and control (C& 
C) infrastructure, form what is called a botnet. The 
main difference between Botnet and other kind of 
malwares is the existence of Command-and-
Control (C&C) infrastructure. Bots interact over 
legitimate communication channels. Internet Relay 
Chat (IRC) used to be the most prevalent 
communication scheme among traditional botnets 
until the early 2000s, HTTP is also used because 
web traffic is generally allowed in most networks. 
After infection, the bot will locate and connect with 
an IRC server. The bot master will use established 
IRC command and control (C&C) channels to 
communicate and control the bots. 

The centralized C&C mechanism of such Botnet 
has made them vulnerable to being detected and 
disabled. Therefore, new generation of Botnet 
which can hide their C&C communication have 
emerged, Peer-to-Peer (P2P) based Botnets. The 
P2P Botnets do not suffer from a single point of 
failure, because they do not have centralized C&C 
servers. This architecture is very difficult to locate. 
Among all the form of malware, botnets in 
particular have recent distinguished themselves as 
the primary platform on cyber criminals create 
global cooperative networks to support on-going 
growth of criminal attacks and activities such as 
DDos, spam, phishing and information theft. 

       According to the Command-and-
Control(C&C) channel, we categorized Botnet 
topologies into two different models, the 
Centralized model and the Decentralized model. 

      In centralized model, Bot-Master chooses a 
host to be the central point (C&C) server of all the 
Bots. The C&C server runs certain network 
services such as IRC or HTTP. Since all 
connections happen through the C&C server, 



Journal of Theoretical and Applied Information Technology 
 20

th
 September 2014. Vol. 67 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                      www.jatit.org                                                          E-ISSN: 1817-3195      

 
291 

 

therefore, the C&C is a critical point in this model. 
Fig 1 shows the basic communication architecture 
for a Centralized model. Botnet based on IRC: The 
IRC is a form of real-time Internet text messaging 
or synchronous conferencing. The protocol is based 
on the Client-Server model, which can be used on 
many computers in distributed networks. 

 

 

 

Fig. 1: Centralized Model 

Botnet based on HTTP: The HTTP protocol is 
another popular protocol used by Botnets. Since 
IRC protocol within Botnets became well-known, 
more internet security researchers gave attention to 
monitoring IRC traffic to detect Botnet. 

Due to main disadvantage of Centralized model 
attackers started to build alternative Botnet 
communication system that is much harder to 
discover and to destroy. Hence, they decided to 
find a model in which the communication system 
does not completely depending on only some 
selected servers and even discovering and 
destroying a number of Bots. As a result, attackers 
exploit the idea of Peer-to-Peer (P2P) 
communication as a Command-and-Control(C&C) 
pattern which is more resilient to failure in the 
network. In the P2P model, as shown in Fig 2, there 
is no Centralized point for communication. Each 
Bot keeps some connections to the other bots of the 
botnet. A new Bot must know some addresses of 
the Botnet to connect there. If Bots in the Botnet 
are taken offline, the Botnet can still continue to 
operate under the control of Bot-Master. 

 

Fig. 2: Decentralized Model 

       Some P2P botnets operates in completely 
decentralized or decentralized to some extend. 
Those Botnets that are completely decentralized 
allow a Botmaster to inject a command into any 
Bots, and have it either be broadcasted to a 
specified node. Since P2P botnets usually allow 
commands to be injected at any node in the 
network, the authentication of commands become 
essential to prevent other nodes from injecting 
incorrect commands. Hence P2P have their own 
limitations rooted mainly in the higher latency 
underlying C&C transmission and the impact of 
such relation leads to bot synchronization. 

The rest of the paper is structured as follows. 
Section 2 describes some related work of botnet 
detection, section 3 shows the system overview and 
how to implement using various tools and 
technique, in section 4 analysis of the work is done 
and the results are compared to various time 
windows and conclusion are drawn in the last 
session along with the future work. 

2. RELATED WORK 

 A significant amount of literature has made on 
botnet detection, and the flow based analysis is 
emerged over the last decade.  

BotHunter [2] is a system for botnet detection 
which correlates alarms from the Snort intrusion 
detection system with bot activities. Specifically, 
BotHunter exploits the fact that all bots share a 
common set of underlying actions as part of their 
lifecycle: scanning, infection, binary download, 
C&C and outbound scanning. BotHunter monitors 
a network and captures activity related to port 
scanning, outbound scanning and performs some 
payload analysis and malware activity detection 
based on Snort rules, and then uses a correlation 
engine to generate a score for the probability that a 
bot has infected the network. Like many behavior 
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correlation techniques, BotHunter works best when 
a bot has gone through all phases of its lifecycle, 
from initial exploit to outbound scan. BotHunter is 
also vulnerable to encrypted command and control 
channels that cannot be detected using payload 
analysis. Payload based analysis need to phrase 
large amount of data and generally slow. User 
privacy is also disrupted when payload is 
inspected.  

BotMiner [4] relies on the group behavior of 
individual bots within a botnet for its detection. It 
exploits the underlying uniformity of behavior of 
botnets and detects them by attempting to observe 
and cluster similar behavior being performed 
simultaneously on multiple machines on a network. 
BotMiner performs ‘C-plane’ clustering to first 
group network traffic behaviors which share 
similarities. Flows with known safe signatures 
(such as for some popular protocols) are filtered 
out of their list to improve performance. Once 
similar flows have been identified, BotMiner uses a 
second ‘A-Plane’ clustering technique which 
groups flows by the type of activities they represent 
using anomaly detection via Snort. By examining 
both the A-Plane and C-Plane, BotMiner correlates 
hosts which exhibit both similar network 
characteristics as well as malicious activity and in 
doing so identify the presence of a botnet as well as 
members of the network. Experimentally, 
BotMiner was able to achieve detection accuracies 
of 99% on several popular bot variants with a false 
positive rate around 1%. 

Similar work for detecting botnet based on 
network behavior is given in [5]. It first eliminates 
the traffic that’s unlikely to be the part of a botnet, 
and remaining into another group which are likely 
to be the part of a botnet. From that the activity of 
the botnet is identified by correlating the likely 
traffic which has common communication pattern. 

Wurzinger et al. (2009) proposed an approach 
for detecting individual hosts in a network that are 
members of a botnet by observing and correlating 
commands and responses in network traces. It first 
identifies a responds in network flow and then 
analyze the traffic to find the specific command. 
From the response and the commands detection 
model are built. The detection model is evaluated 
using 18 bots. 

3. SYSTEM OVERVIEW AND 

IMPLEMENTATION 

Two prerequisites for the analysis are data 
collection (i.e. identifying and collecting data of 

interest) and tool acquisition and selection (i.e. 
identifying and deploying data mining techniques). 
The acquired data requires a pre-processing phase 
to move it into the form necessary for decision tree 
algorithms. Once the data is processed for various 
time windows, decision trees can be trained using 
the processed data and tools. Executing and 
analyzing the result of this data is an important next 
step to understand the resulting model and its rule 
sets.  

Procedure to classify normal traffic from 
malicious traffic and to implementing decision 
trees can require some network data for that ISOT 
botnet dataset is used.  

Implementing decision tree requires various 
tools, feature extraction tools used during the data 
pre-processing phase For this wire shark tool is 
used to perform feature extraction from pcap files. 
Data mining analysis tool: Weka is used for this 
purpose. Of all the open-source tools, Weka has 
been described as “perhaps the best-known open 
source machine learning and data mining 
environment”. 

 

 

 

Fig. 3: Botnet Detection Framework 
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A) Traffic Analysis: 

A network flow between two hosts may run for a 
few seconds to several days. Obtaining real world 
dataset of botnet malicious activity is very difficult. 
Many publically available dataset may not reflect 
real world usages. In order to evaluate the system, a 
set of network traces which contains malicious and 
non-malicious traffic is generated. 

The network traffic is collected from the ISOT 
Botnet dataset. The collected packet will be in 
unreadable format. Using Wire shark tool, which is 
a network protocol analyzer, separate the traffic 
based on user conditions like source IP, destination 
IP, and payload length and so on.  

      Real network traffic data can also be generated 
using sensors. Sensors will monitor the complete 
network exchanges. Fig 4 and 5 show the raw 
network packets and filtered packets respectively. 

 

Fig.  4: Raw Network Packets 

 

Fig. 5: Filtered Packets 

B) Feature Extraction:  

The network characteristic of the flow is 
calculated for different time window T and also 
two observations are made on the time window. 

First, if a time window is too small, we may fail to 
capture unique traffic characteristics that only 
become apparent over a longer period of time. If a 
time window is too large, the decision cannot be 
made until the window size is met. Thus the 
selection of time window size will be based on a 
compromise between detection accuracy and speed. 

C) Attribute Selection: 

An attribute is some characteristic of a flow or a 
collection of flow in a given time window T which 
may be represented as a numeric or nominal value. 

An attribute is some characteristic of a flow or a 
collection of flows in a given time window T which 
may be represented as a numeric or nominal value. 
The set of 13 attributes like source IP, source port, 
destination IP, destination port and protocol field 
can be directly derived from the network packet 
and Average payload length for time interval, 
Variance of payload packet length for time interval, 
Number of packet exchanged for time interval, 
Number of packet exchanged per second in time 
interval, Size of the first packet in the flow, 
Average time between packets in time interval, 
Number of reconnect for the flow, Number of 
flows from this address over the total number of 
flows generated per hour, rest of the attributes are 
calculated with the help of time and length fields 
for specific time interval. After extracting the 
network flow attributes from ISOT botnet dataset 
each packet need to labeled as malicious or non-
malicious as per the description given in the 
document. The document describes about the 
system which generates the malicious or non-

malicious packets. 

 

Fig. 6: Network Flow Attributes 

D) Classification Model: 

After extracting the network flow attributes the 
profile is given to the classifier for building the 
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model. In order to support real time detection goals 
while at the same time exhibiting high detection 
accuracy a popular machine learning approach 
decision tree classifier is used. The total numbers 
of flows used for classification process are 

Table: 1 

 

Class Info Unique Flows 

Malicious 3, 71,385(73.81%) 

Non-Malicious 1, 31,834(26.19%) 

Total 5, 03,219(100%) 

 

E) Decision Tree Learning: 

 The decision tree is very powerful and popular 
data mining algorithm for decision-making and 
classification problems. Automated decision tree 
classifiers uses a decision tree as a predictive 
model, taking in a series of observations and 
generating a value for those given inputs. Leaf 
nodes in a decision tree represent a class or a node 
linked to two or more sub trees called a test node. 
At a test node, some outcome is computed based on 
the attribute values of an instance, where each 
possible outcome leads to one of the sub trees 
rooted at the node. To implement this framework 
the popular weka machine learning framework and 
libraries are used.  

4. ANALYSIS OF RESULT 

After the decision tree is created, the resulting 
model must be analyzed. The accuracy of the 
model and the insights gained from the resulting 
tree are important to consider. Model accuracy is 
usually straightforward to measure techniques such 
as k-fold cross validation can test model accuracy 
in a meaning way.  

Cross validation calculates the accuracy of the 
model by separating the data into two different 
populations: a training set and a testing set. The 
decision tree model is created from the training set 
and its accuracy is measured based on how well it 
classifies the testing set. This testing process is 
continued k times to complete the k-fold cross 
validation procedure.  

As an example of k-fold cross validation, 
consider that k=2, meaning that we have 2-fold 
cross-validation. The 2-fold cross validation starts 
its first iteration. The entire dataset is divided in 
two, with half of the elements belonging to a 
training set and half belonging to a testing set. A 

decision tree is created from the training set and it 
attempts to correctly identify elements from the 
testing set, a set of data the tree has not seen up to 
and this accuracy is recorded. The first iteration of 
the validation is complete. With the second 
iteration, the training set and the testing set are 
switched. A decision tree is built from the new 
training set (the testing set in iteration 1) and 
attempts to correctly classify elements in the new 
testing set (the training set in iteration 1). The 
accuracy of this classification is captured and the 
second iteration is completed. To assess the 
accuracy of the entire decision tree model, an 
average of the first accuracy score and the second 
accuracy score is presented. 

The following table demonstrates the accuracy 
of the classification process being used in detecting 
the botnets. 

Table: 2 

 

Time 

Window 

Size(Sec)) 

Correctly 

Classified 
Incorrectly 

Classified 

10 4, 97,393 
(98.84%) 

5,826 (1.16%) 

300 5, 03,216 
(99.994%) 

3 (0.006%) 

1000 5, 03,219 
(100%) 

0 (0%) 

The k-fold cross validation accuracy measure 
provides a meaningful estimation of the overall 
accuracy of the classifier. When model 
performance is poor, this may imply that there are 
no meaningful patterns in the feature data extracted 
for the experiment or that a different classification 
algorithm should be used.  

The model itself often provides insight into the 
problem of botnet detection. For example, a 
decision tree presents a set of rules that 
differentiate between malicious and benign traffic. 
The rules may highlight specific ports, IP 
addresses, or other features extracted from data of 
interest. These insights can help an intrusion 
detection team work towards follow-on action 
based on the model result. 

The constructed model using decision tree 
classifier produced very high (around 100%). 
These results indicate that there are indeed unique 
characteristics of the evaluation botnets when 
compared to everyday network traffic. 
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Fig. 7: Effect of time window size 

The true positive rate for different time window 
(10, 300 1nd 1000 Sec) are also calculated which 
increases sharply when time window T is more 
than 300 Sec and saturated beyond 1000 Sec. from 
this the optimal time window can be calculated for 
monitoring the network traffic. 

5. CONCLUSION 

The result showed that using decision tree 
classifier, the system able to successfully detect 
botnet activity with high accuracy by simply 
observing small portions of a full network flow, 
allowing us to detect and respond to botnet activity 
in real time. The existing systems to detect botnets 
are less efficient as they tend to identify only the 
regular botnets.  This disadvantage is overcome by 
forming new rules to detect the botnets in the 
proposed system, hence improving the efficiency 
and. The system is modeled in such a way that the 
bots can be detected even if the communication is 
encrypted.  The Experimental evaluation under 
various settings shows that our detector is able to 
achieve a true positive rate of over 95%. While 
both the performance and accuracy of our 
classifiers are satisfactory for real time detection, it 
must be noted that the system may be sensitive to 
new behaviors from bots implementing highly 
varied protocols. To prepare for such risk, a 
technique for web preparing and nonstop 
refinement of the classifiers must in case de 
actualized. 
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