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ABSTRACT 

 
New technologies are emerging to take the challenges in the wireless communication. According to the 
requirements for the next generation technologies have led to unparalleled insist for high speed 
architectures for complex signal processing applications. In this paper, we propose a modified DMWT 
architecture based on CardBal filter. The DMWT coefficients that are fractions are converted to integers 
and are modified to reduce the number of multiplications and additions. The reduced CardBal filter 
coefficients are used to process the data, thus reducing the computation complexity and making it suitable 
for FPGA implementation. The design operates at maximum frequency of 300MHz and consumes less than 
1% resources and thus is suitable for real time applications optimizing area, speed and power. The model is 
tested for its functionality using HDL code and is synthesized using Xilinx ISE targeting FPGA.   
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1. INTRODUCTION  

 
The Discrete Wavelet Transform (DWT) is an 

efficient and useful tool for signal and image 
processing. This growing “success” is due to the 
achievements reached in the field of mathematics, 
to its multi resolution processing capabilities, and 
also to the wide range of filters that can be 
provided. These features allow the DWT to be 
tailored to suit a wide range of applications [1]. The 
DWT is a transformation that can be used to 
analyze the temporal and spectral properties of non-
stationary signals [5].The aim of eliminating noise 
is achieved by inverse transformation, like wavelet 
transform. Successful exploitation of wavelet 
transform might lessen the noise effect or even 
overcome it completely [12Fast Wavelet Transform 
(FWT) highlights the benefit of a faster 
compression and faster processing as compared to 
DWT with higher compression ratios at the same 
time and reasonably good image quality [17]. 
Multiwavelets offer the possibility of superior 
performance for signal processing applications, 
compared with scalar wavelets. A multiwavelet 
system can simultaneously provide perfect 
reconstruction while preserving length, good 
performance at the boundaries, and a high order of 
approximation [19]. Multiwavelets are extension 
from scalar wavelets, and have several advantages 

in comparison with scalar wavelets. The experiment 
results show that this fusion algorithm, based on 
multiwavelet transform, is an effective approach in 
image fusion area. Multiwavelets offer the 
advantages of combining symmetry, orthogonality, 
and short support, which cannot be achieved by 

scalar two-channel wavelet systems at the same 
time [22]. The performance of multiwavelets in 
general depends on the image characteristics. For 
the images with mostly low frequency content, 
(ordinary still images scalar wavelets generally give 
better performance. However multiwavelets appear 
to excel at preserving high frequency content. In 
particular, multiwavelets better capture the sharp 
edges and geometric patterns that occur in images 
[24]. The relatively new field of multiwavelets 
shows promise in obviating some of the limitations 
of wavelets. Multiwavelets offer more design 
options and are able to combine several desirable 
transform features. The few previously published 
results of multiwavelet-based image compression 
have mostly fallen short of the performance enjoyed 
by the current wavelet algorithms. The 
multiwavelet transform and quantization methods 
and introduces multiwavelet packets. Extensive 
experimental results demonstrate that our 
techniques exhibit performance equal to, or in 
several cases superior to, the current wavelet filters. 
Finally, good results have been presented for 
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applying multiwavelets to the denoising of 1-D and 
2-D signals. Combined with the success shown here 
for multiwavelet image compression [27]. 
Multiwavelet transform can be implemented by tree 
structured matrix filter bank, which operates on 
vector sequence input instead of scalar ones. 
Therefore, unlike in scalar wavelet system, 
preprocessing is usually required to extract vector 
sequence input from the input signal for better 
performance. A technique for applying 
multiwavelet transform to 2-D signal is proposed. 
Its simple structure results in 65% reduction in 
preprocessing computation compared with the 
recent 1-D technique while maintaining similar 
energy compaction capability. The reduced 
computation requirement for preprocessing 
comparable with scalar wavelet transform in 
computation intensive application such as video 
processing [30].  

2. PROPERTIES OF MULTIWAVELETS: 

 
The important properties of multiwavelets 

are orthogonality, admissibility and the regularity 
conditions and these properties which gave named 
to their wavelets. 

 
2.1Admissibility 

The square integral function Y(t) 
satisfying the admissibility condition, 

 

� |����|�

|�|
dw < +	∞   

Can be used to first analyze and then reconstruct 
the signal without loss of information. In the above 
equation Y (w ) is the Fourier Transform of Y(t ) . 
The admissibility condition implies that the Fourier 
Transform of Y(t) vanishes at zero frequency, i.e. 
 

� |����|�

|�|
dw < +	∞   

This means that wavelets must have a band pass 
like spectrum. A zero at the zero frequency also 
means that the average value of the wavelet in time 
domain must be zero. 

 
|����|� =0; |w|=0 

Therefore it must be oscillatory. That is Y (t) must 
be a wave. 
 

2.2 Regularity 

 From the equation below, 
 

����(s,	� 
 	� �����	,������ 
The wavelet transform of a one-dimensional 
function is two-dimensional. The time-bandwidth 

product of the wavelet transform is the square of 
the input signal and for most  practical applications 
this is not a desirable property. Therefore one 
imposes some additional conditions on the wavelet 
functions in order to make the wavelet transform 
decrease quickly with decreasing scales. These are 
the regularity conditions and they state that the 
wavelet function should have some smoothness and 
concentration in both time and frequency domains. 
Regularity is a quite complex concept and try to 
explain it a little using the concept of vanishing 
moments (approximation order). 
 

2.3 Vanishing moments 

 If we expand the wavelet transform into 

the Taylor series at t=0 until order n 	=0 for 
simplicity) we get, 
 

���, 0� � 1
√
�����

�

���

�0� 
�

�! � ��� � � ��� � 1� 

Here x (p) stands for the pth derivative of x and R 
(n +1) means the rest of the expression. Now if we 
define the moments of the wavelet by 
  

�	 ��������� 
From the admissibility condition we already have 
that the 0th moment NO= 0 so that the first term in 
the right hand side of above equation is zero. If we 
now manage to make the other moments up zero, 
then the wavelet transform coefficients x (s,t ) will 
decay as fast as s n+2 for a smooth signal x (t ). 
This is known in as the vanishing moments or 
approximation order. If a wavelet has N vanishing 
moments, then the approximation order of the 
wavelet transform is also N. With increasing 
number of vanishing moments the wavelet becomes 
smoother or more regular. Summarizing, the 
admissibility condition gave us the wave, regularity 
and vanishing moments gave us the fast decay or 
the let, and put together they give us the wavelet. 
 

3. TYPES OF MULTIWAVELETS: 

 

The first construction for polynomial 
multiwavelet was given by Alpert, who used them 
as a basis for there presentation of certain operators. 
Later, Geronimo, Hardin and Massopust 
constructed a multi-scaling function with 2 
components using fractal interpolation. 
 

3.1 GHM Multiwavelets 

This multiwavelet was introduced by 
Geronimo, Hardin, and Massopust. Both scaling 
functions are symmetric and multiwavelet functions 
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are symmetric-antisymmetric. It has approximation 
order2 of two.For notational convenience, the set of 
scaling functions can be written using the vector 

notation ( ) ( ) ( ) ( )[ ]T
r
tttt φφφ L

21
=Φ , 

where ( )tΦ  is called the multiscaling function. 

Likewise, the multiwavelet function is defined from 
the set of wavelet functions as 

( ) ( ) ( ) ( )[ ]T
r
tttt ψψψ L

21
=Ψ . 

When r = 1, ( )tΨ  is called a scalar wavelet, or 

simply wavelet. While in principle, r can be 
arbitrarily large, the multiwavelets studied to date 
are primarily for r = 2. 
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However, that kH and kG are matrix 

filters, i.e. 
kH and 

kG are rxr matrices for each 

integer k.  The matrix elements in these filters 
provide more degrees of freedom than a traditional 
scalar wavelet.The two-scale equations (1) and (2) 
can be realized as a matrix filter bank operating on 
r input data streams and filtering them into 2r 
output data streams, each of which is down-
sampled by a factor of two. Signals get decomposed 
into coarse approximation and fine detail at a 
several resolution multiple wavelet basis uses 
translation and dilation of scaling and mother 
wavelet function. Require input data to be 
preprocessed to obtain more economical 
decomposition. Preprocessing method depends on 
length, degree and Orthogonality Differences 
between multiwavelet and scalar wavelet bases, 
these differences become apparent when one 
implements discrete multiwavelet transform. 
 

The lowpass filter H and highpass filter G 
in the multiwavelet filter bank are 2×2 matrices. 
Thus, they need to be convolved with two rows of 
data. However, for 1-D signals, we have only one 
row of data; so we have to pre-process the 1-D 
signal to obtain two rows of data. We note that, the 
pre-processing should not destroy orthogonality  
and/or symmetry of the bases. One solution to this 
problem is simply to repeat the input. But this 
solution is equivalent to oversampling and results in 
an expansive technique that is not suitable for 
compression. Besides, it increases the 
computational complexity of the transform. 

Where the input length 2 vectors are 
formed from the original signal as 
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3.2 Cardinal multiwavelets 

Cardinal multiwavelets were introduced to 
avoid the prefiltering step in multiwavelet 
computations Multiwavelet bases, for which the 
zero moment properties carry over to the discrete-
time filter bank, are called balanced . CardBal2 is a 
cardinal balanced multiwavelet with length 6 and 
approximation order of two. CardBal3 is a Cardinal 
balanced multiwavelet with length 8 and 
approximation order of three. CardBal4 is a 
Cardinal balanced multiwavelet with length 12 and 
approximation order of four. 

 
To obtain cardinal orthogonal multiscaling 

functions, it is useful to characterize them in terms 
of the scaling filters and For to generate orthogonal 
scaling functions , it is necessary that and be 
orthogonal to their shifts by 4.Specifically. 

 

∑ −=+ ).().()4()( kjiknHnH
ji

δδ
 

This is the condition that characterizes the 
orthogonality of four-channel filter banks. It arises 
here because the two channel multiwavelet filter 
bank can be drawn as a four channel scalar filter 
bank with interleaving of subband signals. 

  

3.3 C L Multiwavelets 

This multiwavelet was introduced by Chui 
and Lian and has approximation order of two. 
According to the definition of Daubechies wavelet, 
the multiwavelet in the interval [0, 3] can be known 
as CL4 multi-wavelet, whose filter length is 4. CL 
multi-wavelet with smoothness, compact support, 
symmetry and orthogonality together has two scale 
functions and two wavelet functions. 

 
The properties of CL Multiwavelets are 

described below 
1. They have short support in the interval [0, 2]. 
2. All integer translate of scaling functions are 
orthogonal. 
3. The system has second order of approximation 
(constant and linear functions can be represented 
exactly by a linear combination of translates Φ1 (t − 
k), Φ2 (t − k), k Є Z). The shape of the CL 
Multiwavelet is in such a way that it is well suited 
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to the real time speech processing applications. 
Thus the CL Multiwavelet is selected for signal 
denoising with soft threshold. 
 

4. BER PERFORMANCE OF DMWT IN 

AWGN CHANNEL: 

In this section, the result of the simulation 
for the DMWT-OFDM system is calculated and 
shown in figure (3), which gives the BER 
performance of DMWT-OFDM in AWGN channel. 
when compared to the two previous system FFT-
OFDM and DWT-OFDM, it is shown that the 
DMWT-OFDM is much better. This is a indication 
to the fact that the orthogonal bases of the 
multiwavelets is much important than the 
orthogonal bases used in FFT-OFDM and DWT-
OFDM. 

 
 
Figure1: BER performance of DMWT-OFDM in AWGN 

channel model. 

 

5. CARDINAL MULTIWAVELETS: 

 

Cardinal multiwavelets are called balanced 
multiwavelets, were introduced to avoid the 
prefiltering step in multiwavelet computations 
Multiwavelet bases, for which the zero moment 
properties carry over to the discrete-time filter 
bank. We were obtained a four-balanced cardinal 
orthogonal multiwavelet system with filters of 
length 23. The cardbal4 filter co-efficient of 
cardinal multiwavelet is, 

 

H0 = �0 01 0�     H1 = �0.173 1 √2�
0.662 0  

 

H2 = �0.937 0�0.24 1�   H3 = �0.242 00.031 0�           (3)  

 

H4 = �0.031 0�0.24 0�   H5 = � 1 00.022 0�    
 

G0 = ��0.02 01 0�   G1 = ��0.17 1 √2�
�0.66 0  

 

G2 = ��0.93 00.242 1�    G3 = ��0.24 0�0.03 0�           (4) 

 

G4 = ��0.03 00.246 0�    G5 = � �1 0�0.02 0� 
 

 
 

Figure2: Cardinal Multiwavelet 

 

A. Smoothness 

It is disappointing that as the balance order 
is increased, the cardinal multiscaling functions do 
not become significantly smoother. Apparently, the 
interpolation property, taken together with 
orthogonality and compact support, is quite 
restrictive. We suppose that by increasing the 
multiplicity of the multiwavelet basis (the number 
of scaling and wavelet functions) to, smoother 
solutions might be available. 

 
B. Scaling Function Similarity 

The two-channel multiwavelet filter bank 
can be drawn as a four-channel scalar filter bank 
with interleaving of subband signals. If the filters 
are too different, then the interleaving becomes a 
problem when the filter bank is iterated on one of 
its subband signals. Either a prefilter is required, or 
the filters must be appropriately designed. 
Certainly, when one scaling filter is simply the shift 
of the other (or nearly so), then the interleaving of 
subband signals presents no problem. For the 
multiscaling functions considered in this paper, 
balancing conditions appear to make them similar 
to one another, with higher balancing leading to 
greater similarity. A similar phenomenon occurs for 
the multiscaling functions as the balance order 
increases, the two scaling functions resemble each 
other more. 
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C. Prefiltering 

The use of cardinal wavelet bases also 
simplifies the initialization step of the discrete 
wavelet transform, that is, the estimation of the the 
fine scale scaling coefficients. However, with 
cardinal (or interpolating) scaling functions, no 
such initialization step is needed. The samples are 
themselves the values sought. 
 

6. DMWT/IDMWTARCHITECTURE: 
 
The transformation matrix based on 

cardbal filters for DMWT is chosen to be of size 12 
x 12. The input is taken into group of 4 samples, 
and is repeated with scaled values. The input matrix 
which is of size 4 x 1 is resized to 12 x 1 after 
extension and scaling as shown in equation 4. The 
input matrix is transformed to output using the 
cardibal filter. After matrix multiplication we get 
equations for computing the output matrix of size 
12 x 1. From the equations, there are redundant 
factors between samples y0 andy11, in order to 
eliminate redundancies and reduce computation 
time; the equations are regrouped by reducing the 
common factors. The simplified constants are 
scaled by 128 to convert the fractions to nearest 
integers. Due to rounding effect the loss is 
restricted to less than 2%. The simplified 
expression for cardibal filters are rewritten in 
matrix form, from the two matrices it is found that 
the input samples are of size 4x1 and are used 
simultaneously to compute the output samples y0 to 
y11. Here it is scaled with scaling factor 128. The 
table below shows co-efficient before and after 
scaling. 
 

Table1: Scaled and Un scaled co-efficient 

Before scaling After scaling 

0.171 21 

0.195 25 

0.707 90 

1.644 210 

1.022 130 

0.488 62 

0.242 30 

0.153 19 

-0.226 -28 

0.7382 94 

-1.43 -184 

0.997 125 

0.675 86 

-1.63 -213 

Y0 = 21*x0+25*x2+90*x3+210*x4     (12) 
 
Y1 = 130*x0+62*x2-28*x4+128*x5    (13) 
 
Y2 = 210*x0+30*x2+19*x4+90*x5     (14) 
 
Y3 = -28*x0+128*x1+94*x3+28*x4     (15) 
 
Y4 = 30*x0 +19*x2+64*x3+212*x4     (16) 
 
Y5 = 94*x0+28*x2-19*x4+ 90*x5       (17) 
 
Y6 = 24*x0-25*x2+90*x3-184*x4      (18) 
 
Y7 = 125*x0-62*x2+28*x4+128*x5   (19) 
 
Y8 = -210*x0-32*x2-19*x4+212*x4   (20) 
 
Y9 = 28*x0+128*x1+86*x2-28*x4     (21) 
 
Y10 = -19*x0+64*x1-213*x2-24*x4   (22) 
 
Y11= -28*x0+19*x2+90*x3+125*x4  (23) 
 

The filter coefficients are obtained from 
the simplified equations. Reducing the above 
equations into matrix form. The simplified 
equations derived from above matrix are used in 
design of multiwavelet architecture. The optimized 
architecture consists of a FIFO of size 4, that stores 
the input samples, and the FIFO are accessed to 
compute the output samples as per the simplified 
equations. The optimized architecture is modelled 
using HDL and is simulated using ModelSim. In 
this work a cardbal based DMWT and IDMWT is 
implemented on FPGA optimizing area, power and 
speed performances. 
 

7. RESULTS AND DISCUSSION: 

 
In this section, we proposed a cardibal 

filter for cardinal multiwavelets and the VLSI 
implementation of Discrete Multiwavelet transform 
and inverse discrete multiwavelet transform is 
presented. The DMWT coefficients that are 
fractions are converted to integers and are modified 
to reduce the number of multiplications and 
additions. The modeled HDL is simulated and 
tested for its functionality; the functionally verified 
HDL code is synthesized using Xilinx ISE targeting 
Virtex-5 FPGA. The design consists of 110 million 
gates and has 1136 I/Os. The synthesized net list 
and synthesis report are analyzed for the 
performance of designed DMWT architecture. The 
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results obtained are compared and discussed in this 
section. 

 

 

Figure3: post and place simulation 
 
 
Target Device: xa9536xl-15-vq44 

Minimum input arrival time before clock: 8.362ns  
Maximum output required time after clock: 3.293ns  
Total memory usage is 144660 kilobytes  
 

Figure3 below shows the RTL schematic 
diagram of the cardibal filter design with  

 

 
 

interconnects between the various blocks. It is a 
technology independent schematic. From the 
optimized architecture the number of multipliers 
and adders are minimized. Apart from reduction in 
multipliers and adders, the throughput and latency 
of the optimized design is also improved.  
 

 
 

Table2: Comparison Of Post Layout Synthesis Result Of The Existing Structures And Proposed Structure

  

Structures Block-
Size(P) 

Multipliers Adders Registers Power 
(Mw) 

I/O Pins 

Cheng et al [6] 2 12 16 24 8.93 66 

Lai et al [7] 2 10 16 44 13.416 84 

Tian et al [8] 4 6P 8P 10P 11.645 83 

Proposed  6 8P 6P 12P 9.35 163 

 
 
The arithmetic unit designed works on 

fixed point number system and thus introduces loss 
when compared with floating  point number 
system. The DMWT architecture operates at a 

maximum frequency of 340MHz and consumes 
power less than 25mW. The power consumption is 
reduced by adopting various low power techniques 
as recommended for FPGA implementation. 
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Figure4: RTL Schematic 

 
 

8. CONCLUSION: 

 

In this work, we propose a modified DMWT 
architecture based on cardBal filter. The DMWT 
coefficients that are fractions are converted to 
integers and are modified to reduce the number of 
multiplications and additions. The reduced cardBal 
filter coefficients are used to process the data, thus 
reducing the computation complexity and making it 
suitable for FPGA implementation. The modified 
equations are modeled using HDL and 
implemented on FPGA. The design operates at 
maximum frequency of 300MHz and consumes less 
than 1% resources and thus is suitable for real time 
applications. 

 

9. CONCLUSION AND FUTURE WORK 

In this work, we propose a modified DMWT 
architecture based on cardbal filter. The DMWT 

coefficients that are fractions are converted to 
integers and are modified to reduce the number of 
multiplications and additions. The reduced cardbal 
filter coefficients are used to process the data, thus 
reducing the computation complexity and making it 
suitable for FPGA implementation. The modified 
equations are modeled using HDL and 
implemented on FPGA. The design operates at 
maximum frequency of 300MHz and consumes less 
than 1% resources and thus is suitable for real time 
applications. In future, the carbal filter co-efficients 
can be reduced  and  reducing the power less than 
the proposed system. 
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