
Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

DESIGN OF PRIVACY MODEL FOR STORING FILES ON

CLOUD STORAGE

1
AMBIKA VISHAL PAWAR,

2
DR. AJAY R. DANI

1Research Scholar, Symbiosis Institute of Technology (SIT), Symbiosis International University (SIU),
Lavale, Pune - 412 115, Maharashtra State, India

2Research Guide, Symbiosis International University (SIU), Lavale, Pune - 412 115, Maharashtra State,
India

Email:
1
ambikap@sitpune.edu.in, 2ardani_123@rediffmail.com

ABSTRACT

Cloud Storages like Google drive, Dropbox are popular for personal and institutional file storage. Cloud
storage is beneficial in terms of scalability, availability and economy. But cloud storage has privacy
challenges due to which many users are reluctant to use it for personal data storage. Storage of personal or
sensitive files should be done carefully. Since cloud storage is third party storage and also has many other
possibilities like files can be shifted from one server to another cloud server. Cloud storage needs special
solution than traditional third party storages. The data can be encrypted for security purpose but this will
further raises issues like key management and key distribution. Encryption also requires more computation
cost and time on client/user. This paper introduces the design of novel privacy model for storing files in
cloud storage, proposes architecture and algorithms for cloud storage. Paper also discusses about the proof
of privacy and proposed system’s performance evaluation parameters for future work.

Keywords: Cloud Storage, Files, Privacy, Multicloud, Splitting, Information Dispersal Algorithm,

Security, Randomization

1. INTRODUCTION

Cloud computing has been growing
tremendously in last few years. Among different
computing services offered in cloud, cloud
storage has attracted many users. Cloud storage
allows organizations or individuals to store their
data in scalable, anytime and anywhere available
and affordable (pay as you go) powerful cloud
infrastructure. Extensive use of Google drive,
Dropbox and many other cloud storages proved
popularity and need of cloud storages. E.g. In Apr
2013Amazon reported storing two trillion objects
in their storage Amazon S3 [1].

Cloud storage i.e. third party storage has
critical issues for adoption, to store sensitive data.
Organization losses control over their sensitive
data, while using third party cloud storage.
Compromising customer data can impact many
organizations, like healthcare, retail companies,
manufacturing etc. Cloud storage creates many
challenges in ensuring privacy of outsourced data
since cloud service provider (CSP) may use user
data for commercial purpose or third party may
gain access to cloud storage user data. Such
problems are actually faced and confessed by

some service providers e.g. Web-based storage
firm Dropbox confirmed that a programmer's
error caused a temporary security breach that
allowed any password to be used to access any

user account. [2]

To provide data privacy, most of the cloud
storage security solutions use encryption.
Customer encrypts the data before storing it on
cloud and keeps decryption key with them.
However, encryption has computational
complexity and complex key management issue.
If encryption has computation overhead instead of
encrypting file at client side, file can be encrypted

by CSP to protect from outside attackers.

Other solutions to provide security and
privacy are using information dispersal
algorithms (IDA). There are many algorithms
proposed on IDA, it addresses different issues as
confidentiality, integrity and availability. IDA
splits file into parts/chunks and apply further
transformation to generate n slices of file. It
further distributes generated slices among
multiple CSPs. Out of n slices, if m number of
slices (m<n) are available, it is possible to extract
original file contents. If adversary gets access to

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

m number of slices, possibility of extracting
sensitive information in stored file.

One more approach to security and privacy
solutions is use of multi-cloud environment.
Multi-cloud environment means simultaneous use
of multiple cloud services for the same purpose
e.g. for storage of data. Many solutions using
multi-cloud environment have been proposed,
uses encryption and IDA based algorithms in
order to provide security, privacy, availability,
reliability in cloud. These approaches have
proved improvements with this new paradigm
shift from single cloud to multicloud architecture.
So we have selected here an approach of using
multiple clouds instead of single cloud.

The rest of the paper is organized as follows.
Section 2 gives an overview of related research
work. In Section 3 privacy problem is defined
with the help of basic cloud storage architecture,
also the threat model and objectives of work are
detailed; Section 4 describes the approach to
solve the defined privacy problem. Solution is
proposed with the help of design of privacy
model and detail design of algorithms for file
operations in cloud storage. In section 5 presents
the proof of privacy for proposed privacy model.
Section 6 describes future work, discusses
different metrics for performance analysis. Finally
in section 7 conclusions.

2. RELATED WORK

Motivations to design this approach are IDA
proposed in [3] and the survey and design of
different multi-cloud architectures (MCA)
discussed in [4]. Reasons behind adoption of
multi-cloud architecture are proof of advantages
to resolve many single cloud architecture issues.
Multicloud architecture lowers the risk of
malicious data disclosure, manipulation and
tampering. Thus by use of MCA, the trust
assumption of trust on single CSP lowered to
assumption of non-colluding CSPs. Further this
architecture will make it difficult for attackers to
retrieve scattered data over multiple CSPs.

[4] Presents different MCA for improving
security and privacy. We selected MCA based on
data partitioning. Data partitioning divides
original data into small parts. These data parts can
be further stored on different CSPs, thus no single
CSP will have a complete data, which hides the
relation of CU/data owner to the sensitive data by
not exposing data as a whole to the third party

CSP. But still it will revile part of data to CSPs.
We need to make some provision to resolve this

issue; detail solution is discussed in section 4.

Further in [4] different data partitioning
methods are discussed. Data can be either in
structured form e.g. relational database or
unstructured form e.g. doc, PDF files. Files
typically contains images, text etc. In databases
data get organized in the form of rows and
columns. Vertical and horizontal partitioning of
databases has been applied by many of the
researchers. File splitting and merging is very
popular technique to overcome different storage
related problems. Many tools are available for file
splitting and merging of files [5] explains the
fundamentals and implementation of file splitting
and merging.

Cryptographic approach for data partitioning
is used in different ways. Data can be encrypted
before storage to protect it. While doing this
cryptographic keys need to be maintained on
client/user side. But to allow sharing of data
among multiple users, the key should be available
online [6]. Many solutions are proposed using
encryption for secure cloud storage. The fist
solution using cryptograph for cloud storage [7] is
for encrypted key-value cloud storage. This
approach supported easy access to the stored data
in secure cloud storage. Searchable encryption
[8][9] is the heart of this solution. Searchable
encryptions allows to search even on the
encrypted data. It allows keyword search on a
data for authorized tokens of the keyword. It uses
public and private cloud infrastructure. The
encrypted data resides in untrusted public cloud
environment while the keys are stored in trusted
private cloud environment.

CryptDB[10] supports data processing on
encrypted relational databases. The data is
encrypted using different types of encryptions as
order-preserving encryption [11], homomorphic
encryption [12], searchable encryption [8] and
AES. In CryptDB, there is a database server
which stores encrypted data and a proxy which
holds the keys and also provides a user interface
for running SQL queries. Proxy provides only
necessary keys to the server. This may cause the
database server to gradually learn about the

encrypted data.

One more way is a secret data sharing. It splits
data into multiple shares such that original data

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

can be reconstructed if and only if minimum
required shares come together.

Above cryptographic approaches are mostly
applied in relational databases for storage and

processing of data in cloud storage.

In distributed file system files get divided into
chunks and get distributed to different servers.
Information dispersal algorithms are proposed in
[3] to support implementation of distributed file
system and also provide data confidentiality,
integrity and availability.

3. PROBLEM DEFINITION

3.1 Cloud Storage Architecture

In typical cloud storage scenario as shown in
Figure 1, there are 2 main entities

1. Cloud Service (storage) Provider (CSP)
e.g. Amazon provides Amazon S3. It
provides storage as a service.

2. Cloud (storage service) User (CU) e.g.
an individual or organization using cloud
storage service. Multiple users may exist
who want to access same file. The file is
stored/uploaded and
accessed/downloaded into/from CSP.

Two basic operations are uploading and

downloading file (F) on/from cloud storage.

3.2 Problem Statement

As CU’s sensitive data (files) resides with
third party CSP. Privacy can be violated by CSP,
if files are stored in plain text or in original form.
Privacy violation here we mean
accessing/viewing, sharing sensitive information
in uploaded file e.g. customer and their contacts
in file. Privacy of the cloud user’s uploaded
sensitive file. To protect privacy means
CSP/outsider unauthorized user should not be
able to read CU's sensitive data without their
permission. So we cannot keep plain data on CSP.
Privacy can also be violated by outsiders i.e.
attackers who gain access to CSP storage. Once
accessed sensitive information can be misused,

shared or sold for benefit.

Privacy (CU, sensitive info file) =! CSPs or
outsider (reconstruct original file)

Privacy (data subject, sensitive info) =! CSPs or

outsider (link, data subject, sensitive info)

3.3 Threat Model

We assume that all servers in CSP network are
strongly protected against network attacks e.g.
firewall. We assume that adversary CSP, is
capable of monitoring and observing n/w traffic
in and out of CSP server network. Assumption of
complete secure CU network is made. Since
application server is single point of failure in our
system and cannot be compromised. It is also
assumed that all communications between system

components are secured.

3.4 Objectives

Privacy protection model is designed to

achieve following objectives

1. Design of privacy protection scheme for
unstructured data e.g. files. This will
enable popular storage approach of using
cloud storage. Protecting privacy of
sensitive files (by making file
unreadable.).

2. Design scheme as a middle layer
between CSP and CU without making
any change to existing CSP
infrastructure.

3. Utilizing multi-cloud environment which
will improve privacy and availability.

4. Less computation and communication

overhead on CU.

Two basic operation models in cloud storage
are as below:

1. Storage as a service: CSP acts as a
storage service provider. F is created and
opened at CU. CU uploads F into CSP
storage. To access uploaded file F, CU
downloads F from CSP. CU will
download F from CSP to modify it
locally and re-upload it to CSP storage.

2. Computing as a service: CSP provide file
creation as well as other file operations.

We consider the first operation in this paper.
In the second operation, CS needs to be fully
trusted. In second operations privacy or security
problem is trivial.

4. PROPOSED APPROACH

4.1 Design Of Privacy Model for Storing Files

in Cloud

Figure 2 shows the design of privacy model
for storing files in cloud storage. This model has
three components: 1. Multi-cloud environment

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

410

(CSPs), 2. Cloud Users and 3. Client side,
application server.

Description of the components:

Multi-cloud environment: Set of cloud
storage service providers e.g. Sugar Sync,
Dropbox and Google drive etc., to store file
chunks.

Cloud User: User will interact with CSPs
through application server. Cloud users create
files locally, store and share and retrieve files
on/from cloud storages. User will access web
application hosted on application server,
discussed below. This web application will
provide user interface to store/upload files to
CSPs, retrieve/download files from CSPs and also
share files with other users.

Client side Application Server: Web
application and database with file metadata
(complete file preprocessing information as file
name, id, chunks, chunk groups, chunk dada
randomization key, chunk sequence
randomization key and chunk destination
addresses CSPs). Pre-processes file upload
request by user.

Pre-processing of upload request has
following steps:

Step 1: Splitting a file into chunks of fixed size.

Step 2: Generate chunk sequence randomization
key. Store the key in repository. Randomize

chunk sequence.

Step 3: Generate data randomization key, store
the key in repository. Randomize the chunk data

with randomization key, makes data non readable.

Step 4: Grouping of Chunks based on no. of
CSPs and sending group to different CSPs. E.g.

uploading first N chunks to CSP1 and so on.

Step 5: Generate random redundancy key and
creating redundant chunks.

Step 6: Storing redundant chunks on selected
CSPs to guarantee availability in absence of any

of the CSPs.

Pre-processing of file download request
has following steps:

Step 1: Fetch file to chunk mapping information
from file-chunk mapping repository.

Step 2: Fetch destination (CSPs) addresses of all
file chunk groups from repository.

Step 3: Send download request based on

destination addresses to different CSPs.

Post-processing of file download request
has following steps:

Step 1: Receive chunk data from different CSPs.

Step 2: Check for any of the chunk failure and
request for redundant copy at other CSP.

Step 3: Normalize/arrange chunk data with data
randomization key from repository.

Step 4: Re-order (sort) chunks with chunk

sequence randomization key stored in repository.

Step 5: Re-assemble the file using its chunks.

Step 6: Send file to requested cloud user.

The application server is the heart of the
system and cannot be compromised at any point.
Server should be protected with powerful

infrastructure such as firewall.

4.2 Algorithms

In this section we propose algorithms for
upload download operation. We list here
notations used in the algorithms in Table 1.

Table 1 Notations

F File/Data to be uploaded

FN File Name of F

FS File Size of F (in bytes)

CSPs Cloud Service Providers

N No. of CSPs

CS_id Cloud Storage Id

CU Cloud User

FC Set/Array of file chunks

fc File Chunk of F

fc_Size File Chunk Size (in byte)

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

n No. of Chunks

K1 file chunk sequence randomization key

K2 chunk data (bytes) randomization key

G Chunk Group

GID Group ID

__

Algorithm 1: File Splitting Uploading Operation

__

Input: F, n, N

Output: 1.Sending ‘fc’ groups to destination

CS_id

Step 1: Find File Size

FS = Sizeof(FileName) //finding file size in bytes

Step 2: Make n Chunks of file

Where fc_Size = FS/n

Step 3: Generate K1 (file chunk sequence
randomization key). Randomize file chunk
sequence with this key. Store K1 in repository

K1=GenerateRND();

Randomize (FC, K1)

Step 4: Generate K2 (chunk data randomization
key). Randomize every chunk data (bytes) using

K2. Store K2 in the repository.

K2=GenerateRND();

m=fc_size

Let each chunk has m bytes fc1= {b1, b2….. bm}

//Randomize chunk data of all generated chunks.

For i=1 to n

Randomize(fci, K2)

Step 5: Generate N groups of n chunks in FC.

Store Chunk GIDs in repository.

FC = {G1, G2,….,GN}

Step 6: Send N chunk groups to N CSPs. Store
group and their destination CSP id info in

repository.

 For all i=1to N groups Gi

//In Parallel send jth chunk of Gi to CSPi

for j=1 to n/N

 Gi[Cj]->CSPi

__

Algorithm 2: File Combine Downloading
Operation
__

Input: FN

Output: Downloads File F with FN on client side

Step 1: Map FN, file name to chunk groups from
repository.

Step 2: Fetch chunk group and their destination
CSP id info from repository. Now send parallel
request to different CSPs for chunks in respective
groups.

FC= {G1, G2,….,GN }

//In Parallel request jth chunk of Gi to CSPi

 For all i=1to N groups Gi

 For j=1 to n/N

 Gi[fcj]<-CSPi

Step 3: Fetch K2 (chunk data randomization key)
from repository. Rearrange file data (bytes).

m=fc_size

Let each chunk has m bytes e.g. fc1={ b7, bm…..
b2}

//Rearrange chunk data of all generated chunks.

For i=1 to cn

Rearrange (fci,K2)

After randomize fc1={b1, b2….. bm }

Step 4: Fetch K1 from repository (File chunk
sequence randomization key). Rearrange file
chunks with this key. FS

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

412

Rearrange (FC, K1)

After rearranging function, FC = {fc1, fc2….fcn }

Step 5: Generate File F with FC

FS=Sizeof (FileName)

Compare with repository File size

Step 6: Send/ Display file to CU

4.3 Example

Let file F be the original file of size FS and bi
be the byte array of F.

Let m be the size of file chunk. (F will spitted
into chunks of fixed size m bytes)

F = (b1, b2,…bm),(bm+1, bm+2,…b2m),…(bFS-

m+1,….bFS)

Let generated file chunks are fc1=(b1,
b2,…bm), fc2=(bm+1, bm+2,…b2m),…fcn= (bFS-

m+1,….bFS) where n = FS/fc_Size

So File chunk array, FC = {fc1, fc2,…., fcn }

Randomize function file chunk array FC, e.g.

FC = {fc6, fc13, fcn,….fc2 }

Randomize m bytes of all file chunks e.g
After randomize fc1={ b7, bm….. b2}

Generating N groups of n file chunks fc in file
chunk array FC

FC = {G1, G2…GN}

Storing Chunk Groups to different CSPs.

E.g. Let F is a file of size 100 bytes. Assign 10
bytes to each chunk and step to create an array of

chunks as shown in Figure 3.

Let RNDGen function generates a
random key, k1= 5217380694. This key will be
used to randomize chunk array sequence so
randomized chunk sequence according to this key

will be as below.

Randomized Chunk Array Sequence: [5] [2]
[1] [7] [3][8][0][6][9][4]

Grouping:

[5] [2] [1] [7] [3] [8] [0] [6] [9] [4]

 G1 G2

Assuming here no. of CSPs, N=2.
Creating unordered groups of chunks and
sending/storing these groups G1 and G2 with

different CSPs.

Similar to chunk sequence
randomization, we will randomize chunk data. As
shown in figure 3 chunk size is 10 bytes for each
chunk. So we will randomize each file chunk
bytes using same randomization key. E.g. chunk
data randomization key k2=8315207964. Byte
sequences in original chunk and after data
randomization are as shown in figure 4 and 5

respectively.

4.4 Application Server Repository

Application Server Repository stores
information for processing before uploading and
processing after downloading the file. It store data
about authentic users created by administrator,
who can use this interface to upload/download
file on multiple CSPs. The structure for storing
user information is as given below.

Structure User
{
UserName
MD5 hashed password
}

Then it also stores file information in
below mentioned format. One user can create
many files and further that user/file owner can
share the same file with other users.
Structure File_Info
{
File_Name
File_Id
File_Type
File_Owner
File_Creation_Time
File_Access_Time
File_Size
File_Chunk_Seq_RND _Key
File_Chunk_data_RND_Key
File_No_of_Chunks
Shared_with
Access_rights

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

413

}
Chunk/File parts related information will

be stored in repository. Single file will have many
chunks. This information will get stored during
upload processing and will get retrieved during
download processing.
Structure Chunk
{
Chunk_Name = File_Name_Chunkseq
Chunk_id=File_id_Chunkseq
Destination_addr=Cloud_storage_id
Redundant_copy_addr=Cloud_storage_id
Chunk_Group_Id
}

Apart from above mentioned information
repository will have CPS related information in
the following format.
 Cloud_Stoarge
{
Cloud_Stoarge_Name
Cloud_Storage_id
Stoarge_Type
User_Name
MD5_Hashed_Password
}

5. PROOF OF PRIVACY

Privacy can be defined as “Minimizing

probability of reconstruction or reassembling of
original file by CSPs in order to understand
sensitive information in file.”

Following cases discusses different scenarios

from best to the worst cases:

Case 1: An individual CSP don’t have access to
all chunks/parts of file. So probability of
generating whole/complete file is zero.

Case 2: If all N CSPs collude then they will have
all chunks/parts of file. i.e. all n chunks will be
available to CSPs.

Without K1 and K2, they (CSPs) won’t
be able to reconstruct original file. So even if all
N CSPs collude probability is not one.

 Probability in Case 2 depends on the
total no. of chunks and the chunk size.
Assembling a file will require arranging chunk
data in proper order and also arranging chunks in
a proper sequence.
As considered in above section fc_size – file
chunk size and n- total no. of chunks.

Let us assume that the chunk size is m
bytes and total no. of chunks n. So possible
permutations of m bytes = m! and permutations of
n chunks are n!

So the probability of assembling original
file in case 2 scenario is, P (A) =1/ (m! * n!). This
probability will be very less, tends to zero for
large values of m or value of n by basic limit
theorem as shown in following equation 1. If we
fix no. of chunks then chunk size will vary for
different files. Larger the chunk size less will be
the probability of reorganizing original data. Thus
we will keep n constant and m variable. Thus for
large files, it will provide strong privacy compare
to small files. Even for small files, number of
bytes will be large number.

P�A� � 	lim
																			

�→∞

��

�→	∞

 1
�! ∗ �!� → 0

Equation 1: Probability of success in assembling
file

Case 3: If someone gets access to client side
application server then probability of original file
construction will be one. Since an application and
keys will be accessible.

Representing probability of assembling
file on a probability scale, as discussed in above
with 3 cases is as shown in Figure 6. As per
probability theory probability zero tells us that the
event will never happen thus case 1 gives
probability zero i.e. it is impossible to assemble a
file. Case 2 has not certain probability. It will be
between zero to one. In case 3 file assembling is
certain

The possibility of third case is rear rather not

possible because of secured cloud user side
infrastructure. Thus it is not possible for CSPs to
assemble the original file easily. Thus without
reconstruction of original file, one cannot link
sensitive contents of file.

6. FUTURE WORK

Performance evaluation of proposed scheme,

need to focus on quantitative results. The
performance of proposed scheme focuses on two
major operations on file while using cloud
storage. In proposed model, time require to
upload/ download file with respect to change in
file size. File size is major independent variable in

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

414

our system, which will affect the file
upload/download time. There are two minor
parameters no. of chunks and size of chunk which
can be observed during evaluation. With respect
to above, we plan to measure three different
metrics with respect to file size. First metric is file
upload and download time (in msec) with respect
to size of file.

Upload Time/Download Time is time from
request to upload/download to complete file get
uploaded/downloaded.

Upload Time = File Splitting Time + Total

Chunks Upload Time

Download Time = Total Chunks Download

Time + File Reassembling time

Second metric is communication cost; we
need to observe additional communication
overhead due to the multicloud environment and
chunk distribution. We need to measure
communication cost

Communication Cost = Data transfer in
bytes/sec

Third metric is computation cost. Application
Server/Client side computations overhead i.e.
upload/download pre/post processing
computations.

Client side Computation Cost = Processing

time for upload processing + download pre &
post processing.

In future we plan to do statistical analysis of
our system with file size as independent variable
and uploading and downloading time,
communication cost and computation cost as
dependant variables.

7. CONCLUSION

The paper has presented a novel approach for
achieving privacy of non structured data i.e. file
while using third party cloud storage service.
Based on our analysis of existing security and
privacy solutions on this problem, we proposed
novel approach to solve privacy issue without use
of encryption, which has heavy computation
overhead. Further we will implement the

proposed scheme and will analyze it for proposed
performance metrics.

REFERENCES

[1] Amazon S3 - Two Trillion Objects, 1.1
Million Requests / Second 18 Apr 2013 in
AmazonS3“http://aws.amazon.com/blogs/a
ws/amazon-s3-two-trillion-objects-11-
million-requests-second/”.

[2] Dropbox confirms security glitch--no
password require 20 June 2011
“http://www.cnet.com/news/dropbox-
confirms-security-glitch-no-password-
required/”.

[3] Rabin, Michael O. "Efficient dispersal of
information for security, load balancing, and
fault tolerance." Journal of the ACM

(JACM) 36, no. 2 (1989): 335-348.
[4] Bohli, J-M., Nils Gruschka, Meiko Jensen,

Luigi Lo Iacono, and Ninja Marnau.
"Security and privacy-enhancing multicloud
architectures." Dependable and Secure

Computing, IEEE Transactions on 10, no. 4
(2013): 212-224.

[5] File Splitter (Part 1 Of 2 Parts) Started by
Luthfi, May 02 2012.

[6] F. Pagano and D. Pagano, “Using In-Memory
Encrypted Data- bases on the Cloud,” Proc.
First Int’l Workshop Securing Services on
the Cloud (IWSSC), 2011, pp. 30-37.

[7] S. Kamara and K. Lauter, “Cryptographic
Cloud Storage,” Proc. 14th Int’l Conf.
Financial Cryptography and Data Security,
2010, pp. 136- 149.

[8] R. Curtmola, J. Garay, S. Kamara, and R.
Ostrovsky, “Searchable Symmetric
Encryption: Improved Definitions and
Efficient Con- structions,” Proc. 13th ACM
Conf. Computer and Comm. Security, 2006,
pp. 79-88.

[9] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz,
T. Kohno, T. Lange, J. Malone-Lee, G.
Neven, P. Paillier, and H. Shi, “Searchable
Encryption Revisited: Consistency
Properties, Relation to Anon- ymous IBE,
and Extensions,” Proc. 25th Ann. Int’l Conf.
Advances in Cryptology (CRYPTO ’05),
2005, pp. 205-222.

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

415

[10] R. Popa, C. Redfield, N. Zeldovich, and H.
Balakrishnan, “CryptDB: Protecting
Confidentiality with Encrypted Query
Processing,” Proc. 23rd ACM Symp.
Operating Systems Principles, 2011, pp.
85-100.

[11] A. Boldyreva, N. Chenette, Y. Lee, and A.
Oneill, “Order- Preserving Symmetric
Encryption,” Proc. 28th Ann. Int’l Conf.
Advances in Cryptology: The Theory and
Applications of Cryptology (EUROCRYPT
’09), 2009, pp. 224-241.

[12] R. Rivest, A. Shamir, and L. Adleman, “A
Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Comm.
ACM, vol. 21, no. 2, 1978, pp. 120-126.

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

416

 Figure 1 Cloud Storage Architecture

Figure 2 Privacy Model for Storing Files in Cloud

Figure 3 File data and chunk representation

Figure 4 Byte sequence in original chunk

Figure 5 Byte sequence in data randomized chunk

Figure 6 File Assembling Probability Scale

