
Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

368

SEMANTIC ANALYSIS OF SOFTWARE SPECIFICATIONS

WITH LINKED DATA

1MARTIN DOSTAL, 2MICHAL NYKL, 3KAREL JEŽEK
1NTIS, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic

2,3Department of Computer Science and Engineering, FAS, University of West Bohemia

E-mail: 1madostal@ntis.zcu.cz, 2nyklm@kiv.zcu.cz, 3jezek_ka@kiv.zcu.cz

ABSTRACT

Software development life cycle is the process involved in the design, development and improvement of a
software application. Nowadays especially component systems are used due to possibility of implementing
reusable independent modules. The individual module, known as a software component, can be
implemented in a form of a software package, a web service or a web resource that encapsulates a set of
related functions. Software products are derived in a configuration process by composing different
components. Moreover a software product line enables stakeholders to derive a different software products
based on their needs. This fact and need for validation of the software product and its components requires
methods for software specification processing and matching with concrete sw properties. In this article we
will propose an approach for semantic analysis of software specifications with Linked Data.

Keywords: Software Specifications, Linked Data, Semantic Analysis

1. INTRODUCTION

Essentially software is determined by its

functional and non-functional characteristics [1].
Functional characteristics describe software
behavior that can be directly implemented and
evaluated by common programmer. Furthermore,
software specification documents are usually
focused on functional characteristics, because it is
easy to understand and describe application
behavior to the customer. Unfortunately, there has
been a lop-sided emphasis in the functionality of the
software, even though the functionality is not usable
without the necessary non-functional requirements.

These requirements are usually hidden and it
occurs at the time when it is least suitable. It
includes usability, interoperability, flexibility,
performance and software security. Real-world
problems are more non-functionally oriented than
they are functionally oriented, so even great
application could be unusable if it disregards the
typical use. These problems include high cost and
slow processing, poor productivity, lower profit and
it leads to unhappy customer.

In this article we will discuss our approach for
semantic analysis of software specification using
Linked Data (LD). The Web of Data is often
illustrated as a fast growing cloud of interconnected
datasets representing information about barely

everything [2]. Linked Data refers to the Web of
Data in contrast to the Web of Documents. Linked
Data extends the current web that consists of
documents and the computer-meaningless links
between documents. In the case of Linked Data, not
just documents but also data elements (things) and
the links between these data elements exist. More
over the links in LD are expressive, unambiguous
and identified by URI. LD is therefore more
structured and machine process able than Web of
Documents [3].

In Section 2 we will discuss the related work in a
field of Linked Data and related web services. In
Section 3 we will describe problematic of key
phrase extraction with focusing on Named Entity
Recognition (NER) with Linked Data. Our
approach for SW specification analysis will be
introduced in Section 4. Section 5 is devoted to
results and conclusions.

2. RELATED WORK

In this section we will introduce Requirements
engineering (RE) and Linked Data applications. We
will propose our approach to text analysis using
Linked Data thus we need to explain the basics
about Linked Data and related web services such
as DBpedia Spotlight [4]. This web service is used
for semantic enrichment of a text and it consists of
methods for entity detection, candidate selection

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

369

and disambiguation based on related concepts
extracted from Linked Data.

2.1 Requirements Engineering
Requirements engineering (RE) is the process of
developing requirements through an iterative
cooperative process of analyzing the problem,
documenting the resulting observations in a variety
of representation formats, and checking the
accuracy of the understanding gained [7].
Requirements engineering identify the purpose of
a software system, and documents it in a form that
is suitable to analysis, communication and
subsequent implementation [8]. If we want to build
a software system it has to be described in some
way before the design and implementation process
will be started. Typically, these descriptions, known
as requirement documents, are far from
representing the real business logic. Instead, we
have a set of statements that is:

• incomplete (forgotten features),
• inconsistent (contains contradictions),
• ambiguous (more possible interpretations).

Elements of the RE are elicitation, specification and
validation as shown on Fig. 1.

• Elicitation – the aim is to gain knowledge
relevant to a problem in order to produce a
requirements model.

• Specification - Software Requirement
Specification (SRS) will be described later
in this article.

• Validation – the purpose is to check
whether the requirements specification
complies with stakeholders intentions.

Before software can be implemented, we need to
find, analyze and describe customers’ needs known
as requirements. We distinguish the following kinds
of requirements:

• Application requirements
o Functional requirements
o Non-functional or Extra-

functional requirements
• Domain requirements – requirements that

come from the characteristics of the
system domain.

Benefits on applying ontologies in RE leads to
reduce the negative effects of the previous factors
on the RE processes. The potential uses of
ontologies in RE include the representation of:

• The requirements model – requirements
ontology,

• acquisition structures for domain
knowledge – software requirements
specification document ontology,

• the knowledge of the application domain –
application domain ontology.

2.2 Linked Data
The concept of Linked Data [7] was first introduced
by Tim Berners-Lee. He set up four rules for
machine readable content on the Web:

• Use URIs as names for things.
• Use HTTP URIs so that people can look

up those names.
• When someone looks up a URI, provide

useful information using the standards
(RDF*, SPARQL1).

• Include links to other URIs so that they
can discover more things.

More specific is the idea of Linked Open Data2
(LOD), which is based on the presumption of freely
published data without restrictions in usage or
additional fees.

The Linked Data initiative has given rise to an
increasing number of RDF3 documents as well as
other machine-readable sources, many of which are
freely accessible online. These resources are often
created as a result of database exports. That is the
reason why we have to deal with duplicate
information sources. There are two basic problems
with duplicates resources: disambiguation and co-
reference resolution. These problems were
discussed in [8]. DBLP4 and DBpedia5 are two of
those common Linked Data resources often used for
academic research.

Linked Data contains information about
a resource and moreover links to other related
resources. There are two basic types of links that we
can directly use:

• Parent-child relation,
• links to synonyms.

These connections are bidirectional so a child can
find his parent and a parent can find his children.
Relations are described by ontology predicates. For
example: “dbpedia-owl:genre”, “skos:broader”,
“dcterms:subject”. The meaning of these predicates
differs, but we can use it in the same way.

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://lod-cloud.net
3 http://www.w3.org/RDF/
4 http://dblp.uni-trier.de
5 http://dbpedia.org

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

370

An example of these relations between resources is
shown in Fig. 2.

Figure 2: Example of hierarchical relations between
nodes in LD

Synonyms are designated by the ontology
relation: “owl:sameAs“, which indicates true
synonyms, and the relation “skos:related“, which
indicates related concepts.

2.3 DBpedia Spotlight
DBpedia Spotlight [4] is an open source software

designed for automatic processing, analyzing and
semantic enrichment of a text. It automatically
annotates mentions of DBpedia resources in text,
and goes through the whole analysis life cycle. It
consists of entity detection (spotting), candidate
selection and disambiguation based on related
concepts.

DBpedia Spotlight is not just a tool but moreover
it can be used as a web service. Nowadays there are
these REST endpoints available:

• Spotting - this service takes text input and
recognizes the potential surface forms e.g.
names of entities. Several spotting
techniques are available, such as
dictionary lookup and Named Entity
Recognition (NER). The output is the list
of annotations in structured form like
XML or JSON.

• Annotate – runs spotting and
disambiguation. It retrieves the candidate
DBpedia resources, disambiguates them if
needed, and links the mentions to the best
one. These output formats are available:
XML, JSON, HTML, RDFa and NIF.

• Candidates – similar as annotate, but does
not disambiguate the candidates for each
mention. Rather it returns a ranked list of
candidates. This list contains attributes in
the form of scores expressing the
significance of the word. There are

different scores based on links from other
resources and the significance in current
context.

• Disambiguate – does not do spotting, it
just selects the candidates for the given
mentions and does disambiguation. This
web service will be deprecated soon.

JSON (JavaScript Object Notation) is an open
standard format that uses human-readable text to
transmit data objects consisting of attribute–value
pairs. It is used primarily to transmit data between a
server and web application, as an alternative to
XML. It was originally derived from the JavaScript
scripting language. Nowadays JSON is a language-
independent data format and JSON data is readily
available in a large variety of programming
languages. Example of JSON data:

" entities ": [{
" entity ":" Tim Berners - Lee",
" type ":" Person ",
" uri ":" http :// dbpedia . org / resource
/Tim_berners_lee ",
" nerdType ":" http :// nerd . eurecom .fr/
ontology #Person ",
" startChar ":30 ,
" endChar ":45 ,
" confidence ":1 ,
" relevance ":0.5

}]

DBpedia Spotlight works in four-stages:

• Spotting stage – it recognizes in a sentence
the phrases that may indicate a mention
of a DBpedia resource.

• Candidate selection – it is subsequently
employed to map the spotted phrase to
resources that are candidate
disambiguations for that phrase.

• Disambiguation - uses the context around
the spotted phrase to decide for the best
choice amongst the candidates.

• Configuration - the annotation can be
customized by users to their specific needs
through configuration parameters.

We will discuss only first three of them because
there are the most important for understanding
of our approach.

2.3.1 Spotting step
This step uses a lexicon that was generated from

the extended set of labels from the lexicalization

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

371

dataset. The implementation uses the LingPipe6
Exact Dictionary-Based Chunker which relies on
the Aho-Corasick string matching algorithm [9]
with longest case-insensitive match.

2.3.2 Candidate selection
The aim of this phase is to map resource names

from spotting to candidate disambiguation. The
DBpedia Lexicalization dataset was used for
determining candidate disambiguations for each
surface form. This phase can also be viewed as a
way to pre-rank the candidates for disambiguation
before observing a surface form in the context of a
paragraph. The DBpedia resource with the highest
prior probability for a surface form is selected as
the default sense according to its usage in
Wikipedia.

DBpedia resource contains:

• Common names for resource
• Redirects from other resources –

alternative spellings, aliases
• Disambiguation pages – link a common

term to other resources

2.3.3 Disambiguation
The Inverse Candidate Frequency (ICF) was

introduced in Spotlight [4] for disambiguation – see
formula (1). This measure supposes that the
discriminative power of a word is inversely
proportional to the number of DBpedia resources it
is associated with.

������� � log |��|

�����
� log|��| log �	���� (1)

Where:

• Rs is set of candidates for a surface form s
• n(wj) is total number of resources in Rs

that are associated with the word wj

3. NAMED ENTITY RECOGNITION USING
LINKED DATA

In this section we describe a number of practical
approaches [9] that commonly constitute
annotations in different use cases. We will start
from the simplest and go through the most powerful
ones that take into account the word context
obtained from Linked Data.

3.1 Lexicon-based phrase recognition
A simple approach for phrase recognition is the

usage of a string matching algorithm that relies on a
lexicon of name variations for the target terms in

6 http://alias-i.com/lingpipe/

the knowledge base. The lexicon-based phrase
recognition does not select phrases with regard to
their context but just searches for any phrases
known as possible DBpedia entities. This method
produces a high number of false positives. One
example is the set of function words that have
entries on Wikipedia, but whose annotation would
be undesirable in use cases such as blog annotation,
because it would confuse the reader with too many
unnecessary links. However, eliminating those
phrases from the lexicon upfront is not an option, as
they may have other significant meanings. For
example the word ‘up’ can be a fiction word in
some contexts or name of a movie “UP” by Pixar.

3.2 Noun-phrase chunk heuristic
In many cases, the objective of annotation is to

mark the things being talked about in text.
Therefore, a simple heuristic to eliminate false
positives early in the process is to only annotate
terms that are within noun phrases. We therefore
extended the Lexicon-based phrase recognizer with
a simple heuristic that only allows phrases that
contain at least one noun.

3.3 Noun-phrase chunking with probabilistic
dictionary

This method is similar to previous one. It
assumes that we are considering only noun-phrases.
However, instead of heuristic, it uses NP chunks
extracted by a NP chunker. For each NP chunk it
chooses the longest expression contained in the set
of acceptable phrases (in the lexicon).

The method can be enriched for detecting
common words like “do” or “make”. The Wikipedia
guidelines explicitly instruct users to “avoid linking
plain English words”. Therefore it will be a good
idea attempt the detection of common words at
phrase recognition time.

3.4 Keyphrase extraction
Keyphrase extraction is used to extract most

frequent words which are significant for the
document with respect to the application.
Keyphrase extraction is frequently used in search
engines and other text mining tasks. Some of the
common tools and approaches for key phrase
extractions are:

• Carrot 2 – it uses two algorithms: STC
(Suffix Tree Clustering) and lingo. STC
[10] is an incremental, linear time
algorithm, which creates clusters based on
phrases shared between documents. Lingo
[11] is based on SVD and search complete
keyphrase with some other constraints

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

372

keyphrases. With STC, lingo also uses TF-
IDF and LSA. Lingo provides flexibility in
input. Indexed documents can be obtained
by Nabble, Solr or google search desktop.

• KEA [12] – it is a standard algorithm for
keyphrase extraction. It provides provision
of learning from RDF dictionary in SKOS
format. The dictionary contains
hierarchical taxonomy and it also gives
options for machine learning by a tool
Weka [12]. It is a common prediction
algorithm for Named Entity Recognition.

• Maui – it is basic KEA tool but also gives
options to boost taxonomy from
Wikipedia.

• Stanford topic modelling tool – this tool
uses LDA for learning topic. It takes input
and output in CSV format. It also provides
options for Machine learning.

3.5 Named Entity Recognition (NER)
In use cases such as the concept tagging in blog

posts or online newspapers, we are usually focused
on specific types like people and places. In these
cases it is viable to apply named entity recognizers
as a strategy for phrase recognition.

NER extended by noun phrase n-grams was
proposed by [13]. It is a hybrid approach mixing
named entities and more general terms within noun
phrase chunks. It consider as phrases only the
expressions marked as named entities by the NER
phrase recognizer, the noun-phrase chunks
extracted by a NP chunker, and all sub-expressions
of up to 5 tokens of the noun-phrase chunks. This
increases the coverage of the NER phrase
recognizer, which tends to generate fewer phrases.

3.6 NER with Linked Data
We distinguish two types of named entity extractors
as in [14]. First type is able to identify interesting
keywords and classify them in taxonomy. Second
type is able to additionally provide a link pointing
to URI that disambiguates the named entity.

The most widely used Linked Data named entity
extractors are: AlchemyAPI7, DBpedia Spotlight8,
Lupedia9, OpenCalais10, Saplo11 and Zemanta12.
Next we will compare some of these tools.

7 http://www.alchemyapi.com
8 http://dbpedia-spotlight.github.com/demo/
9 http://lupedia.ontotext.com/
10 http://www.opencalais.com
11 http://saplo.com/
12 http://www.zemanta.com

AlchemyAPI, OpenCalais and Zemanta offer
both free and commercial versions of access to their
web services. Commercial and free versions are
basically the same, but there are limitations in
a number of free requests per day. On the other
hand DBpedia Spotlight is completely free without
any restrictions. Table 1 contains basic information
about these popular Linked Data tools.

Table 1: Basic information about selected LD tools.

 Alch. Spotli. OpenC. Zem.
No

languages
8 3 3 1

Entity types 272 272 39 81

LOD

dataset
number

7 1 9 1

The creators of the DBpedia Spotlight (Fig. 2.)

have compared their web service with a number of
other NER extractors according to a particular
annotation task [4]. The experiment consisted in
evaluating 35 paragraphs from 10 articles in 8
categories selected from "The New York Times"
and has been performed by 4 human raters. The
final goal was to create wiki links. The experiment
showed how DBpedia Spotlight overcomes the
performance of other services to complete this task.
Therefore it was used as a primary annotation tool
in our case.

Figure 2: DBpedia Spotlight annotation

4. SW SPECIFICATION ANALYSIS

Our approach to semantic analysis of software
specifications with Linked Data consists of these
steps:

• Extraction and normalization of use-cases,
• extraction of functional and extra-

functional properties,

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

• actors detection.

4.1 Extraction and normalization of use-cases
Extraction of use-cases is based on combination

of related keywords detection and use-case patterns
recognition. The simplest case is to find words
“use-case” or “UseCase” in a header or paragraph
followed by a list of potential steps. Common
software specifications usually involves structured
lists of steps starting with a serial number or a
special character like “-”, “*”, “#” etc.
Normalization consists in replacing the starting
character by a number and in the creation of a new
list by merging several smaller. Example of use-
case processing in the form of XML is in Table 2.

Table 2: Example of use-case processing

Input Output

1. first step

2. second

step

<use_case_step start_with="1."

no="1">1. first step </use_case_step>

<use_case_step start_with="2." no="2"

>2. second step </use_case_step>

A. first step

B. second

step

<use_case_step start_with="A."

no="1">A. first step</use_case_step>

<use_case_step start_with="B." no="2"

>B. second step </use_case_step>

- first step

- second step

<use_case_step start_with="-" no="1">

- first step</use_case_step>

<use_case_step start_with="-" no="2">

- second step</use_case_step>

4.2 Extraction of functional and extra-
functional properties

Software Requirements Specification (SRS)
documents contains all the requirements
specifications for a software system, typically
separated into functional requirements (FR) and
non-functional requirements (NFR). NFRs usually
impact the system as a whole and interact both with
each other and with the functional requirements.

Fig 3 illustrates mappings from requirements
items in a SRS document to elements in ontology.
Mapping from requirements items to thesaurus can
be written formally – formula (2):

Fint : ReqItem → 2Con
∪

Rel (2)

Where

• OntologySystem = (Con, Rel, Rules).
• Con is a set of concepts.
• Rel is a set of relationships.
• ReqItem is a set of requirements items in a

document.

• Fint is the interpretation function. In case of
Fig. 3: Fint(bbb) = {A, B, aggregate(A,B)}
and Fint (ccc) = {D, E}

Figure 3: Mapping from SRS to ontology [15]

The mapping between the statements and ontology
can also be done by using a frame of natural
language. This approach is similar to NER but
ontology is used instead of a lexicon. This approach
provides following validation options:

• Inconsistency – approach tries to detect
mutually contradicting elements where
requirement items are mapped. For
example relation between run-time loading
and short response time.

• Completeness - completeness of a SRS
document can be measured by number of
ontology elements related to items in a
document. Missing requirement items can
be suggested to the user.

4.3 Actors detection
Actors detection is combination of methods for

NER and requirements extractions proposed above.
Example of entities extracted from case on Fig. 2.
are:

• Concepts: search, search results, search
criteria

• Actors: buyer, system
• Other entities: matches

4.4 Evaluation
Nowadays there is no public corpus for

evaluation of approaches for SRS analysis.
Therefore we had to evaluate our approach based on
publicly available specifications found on Internet.
We used a random set of 100 pages extracted from
software specification documents. This set
contained 100 use-cases, 351 actors and 235
features. Our simple ontology contained 120 triples
in the form of a subject, predicate and object. Each

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

of these resources was identified by URI. The
results are below:

• NER and actors detection – our
experimental system found these entities
with F1 = 0.8.

• Normalization of use-cases – 70% of use-
cases was normalized correctly. The rest
was not recognized due to missing titles
like “Use case” and missing lists.
Generally these use-cases were in the form
of natural language sentences.

• Extraction of functional and extra-
functional properties ended with F1 = 0,38
due to lacking ontology for these
specifications. Domain ontologies are
the best choice for related domain SRS.
General ontologies are usually insufficient.
It seems us as a good idea to use extraction
ontology for a common combination
of requirement property with SI base unit.

5. CONCLUSION

In this article we proposed an approach for
semantic analysis of software specifications with
Linked Data and ontologies. We introduced Linked
Data, ontologies and relevant public web services
like DBpedia Spotlight. The problem of named
entity recognition extended by Linked Data was
discussed. We evaluated application of Linked Data
and ontologies to requirements engineering. The
proposed methods for actors identification,
extraction of functional and extra-functional
properties based on Linked Data, standard
ontologies and extraction ontologies are quite
promising.

The evaluation of this approach was carried out
using a subset from real life SRS documents. NER,
actors detection and normalization of use-cases
worked very well. On the other hand
the requirement extraction is highly dependent on
the quality of the used ontology. Only small, simple
and general ontology was used in our case therefore
the result in the form of F1 was relatively bad.

ACKNOWLEDGMENTS

This work was supported by the grants GAČR
P103/11/1489 “Methods of development and
verification of component-based applications using
natural language specifications”, European
Regional Development Fund (ERDF), project
“NTIS – New Technologies for the Information
Society”, European Centre of Excellence,
CZ.1.05/1.1.00/02.0090, SGS-2013-029 “Advanced

computing and information systems” and Ministry
of Education of the Czech Republic -
7AMB14SK090 “MSMT Mobility”.

REFERENCES:

[1] J. P. Leite L. Chung, "On non-functional

requirements in software engineering," in
Conceptual modeling: Foundations and
applications, 2009, pp. 363-379.

[2] A. Jentzsch R. Cyganiak. (2011) LOD
Community. [Online]. http://lod-cloud.net

[3] C., Heath, T., Berners-Lee, T. Bizer, "Linked
data-thestory so far," in Int. Journal on Semantic
Web and InformationSystems, Special Issue on
Linked Data, 2009, pp. 1 - 22.

[4] M. Jakob, A. Garcia-Silva, and Ch. Bizer P. N.
Mendes, "DBpedia Spotlight: Shedding Light on
the Web of Documents," in 7th International
Conference on Semantic Systems (I-Semantics),
2011.

[5] P. Loucopoulos and V. Karakostas, System
Requirements Engineering., 1995.

[6] B., Easterbrook, S. Nuseibeh, "Requirements
Enginnering: a road map," in Proceedings of
ICSE’2000 - Future of Software Engineering
Track, 2000, pp. 35-46.

[7] T. B. Lee. (2009) Design Issues. [Online].
http://www.w3.org/DesignIssues/LinkedData.html

[8] A. Jaffri, H. Glaser, and I. Millard, "URI
Disambiguation in the Context of Linked Data,"
in LDOW 2008, Beijing, China, 2008.

[9] A. V. Aho and M. J. Corasick, "Efficient string
matching: an aid to bibliographic search," in
Commun ACM, 1975, pp. 333–340.

[10] Joachim Daiber, Rohana Rajapakse, Felix Sasaki,
Christian Bizer Pablo N. Mendes, "Evaluating the
Impact of Phrase Recognition on Concept
Tagging," in Proceedings of the Eight
International Conference on Language Resources
and Evaluation LREC'12, Istanbul, Turkey, 2012.

[11] Oren, and Oren Etzioni Zamir, "Web document
clustering: A feasibility demonstration [STC]," in
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development
in information retrieval, 1998, pp. 46-54.

[12] Stanisław, Jerzy Stefanowski, and Dawid Weiss
Osiński, "Lingo: Search results clustering
algorithm based on singular value
decomposition," in Intelligent information
processing and web mining, 2004, pp. 359-368.

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

[13] Eibe, et al. Frank, "Domain-specific keyphrase
extraction [KEA]," in Proc. of the 16th
international joint conference on AI, 1999.

[14] Lev-Arie, et al. Ratinov, "Local and Global
Algorithms for Disambiguation to Wikipedia
[NER + ngrams]," in ACL vol. 11, 2011.

[15] R. Troncy G. Rizzo, "Nerd: evaluating named
entity recognition tools in the web of data," in
Workshop on Web Scale Knowledge Extraction,
2011.

[16] H. Kaiya, Shinshu Univ., Nagano, Japan Fac. of
Eng., and M. Saeki, "Ontology based
requirements analysis: lightweight semantic
processing approach," in Fifth International
Conference on Quality Software (QSIC 2005),
2005.

Journal of Theoretical and Applied Information Technology
 20

th
 September 2014. Vol. 67 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

Figure 1: Requirements Engineering Consists Of Requirements Elicitation, Specification And Validation [7]

