
Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

A PROFICIENT LOW COMPLEXITY ALGORITHM FOR

PREEMINENT TASK SCHEDULING INTENDED FOR

HETEROGENEOUS ENVIRONMENT

1
D. I. GEORGE AMALARETHINAM,

2
P. MUTHULAKSHMI

1Department of Computer Science, Jamal Mohamed College, Trichirappalli, India.
2Department of Computer Science, Faculty of Science, SRM University, Chennai, India.

E-mail: 1di_george@ymail.com, 2 lakshmi.mailspace@gmail.com

ABSTRACT

The major component of any computing system is the scheduling technique that coordinates the entire
system. Heterogeneous environments like grid computing environment provide the accessibility to use wide
range of resources that are located around the world. In such environment resource management becomes a
complex issue due to various factors like high computational demand, diversity among the tasks,
heterogeneity of resources, and heterogeneity of vendors who offer services, dynamic nature of resources.
An effective scheduling may increase the efficiency of resource management systems. This paper addresses
a grid scheduling algorithm. The algorithm is devised to schedule the tasks on available resources. The
performance of the algorithm has been evaluated for arbitrary and regular graphs. The algorithm and the
compared algorithms are implemented in Java. The algorithm begins by grouping the tasks. Then tasks
from various groups are compared and prioritized for scheduling. The results show that the proposed
algorithm outperforms the existing algorithms. The test results of the algorithm justify that the algorithm
encourages maximum utilization of resources, minimized makespan and balanced load across resources.
Keywords: Resource Finalizing Factor, Load Balancing, Schedule Length, Quick Finish Time, Prominent

Parent, Promising Successor.

1. INTRODUCTION

Business and scientific applications involve
large scale computations. These applications look
forward to computing environments having
promises like low cost budget, quick finish time
and highly accurate services. Such applications
have leaded us to the use of distributed computing.

A distributed computing environment is an
aggregation of unlimited resources. In such
environments, it is not easy to co-ordinate resources
and consumers because of the heterogeneity of
hardware and software; viz., networks, protocols
and other resources. It is very challenging to
manage resources and offer best services to those
who require it. Grid environment is a kind of
distributed environment where the computing
power of multiple resources is used in a parallel
fashion to solve bigger scientific problems in short
span of time.

Mismanagement of resources may lead to low
efficiency and immense loss of quality. It is a hot
challenge to achieve high performance through

proper management of resources. Scheduling
optimizes the objective function that is involved
with selection of resources. In scheduling, every
aspect is completely based on decision(s). Task
scheduling problem is known to be NP-complete
[1]. Employing a proper scheduling technique
ensures time management and guarantees the
efficiency of the computing environment. The
fairness of a computing environment is appreciated
not only for its efficiency in producing proper
results but also for the completion of tasks within
the deadline. In grid applications, the workflow is
structured using task dependencies [2] and is shown
using Directed Acyclic Graph (DAG). The
communication cost and computation cost are the
imperative elements that decide the mapping
between tasks and resources in a workflow

structure.

Grid Commerce environment fixes the
strategies for pricing to use the grid resources. An
interface is required to facilitate grid resources
trading. The interface is a grid broker that sits in
between service providers and users. The Grid
Broker System architecture is shown in Figure 1

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

with its components namely (i) service providers
(ii) users and (iii) grid broker. The resources let
themselves to use their CPU time. Such resources
make themselves known in the grid system as
service providers and they establish policies to use
them. The policies may include price for usage,
advanced reservation, time of availability, and so
on. The users submit their applications for
execution and may expect their applications to be
executed in an efficient and economic manner. The
applications may be related to business, astronomy,
scientific, research and so on. The users may set
priorities and parameters to their applications. Grid
resource broker maintains the status of resource
availability and users demand and use the status
information to allocate resources to users. Grid
resource broker makes use of the information given
by the service providers and the users to find a best
schedule for applications. Grid scheduling is the
objective function of the grid resource broker.
Generally scheduling aims at low cost and
minimum execution time for executing
applications, which may lead to improved quality
and efficiency. Grid scheduling involves resource
discovery, information gathering, mapping of
resources and applications for execution, monitors
the progress of the submitted applications.

In parallel task scheduling, there may be gaps
between scheduled tasks on the resource. This may
happen due to (i) the availability of free resource
time not suitable for the priority task in the queue,
(ii) the dependency of the task that waits for the
parent task/tasks to commute from other resources.
This may cause an extended completion time of the
task graph.

Figure 1. Grid Broker System Architecture

Backfilling can be used to ensure the better use
of the available resource time. When backfilling is
used the tasks priorities may go out of order. In this
paper, an algorithm is proposed that deals with the
resource allocation issues. The objective is to (i)
reduce the makespan of DAG (ii) manage the
effective load distribution among the available
resources (iii) to avoid gaps between scheduled

tasks without violating the precedence constraints.

The continuation of the paper is
compartmentalized as follows: In Section 2, the
related works are given which help us to propose
some evolutionary ideas. Section 3 gives the view
of task scheduling problem and task graph. In
section 4, the research problem is described. In
section 5, the proposed algorithm is given. Section
6 shows an illustrative example of DAG and its
primary attributes required for the algorithm.
Section 7 presents the simulated results of the
proposed and compared algorithms. Section 8
packages the time complexity of the proposed
algorithm. Section 9 contains the conclusion and
the plan of future work.

2. RELATED WORKS

In general, the static scheduling problem is

represented by Directed Acyclic Graph (DAG). In
DAG, the active participants are the set of nodes
and set of edges. The nodes represent the tasks and
the edges represent the task (inter task)
dependencies. The nodes and edges would be given
values; computation costs and communication costs
(both are usually integers). The computation costs
and communication costs are assigned for nodes
and edges respectively. The DAG structure is
organized on dependency policy.

 In the taxonomy, scheduling branches into

static and dynamic. In static model/deterministic
model, the characteristics of the problem are
identified earlier and resources are assumed to be
available all the time, task failure is assumed to be
not happening. In dynamic scheduling, everything
is decided on-the-fly. Scheduling algorithms are
always expected to be highly intensive towards the
earlier problem completion. The task scheduling
algorithm is to allocate resources to execute tasks
and the same is done by establishing an order for

tasks [3].

Static task-scheduling algorithms are classified
with one of its major branches headed by heuristic
based algorithms which are further classified into

GRID COMMERCE MARKET

Grid

Resource

Broker

Users

Service

Providers

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

(i) list scheduling algorithms, (ii) clustering

algorithms and (iii) task duplication algorithms.

Task Graph Scheduling heuristics are based on
list scheduling approach. Generally, list scheduling
prioritizes the tasks with respect to some policies.
Based on the priorities tasks will be allowed to
execute on resources. The task having maximum
priority will be the first to get allocated to the
resource and the allocation will be continued until
no more tasks remain unscheduled. List Scheduling
involves two phases namely (i) the task selection
phase, which is responsible for choosing the task
based on priority (ii) the resource selection phase,
responsible for choosing the resource that can
execute the chosen task in a minimized execution
time. Most of the list scheduling algorithms follows
the precedence constraints that are framed out of
considering the computation costs alone. The
insertion policy is encouraged in algorithms
Heterogeneous Earliest Finish Time (HEFT) [3],
Insertion Scheduling Heuristic (ISH) [4] where the
idle time slots are used for executing the ready task
that fits the size of the slot. The idle time slots are
formed due to the communication delay between
tasks. The tasks that cannot be executed in an
earlier time on other resources can be executed in
the idle time. The insertion policy may improve the
efficiency of algorithm as it would result in an
earlier completion of the DAG, but the priorities
derived for the tasks execution may not be
followed.

An extensive study on scheduling policies and
scheduling algorithms has been made in [5] [6] [7]
[8] [9]. Highest Level First (HLF) [10] is a list
scheduling algorithm, which considers the
computation time of tasks. HLF assigns priority to
the task that has the longest path from itself to an
exit task. Earliest Deadline First (EDF) [11] assigns

priority to the task that has the earliest deadline.

Min-Min algorithm [12] is based on Minimum
Completion Time (MCT) of tasks on available
resources. The Min-Min algorithm first finds the
minimum execution time of all tasks. Then the task
with least execution time is chosen for execution.
The task selection repeatedly happens until no more

unscheduled task exists.

A contention- aware task duplication scheduling
algorithm has been proposed by Oliver Sinnen et al
[13]. The algorithm is based on scheduling
algorithms that are devised for the contention
model and the algorithm uses duplication strategy
under classic model. The data ready time of any

task is known earlier by tentatively scheduling
edges on the communication links. Data ready time
of a task is defined as, the time that the data is
available for the task to start its execution. The
insertion technique is used for the tentative
scheduling and is to remove redundant tasks and
redundant edges.

Efficient Dual Objective Scheduling (EDOS)
[14] algorithm aims at the planning of advanced
reservation of resources for entire workflow. The
reservation of resources is done at early binding
and mapping of resources to a particular task is
done at late binding.

Time and Cost Improvement Algorithm (TCI)
[15] is a list algorithm with greedy approach. This
algorithm is devised by considering both the
makespan and cost that would be spent on utilizing
the resources.

Mandal et al [16] use in-advance static
scheduling to ensure that the important
computational steps are executed on the proper
resources and there of minimized a large set of data
transportation.

3. TASK SCHEDULING PROBLEM AND

DIRECTED ACYCLIC GRAPH

Generally task scheduling problems are parallel

applications. The workflow of the parallel
application cab be shown using DAG. DAG is also
known as Task Graph. DAG structures the
workflow of the application. DAG is a tuple space
consists of set of nodes and set of edges, which can
be represented as G= (T, E). Where, ‘G’ is the
directed acyclic graph, ‘T’, the set of nodes (tasks);
a task is represented as ti; 1≤ ti ≤nt (number of tasks
in DAG). ‘E’ denotes the set of edges (inter task
dependencies/communication links); an edge is
shown as ei; 1≤ ei ≤ne (number of edges in DAG),
and it establishes a parent-child relationship
between a pair of tasks.

The hierarchy of tasks is shown by placing them

in different levels. Tasks are distributed in various
levels of the DAG. Each level can have one or more
tasks. Level ‘i’ can have its child/children in any of
the levels greater than itself. There cannot be edges
between tasks of the same level. Tasks belonging to
the same level could be executed concurrently as
there is no task dependency between them. Tasks
found between the first level and (n-1) level will
have child/children, where ‘n’ is the last level. The
least degree level will have tasks of no parent(s)

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

and the most degree level will have tasks of no

child/children.

The COMPCost of ti would be the time taken by
task ‘i’ to execute itself on a resource. In DAG
scheduling, tasks scheduled on resources are non
preemptive. Each ti must be executed in the same
resource until it gets finished. Each ei is represented
by the COMMCost, which is the time taken to
transfer data between resources (this would be
spent if parent and child are executed in different
resources). The COMPCost would become zero
when the parent and child tasks are executed in the
same resource. The child can start its execution
only if all of its parents have completed their
execution. This is because the child might need data
from its parent(s) to start its execution [17]. The
successor starts its execution when all the necessary
data from its parents are available. This may lead to
idle slots/holes between scheduled tasks which may
be used to execute a task that fits the size of the idle

slot.

4. RESEARCH PROBLEM AND

DESCRIPTION

In this paper, an algorithm is proposed that uses

the list scheduling technique and clustering
technique. In general, list scheduling establishes an
order by allotting priorities for tasks. The order will
be followed while executing the tasks on resources.
Clustering technique is used to group tasks into
clusters. The tasks belonging to the same cluster are
executed in the same resource. Finally, clusters will
be mapped on the available resources.

The proposed algorithm uses the idea of multi-

stage graph of dynamic programming technique
[18] to progress from the source towards the
destination and the bin packing technique [18] to
form groups of tasks for prioritization. During the
literature survey, it is found that most scheduling
algorithms concentrated on computation time for
tasks assignment on resources. Also it is observed
that load balancing among the resources is not
given importance. The proposed algorithm
considers both the computation and communication
costs for scheduling the tasks as both are equally
important to get a best allocation. It is tried to
improve the performance by reducing the
movement of data between resources by selecting
the fittest resource to execute. It is observed that
resources are idle when another resource works for
a long time to complete all its assigned tasks. Load
balancing is a factor is not considered when there is
an excess dedication of resources to a particular set

of tasks. An attempt is made to concentrate on load
balancing among resources and to complete the task
graph earlier and also to make resources available
for other task graphs in the grid system to execute.

When a DAG is submitted for execution, the

algorithm starts by finding the paths that connect
the entry task(s) and the exit task(s). Then create
lists and bins with respect to the count of paths. The
bin is nothing but a waiting queue. Each bin
correspond a list. Each path is populated in a list.
Each bin has a capacity of sum of greatest
COMPCost of three tasks of in the graph. Bins can
be queued with a pack of three tasks from their
respective list; which means the bin is populated
with a set of tasks containing parent, child, and
grand-child. Now, lists of Common Parents (CPL)
and Uncommon Parents (UCPL) are generated
from the bins. Based on the population of parents in
lists and their dependencies, parents are scheduled
to resources. The parent having the maximum
occurrence and maximum number children is given
priority. Prioritized task can be executed in
resource that minimizes the finish time (FT).

The out-degree of a node is the count of out-

going edges from the node. Task dependency of a
task is the out-degree of the task. For the exit task
the out-degree is zero mean that no task is
depending on it. The number of parents of a node is
the in-degree of the node. For the entry task the in-
degree is zero. The child having the maximum
COMMCost and minimum COMPCost on other
resource would be executed in the same resource
where its parent was executed. The other tasks
would be executed in resources that minimize the
finish time. As soon as the parent is scheduled, the
Task Allocation Table (TAT) will be updated with
the values of task-id, resource-id; also the bins
contents would be altered by removing the parents
and including the next task from the list to the next
of grand-child. Now the child has become the
parent, grand-child has turned as child and new task
entered would be the grand-child. When there are
no tasks available for any component in the bin,
pack it with zero. The process of loading the bin
and prioritizing would be repeatedly done as long
as tasks are available in lists. The task selection is
based on the dependencies and the computation,
communication cost. The resource selection is
based on the availability of the resource at the
earliest start time of the task and minimum
execution cost that a resource supports for a task.
Figure 2 illustrates the methodology of the
algorithm through an activity diagram.

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

4.1. The arithmetic of the proposed algorithm

Expected Computation Cost of a task

The algorithm starts by calculating Expected
COMPutation Cost (ECOMPCost) on resource for

each task with respect to speed of each resource.

for i= 1 to maxtasks do

for j= 1 to maxresources do

ECOMPCost(ti,rj)=COMPCost(ti)/speed(rj) (1)

Average Computation Cost of a task on

available resources

Then the Average COMPutation Cost
(ACOMPCost) is found for each task with respect
to number of resources.

for i= 1 to maxtasks do

 maxresources
ACOMPCost(ti)=∑ COMPCost(ti,rj)/maxresources
 j=1

 (2)

Here, the average data transfer rates between
resources and average communication start up time

are considered to be 1.

Quick Start Time and Quick Finish Time

For the tasks at the first level, the QST is Zero.

QST(ti,rj)=0;1≤ti≤nt;ti∈level0,1≤rj≤maxresources

 (3)

For the others tasks, the recursive computation of
Quick Start Time (QST) and Quick Finish Time
(QFT) are calculated as follows.

RRT(rj)=FT(tp(tc),rj) (4)

RUT(tp(i))=ACOMPCost(tp(i)) (5)

RTR(tp(i),rj)=max{(tp(i)),RUT(tp(i))+COMMCost(tp

(i),tc)} tp(i)∈parents(i) (6)

QST(tc,rj)=max{RRT(rj),RTR(tp(i),rj)} (7)

QFT(tc,rj)=ACOMPCost(ti)+QST(tc,rj) (8)

where, RRT is Resource Ready Time, FT is Finish
Time, RTR is Reach Time on Resource, tp(tc) is
parent task of child task, RUT refers to Resource

Utilization Time,

Resource Finalization Factor (RFF)

The tasks in the first level would be executed on
the resources that could complete the execution in
Minimum COMPutation Cost (MCOMPCost).

RFF(ti)=Resource(min{ECOMPCost(ti)});

 ti∈firstlevel (9)

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

Figure 2. Methodology of the algorithm

[Task

not

found]

[Resource

Free]

Generate

DAG

Check for task

distribution

and

dependency

constraints

Display Error

Message

Find the paths

between entry,

exit tasks (‘n’

paths)

Create list, bins

Populate the lists

with tasks in the

order of sequence in

the path

Populate the bins with

three (triplet) tasks in

the sequence of relation

(parent, child, and

grandchild) from the

list

Lists available

with tasks

Find population and

dependency strength of parent

task; collect common parents

(prominent parents) and

uncommon parents.

Map resources and

tasks based on finish

time (prioritizing the

prominent parent). If

non entry tasks, then

consider the

communication cost

and the resource used

by its parent.

Resources

are busy

Resources

available list

Update Parent task-id,

resource-id, and finish time

in the database. Keeping

the child as parent and

grandchild as child; load

the grandchild from task

available list for all the

bins. Move the resource to

resource available list

[Obeyed]

[Not

obeyed]

Return the finish

time of DAG

[Task

Found]

[No] [Yes

]

[Task

Executed

]

[To load

the next

task]

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

For more tasks in the first level, the execution of
each task begins with the mapping of tasks of order
t1 to tn (tasks in first level) to the ascending order of
COMPCost(ti) on available resources, i.e., t1 is
executed on resource pj with MCOMPCost, t2 is
executed on resource with next MCOMPCost (to
that of resource pj), and so on.

For tasks found in second level onwards, the
Resources Finalization Factor (RFF) is evaluated
as:

RFF(tc(i))=max{COMMCost(tp,tc(i))}+min{ECOM

PCost(tc(i))};tc(i)∈children(tp)
(10)

The child having maximum RFF will be

executed in the same resource where the parent task
had been executed and the child having the
minimum RFF will be executed in the
resource(other than the one which had been given
to the child having max(RFF)), where the
COMPCost is comparatively less. Recursively, the
next children of either ends (max end and min end)
would be choosing their resources to execute; also
these tasks will be identifying the child(ren) in the
next level (i.e., the grand-children (tgc) of tp (parents
of tc) with respect to tc). Search the parent’s tgc and
identify the prominent parent of all the tgc whose
RFF is comparatively greater than the other parents.
Then execute the tgc in the same resource by
moving the data from other parents. The other
promising successors (grandchildren) are executed
with respect to their MCOMPCost and RFF in other
available resources that minimize the finish time.

Schedule Length

The schedule length (make span /overall
completion time of the DAG) is defined to be the
resource’s time that completes its work at the last of
all the available resources and it must have
executed the task in the last level (it must have
executed at least one of the tasks in the last level of
DAG in case, when there are multiple node in the
last level).

SL(DAG)=max{CompletionTime(ri)};
1≤rj≤maxresources
(11)

Resource Deployment Time

Resource Deployment Time (RDT) is the ratio
between task completion time of a resource and

schedule length of the DAG. The Average
Resource Deployment Time (ARDT) can be given
as the ratio between the summation of resource
deployment time of all the available resources and
the number of resources. This can be given by,

RDT(ri)=CompletionTime(ri)/ScheduleLengthofDA
G;

1≤rj≤maxresources

(12)

 maxresources
ARDT(resources)=∑RDT(ri)/maxresources
(13)
 j=1

5. THE ALGORITHM: TRIPLET BIN TASK

GROUPING and PRIORITIZNG (TBTGP)

1. find all the paths between the entry task(s)
and the exit task(s)

2. for each path , create a list//path(i)
corresponds

 to list(i),
1≤i≤maxpaths
3. populate the nodes of the path in the list
4. for each list, create a bin,//list(i)

corresponds
 to bin(i),
1≤i≤maxlists

5. k=1;
6. while(unassigned task in the lists) do
7. {
8. for(i=1 to maxlist)
9. {
10. for(j=k to k+2)
11. {
12. if(task(j)==null)
13. task(j)=0;
14. pack the bin with the triplets (parent-

 k,child(k),grandchild(k));
15. }
16. }
17. Consider all the bins and their data for

finding the common-parent-list and
uncommon-parent-list

18. while(unassigned tasks in CPL &&
UCPL)

19. {
20. if(entry level tasks)
21. update the TAT(task-id, proc-id that

minimizes the FT)
22. else
23. {

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

24. if(max(RFF(children))) then
25. {
26. assign in same the resource

where parent had completed its execution
27. update the TAT(task-id, proc-

id)
28. }
29. if(min(RFF(children)))
30. {
31. compute RFF(grandchildren)
32.
33. if(prominent parent) then //

that has more dependencies
34. assign the task

(grandchild(ren)) where prominent parent
was executed and
 continue the execution by

obtaining data from other parents

35. else
36. assign the task grandchild(ren)

to resource that could execute in resource
 having mcompcost with respect
to RFF

37. update the TAT(task-id, proc-
id)

38. }
39. }
40. }
41. k=k+1;

42. }

6. EXPERIMENTS

A sample DAG is shown in Figure.3, which has
7 tasks and 9 communication links established
between the tasks. The COMMCost and
COMPCost are shown in Table 1, Table 2
respectively. P1, P2 used in Table 2 are the
available resources. The algorithm decides and
assigns the tasks to be executed on P1 and p2.

Figure 3. Sample DAG

Table 1.Communication Cost

Parent Child
Communication

 Cost

1 2 12

1 3 7

1 4 6

2 5 11

3 5 13

3 6 14

4 5 17

5 7 11

6 7 10

Table 2. Computation Cost

Task-Id P1 P2

T1 9 12

T2 3 7

T3 6 4

T4 11 5

T5 13 6

T6 5 13

T7 16 11

Tasks in the paths have been populated in the lists
and are shown in Table 3 and Table 4.

Table 3. Path Details

Paths Tasks in the paths

1 1,2,5,7

2 1,3,5,7

3 1,3,6,7

4 1,4,5,7

Table 4. List and Population of Tasks

List Populating the list from paths

1 1 2 5 7

2 1 3 5 7

3 1 3 6 7

4 1 4 6 7

Table 5 gives the illustration of packing the bins
with tasks.

1

2 3 4

5 6

7

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

Table 5. Initial Bin Packing

Tasks Bin 1 Bin 2 Bin 3 Bin 4

Parent 1 1 1 1

Child 2 3 3 4

Grand-
child

5 5 6 5

Table 6 shows the removal of the parent in the
previous level, the transition of child into parent,
grand-child into child, insertion of the next level
dependent tasks.

Table 6. Bin Packing after assigning First Level

Tasks Bin 1 Bin 2 Bin 3 Bin 4

Parent 2 3 3 4

Child 5 5 6 5

Grand-
child

7 7 7 7

The schedule lengths of the compared algorithms
for the sample DAG shown in Figure.3 are shown
in Table 7.

Table 7. Schedule Length of the Algorithms

Algorithms Schedule Length

TBTGP 54

HEFT 58

Min-Min 60

7. RESULTS AND DISCUSSION

Randomly generated graphs with diverse

properties have been used for assessing the
proposed algorithm with Min-Min algorithm and
HEFT algorithm. A task graph generator has been
developed to generate various sizes of DAG [19]
with varied potentialities. The DAGs are generated
using normal distribution. The generated DAGs
have been used to study and evaluate the
performance metrics. It is observed that almost
equal schedule length is obtained when a very small
graph (3 tasks) is used. The comparisons are based
on the factors namely (i) schedule length ratio (ii)
speedup and (iii) load balance among the resources.
A wide range of Communication to Computation
Cost Ratio (CCR) values have been used for the
scaling of performances.

(i) Schedule length ratio of a graph is given by the
ratio between the schedule length and the total of
minimum computation cost of each individual task
in the graph. Low value on schedule length ratio is

obtained on executing various graphs generated
randomly.
(ii)Speedup ratio of a graph is the ratio between the
minimum computation cost obtained by scheduling
all the tasks to a single resource and the makespan.
In this metric, it is found that the speedup values of
graphs are always found to be more than one.
(iii)Load balance among resources is the fair
distribution of execution time on resources at the
completion of task graph execution. It is found that
the TBTGP algorithm performs well in balancing
the load.
(iv)Communication to Computation Cost Ratio of a
task graph is defined as the ratio between the
average of all communication costs of
communication links and the average of all
computation costs of tasks in the graph.

DAGs of various sizes and different CCR values
are used for comparison. The comparison of
algorithms with respect to makespan is shown in
Table 8.

Table 8. Algorithms with Makespan

No. of
tasks

in task
graph

Algorithms and makespan (5 CPUs
Used)

TBTGP
(msec.)

HEFT
(msec.)

Min-Min
(msec.)

50 5 7 11

100 8 13 15

125 11 14 17

150 16 19 22

Figure.4. Comparison of makespan

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

Figure.5. Comparison of speed up ratio

Figure 4 and Figure 5 show that the TBTGP
algorithm is consistently giving better results with
respect to the factors makespan and speedup ratio.

 The resource deployment time is found
almost equal in most of the experiments. And it is
proven that the load is balanced among the
resources.

8. TIME COMPLEXITY

The time complexity of the algorithm in finding
the task to schedule gives O(2e+n) when the inter
task dependency among tasks is found to be high.
In order to find the resource to execute the task, the
time complexity arrives at O(p). On consolidating,
O(2e+n+p) is found to be the time complexity of
the proposed algorithm.

9. CONCLUSION

An algorithm called Triplet Bin Task Grouping
and Prioritizing is proposed in this paper. It works
for static task scheduling. Many algorithms that are
implemented using Java of similar kind have been
studied and encourage us to implement the
algorithm using Java. The notable differences in the
performances are a proof for the efficiency of
TBTGP. Better quality results could be achieved
for even bigger task graphs. When looking at the
lower CCR values, the TBTGP algorithm and Min-
Min are close in their results. When scaling with
higher CCR values, the algorithms have
considerable differences in their results and their
performance ranking could follow the order in

which first comes TBTGP followed by HEFT
algorithm and Min-Min algorithm. It is observed
that TBTGP algorithm guarantees load balancing
among the resources for various task graphs. As an
extension of this work, we have planned to work on
duplication technique and contention awareness on
links.

REFERENCES:

[1] M. R. Gary, D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness”, W.H. Freeman and Co, 1979.

[2] Radu Prodan, Marek Wieczorek, “Bi-Criteria
Scheduling of Scientific Work Flows”, IEEE

Transactions on Automation Science and

Engineering. Vol. 7, No. 2, April 2010, pp.
364-376.

[3] Haluk Topcuoglu, Salim Hariri, Min-You Wu,
“ Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous
Computing”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 13, No. 3, March
2002, pp. 260-274.

[4] B. Kruatrchue, T. G. Lewis, “Duplication
Scheduling Heuristic, a New Precedence Task
Scheduler for Parallel Systems”, Technical

Report 87-60-3, Oregon state University.

[5] Y. Kwok and I. Ahamed, “Dynamic Critical-
Path Scheduling: An Effective Technique for
Allocating Task Graphs to Multiprocessors”,
IEEE Transactions on Parallel and Distributed

System, Vol.7, No. 5, May 1996, pp. 506-521.

[6] G. C. Sih and E. A. Lee, “A Compile Time
Scheduling Heuristic for Interconnection and
constrained Heterogeneous Processor
Architecture”, IEEE Transaction on Parallel

and Distributed Systems, Vol. 4, No. 2, Feb
1993, pp. 175-186

[7] H. Chen, M. Maheswaran, “Distributed
Dynamic Scheduling of Composite Tasks on
Grid Computing Systems”, Proceedings of the

International Parallel and Distributed

Processing Symposium, 2002, pp. 88-97.

[8] H.D Karatza, “Performance of Gang
Scheduling Policies in the presence of critical
sporadic jobs in distributed systems”,
Proceedings of the International Symposium

on Performance Evaluation of Computer and

Telecommunication Systems, 2007, pp. 547-
554.

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

[9] X. Qin and H. Jiang, “Dynamic, Reliability-
Driven Scheduling of Parallel Real-Time Jobs
in Heterogeneous Systems”, Proceedings of

International Conference on Parallel

Processing, 2001, pp. 113-122.

[10] T. L. Adam, K. M. Chandy, J.R. Dickson, “A
Comparison of List Schedules for Parallel
Processing Systems”, Communications of the

ACM, 1974, pp. 685-690.

[11] C. L. Liu, J. W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard
Real-Time Environment”, Journal of the ACM,
1973, pp. 46-61.

[12] Muthucumaru Maheswaran, Shoukat Ali,
Howard Jay Siegel, Debra Hensgen and
Richard.F.Freund, “Dynamic Matching and
Scheduling of a Class of Independent Tasks
onto Heterogeneous Computing Systems”,
Heterogeneous Computing Workshop, 1999,
pp. 30-44.

[13] O Sinnen, A To, M Kaur , “Contention-Aware
Scheduling with Task Duplication”, Journal of

Parallel and Distributed Computing, 2011.

[14] D.I.George Amalarethinam, F.Kurus Malai
Selvi, “An Efficient Dual Objective Grid
Workflow Scheduling Algorithm”,
International Journal of Computer

Applications, 2011, pp 7-12.

[15] Hamid Mohammadi Fard, Hossein Deldari,
“An Economic Approach for Scheduling
Dependent Tasks in Grid Computing”. The 11

th

IEEE International Conference on

Computational Science and Engineering, 2008.

[16] Mandal, A., Kennedy, K., Koelbel,C., Mrin,
G., Crummey, J., Lie, B., Johnsson,L.,
“Scheduling Strategies for Mapping
Application Workflows on to the Grid”, The

14
th

 IEEE International Symposium on High

Performance Distributed Computing, 2005.

[17] Mohammed I Daoud, Nawwaf Kharma, “A
Hybrid Heuristic-Genetic Algorithm For Task
Scheduling in Heterogeneous Processor
Networks”, Journal of Parallel and Distributed

Computing, Vol. 71, May 2011, pp. 1518-
1531.

[18] Ellis Horowitz, Sartaj Sahni, Sanguthevar
Rajasekaran, “Fundamentals of Computer

Algorithms”, Galgotia Publications Pvt. Ltd.,
2006.

[19] Dr. D. I George Amalarethinam, P.
Muthulakshmi, “DAGITIZER – A Tool to
Generate Directed Acyclic Graph through
Randomizer to Model Scheduling in Grid
Computing”, Advances in Intelligence and Soft

Computing, Springer Verlag, Vol. 167, May
2012, pp. 969-978.

