
Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

REDUCING DISTRIBUTED URLS CRAWLING

TIME : A COMPARISON OF GUIDS AND IDS

1
I. SHAKIR,

2
 S. ABDUL SAMAD,

3
H. BURAIRAH,

 4
G. PRAMUDYA ANANTA and

5
S.

SUHAILAN
1-4Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia

5Faculty of Informatics and Computing, Sultan Zainal Abidin University, Terengganu, Malaysia
E-mail: 1shakir.ibrahim@student.utem.edu.my , 2samad@utem.edu.my , 3burairah@utem.edu.my ,

4gedepramudya@utem.edu.my , 5suhailan@unisza.edu.my

ABSTRACT

Web crawler visits websites for the purpose of indexing. The dynamic nature of today’s web makes the
crawling process harder than before as web contents are continuously updated. In addition, crawling speed
is important considering tsunami of big data that need to be indexed among competitive search engines.
This research project is aimed to provide survey of current problems in distributed web crawlers. It then
investigate the best crawling speed between dynamic globally unique identifiers (GUIDs) and the
traditional static identifiers (IDs). Experiment are done by implementing Arachnot.net web crawlers to
index up to 20000 locally generated URLs using both techniques. The results shown that URLs crawling
time can be reduced up to 7% by using GUIDs technique instead of using IDs.

Keywords: Distributed systems, Web Crawler, GUID, Search Engine.

1. INTRODUCTION

Search engine forms some sort of life way in

the present internet scenario. Without search
engine, many of us would defiantly not able to
use the internet in a meaningful way. They help
us in getting access to the information that we
want to access and also to keeping track for the
information that we are interesting in. There are a
number of underline technologies that derive
search engine. Web crawler is considered as the
core of the search engines. It retrieves a massive
collection of hyperlinks that contains web pages
for the purpose of indexing and retrieving them to
users when they ask for [1].

In 1993, the first web crawler invented by
Matthew Gray (World Wide Web Wanderer). At
that time the crawler used to compile statistics to
determine the expansion of the web [2]. A
research paper that describe web crawler (the
RBSE spider) was written by David Eichmann a
year after. A full description for the web crawler
architecture given by Burner, his research shaped
the base of the Internet Archive crawler. His
paper intensively described web scaling
challenges. Internet Archive was able to crawl
100 million URLs [3]. Google search engine
architecture that uses a distributed system to fetch
the pages and connecting with a centralized

database is briefly discussed in a paper written by
Brin and Page’s. In [4] Mercator which happened
to be a blueprint for many distributed web crawler
is discussed. The UbiCrawler is described in [5],
it is a scalable, fault-tolerated and fully
distributed web crawler built on Java. UbiCrawler
crawler many agents are distributed among web
servers, in a given time only one agent is allowed
to visit one web server. Each agent is uniquely
identified by an ID. UbiCrawler was able to
download above 10 000 000 pages per day by
using 50 or more threads [6]. Many researchers
have tried to make amendment in web crawler
architecture in order to improve its performance.
In [7], a fully distributed, platform independence
and decentralized web crawler is proposed. The
proposed crawler had the ability to collaborate
with web servers. The results were scalable and
fault-tolerance web crawler.

Day by day the internet continues to grow and
became larger and larger, with the current number
of pages and due to the speed of Web crawlers,
crawling the entire set of web pages has come to
be a great challenge, considering the dynamic
nature of the Web, crawling system should have
the capability of building-up its database in a
shortest amount of time as possible [1].

Web crawler searches and retrieves the URLs
and put them in a repository. Then the URLs

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

extracted from the repository for the purpose of
the indexing and parsing, and will be sent to the
database. The parsing result (URLs) will be sent
to the query server. Subsequently the URLs will
be assigned to the crawler agents who will visit
the web pages and retrieve new URLs from them.
The general architecture of search engines is
illustrated in the figure 1.0.

Figure 1: Architecture of Web Search Engine

As the crawling process use a repository, there
might be related factors that can influence the
process performance. Database speed are
influenced by many aspects. One of the aspects is
the unique identifier generation which is an
important data to index all the information in
database. As for network asset management,
globally unique identifier (GUID) are used to
represent a unique identifier to all assets in this
world. This research is focusing on the
implementation of GUID in the database for
enhancing one of performance factors towards
more efficient distributed web crawling process.

2. RESEARCH QUESTIONS AND

METHODS

Research is conducted to answer the research
questions as the following:

i. Is it database performance is one of major
problems in web crawlers?

ii. Can GUID provides advantage to database
performance especially in speeding up the storage
process?

To answer first question, we have made
literature survey from year 2004 until now using
ACM/IEEE article journals or proceedings.
Keywords such as "web crawler" and "search
engine" are queried to seek potential research
works. Then, related papers are selected based on
identified problems. Problems are then grouped
into certain classification. We also study on the
usage of GUID on other application. "GUID" is
search to query the application of GUID in order
to seek its advantages or disadvantages.

In order to see the performance of the
proposed solution, we ran the experimental study
on locally generated URLs. URL insertion in to

the database by using GUIDs is compared by the
traditional identifiers or IDs insertion time. The
proposed solution implemented on top of an open
source DEMO_2.6 version Web crawler called
Arachnode.net Web crawler. The crawler is
developed in C# programming language. We used
Microsoft Visual Studio 2010 Professional and
we connected it by Microsoft SQL Server 2008
R2.

3. DISTRIBUTED WEB CRAWLER MAJOR

PROBLEMS

Through our survey, we have categorized
major problems on distributed Web crawlers into
four categories. The problems are scalability,
network traffic, crawling strategy, and increasing
search engine size.

To solve scalability problem, researchers
proposed decentralized architecture to distribute
the crawling process among many crawler agents
with many crawler managers. Their architectures
mainly implemented in P2P architecture [8], [9].
Some researchers proposed to use multi agents
web crawler as a solution for the scalability
problem [10],[5].

The second problem related to the distributed
Web crawler is minimizing crawler network
traffic. According to [11], 40 % of internet traffic
is made by web crawlers. One of the proposed
solutions to overcome this problem was agent
migration [12], [13]. In this solution, crawler
agents migrate to web servers that hosts web
pages and performs the parsing operation for the
web pages there so that to reduce the
communication between crawler engine and web
servers. For example, crawler agent could migrate
to a web server and parse a web page and extract
the URLs that are contains in the web page and
send them to the crawler manager. Query based
approach is another useful solution for reducing
crawlers’ network traffics. In this approach, the
updated contents are sent via dynamic web page
that contains only the entirely updated pages
URLs [14].

The third problem is crawling strategy. There
were many algorithms proposed to increase the
crawling efficiency like focused crawling, and
crawling the hide web [15], [16].

The fourth problem we observed is increasing
search engine size which takes a lot of attention
by the researchers [1],[17].

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

Our paper also comes in this context by trying
to solve one sub-problem related to increasing
search engine size, which is crawling speed. We
try to fill in the gap as we have noticed that not
many research papers intensively studied the
crawler database. The reason may be because the
database does not directly participate in the
crawling process. However, we believe that
developing a crawler database in such a way that
it makes it easy to insert the crawled data will
increase the speed of the crawler as a whole,
simply because the crawler agents will be free to
crawl another pages after they finish their current
job. In the figure 2, we illustrated the distributed
web crawler knowledge chart and shows where is
our contribution is.

Figure 2: Architecture of Web Search Engine

4. THE USAGE OF GUIDS

In this section we define the GUID and review
some applications and systems that use GUIDs.
GUID or globally unique identifier is defined in
the IETF standard RFC 4122 as universally
unique identifier (UUID). It is 16 bytes in length
and it provides wide unique values (2 powers
128). Since GUID generates a massive number of
identifiers and can guarantee uniqueness, it can be
useful in distributed systems. It is also very much
easy to generate it on the fly without the need of
checking the current value, this is because GUID
not concerns about the sequence of its generated
values. GUID values are generated randomly and
are unique among servers [18].

GUIDs used in numerous applications. For
instance, it used for the purpose of identifying
network components like ad-hoc in networks. The
network participants are also identified through
the MAC address. However, every participant
provides a number of services that must be
uniquely identified as well. Participants can create

GUIDs for services without collisions e.g.
Bluetooth service discovery protocol uses GUIDs
in order to identify services and attributes [19].

As like URIs (Uniform Resources Identifiers)
GUIDs know nothing about resource location that
it identifies and also it does not know whether the
resource is available or not. Likewise, using
GUIDs in storage that contains a huge amount of
identifiers are significant [19], in [20] JXTA
programming environment, GUIDs used to
identify entities like an advertisement, peers, etc.
GUIDs are also beneficial in object oriented
based applications that identify various parts of a
system. For instance, in web composition mark-
up language all components are uniquely
identified by GUIDs. The .NET framework is also
identifies its classes and interfaces by GUIDs.
With the systems that allow replication of data it
is useful to implement GUIDs, because it has the
ability to distinguish between data objects if it
used as standard definition of data object identity.
Accordingly, it allows each participant in such
systems to generate its data objects with no risk of
data collision with others. Participants can also
make references to others data without need to
know the location where the data is created and
where it is warehoused [21]. Identifying data
objects is a problematic task from human-
computer interaction (HCI) points of view. To
overcome the constraints that related to the
contexts of computation like physical, device, and
information context, it is significant to identify
these contexts in a uniform scheme. Such
identification is mainly important for mobile
devices and data. GUIDs play a major role here,
since it provides such uniform scheme [22].
GUIDs are also used in many distributed
databases. For instance, in OceanStore system,
GUIDs are used to identify resource like data
objects, users’ data and host machines. Using
GUIDs allows OceanStore to simplify the caching
and replication of the resources across several
machines, as well as it allows “time travel” which
refers to the ability of users to retrieve the old
versions of a file or directory [23]. GUIDs used in
Visage Information Architecture (VIA) model in
MAYA repository to support persistent storage.
The abstract data type of VIA is called U-form
which is consists from a pair of attribute and
value linked with a GUID [24]. VIA simplifies
the integration of a new datasets with the existing
one. This is because GUIDs can provide
permanent identity for all objects [25]. In [26]
authors proposed use of GUID in name oriented
networking. GUID is used to define the

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

communication services provided by the network.
They dynamically mapped GUID to many
topological network addresses by using a global
name resolution services (GNRS). The outcome
of mapping leads to hybrid GUID and Network
address based routing (HGN). Using GUID is
resulted in increasing the scalability and reducing
the routing table size. GUIDs have been deployed
in many applications. Based on the information
that we have at present, using GUIDs with web
crawlers have not been investigated in any
research papers yet.

5. EXPERIMENTAL SETUP

The basic components of Arachnode.net web
crawler architecture are crawler, parser, indexer
and the database. When crawler task is start, the
crawler instances or agents visit web servers and
retrieve the web pages that hosted in those
particular web servers, and then the web pages
will set to be parsed and indexed and sent to the
database. After extracting a hyperlink from a web
page, the crawler has to check whether the URL
has been encountered before, it does so to avoid
adding duplicated URLs to the database. In the
case of the URL has not been encountered before,
the crawler will add it to undiscovered URL set.

5.1 Processes

In arachanode.net web crawler multi-
threading mechanism is implemented to improve
the performance by allowing several threads (100
threads by default) to share CPUs resources.
Arachnode.net can be configured to run any
number of threads and to use as much or as little
processor time and memory. When
Arachnode.net starts the crawling task, the
crawler manager directly starts or issues a number
of threads in order to start crawl process. After
the requests that are waiting to be processed by
the currently running thread are processed,
additional requests are assigned from the crawler
manager. Only one thread in a given time is
allowed to assign crawl requests. However, each
crawler agent is allowed to read from its priority
queue. The figure 3.0 illustrated how crawl
process works in Arachnode.net crawler.

Figure 3: Arachnode.net Crawler

5.2 Naming

The naming approach used in Arachnode.net
crawler is attribute-based naming. To resolve a
name it executes an SQL query string to
Directory database, and then the AbsoluteUri
which placed on Directory database will take care
of resolving process. Whenever a crawler agent
(server) wants to resolve a domain name it sends
extract Domain request to the base Directory
database, the directory first asks AbsoluteUri to
extract the IP address of the requested domain, if
the IP address does not exist it asks to extract host
address, if the host address is available,
AbsoluteUri will parse the URL and returns the
IP address.

5.3 Synchronization

Synchronization in Arachnode.net web
crawler application is done by implementing
logical clocks for each event as shown in Figure
4. For each process or event, an identifier, local
date and time stamp is attached to recognize
whether there is a change is happened or not.
PropertyChangeEventHandler which has two
parameters (propertyChange and
propertyChanged) receives the changed value and
time the change is occur and compare the
received information with its local time stamp
and adjust its time, after that it distribute the
information among other components. For
example, when the lastDiscovered time is
changed for a particular web page, these changes
(time and value) will shortly be recognized by
PropertyChangeEventHandler by using
onLastDiscoveredChanged method. Continuously
it will send the updated information to other
system components.

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

Figure 4: Synchronization Mechanism

5.4 Replication and Consistency

The replication in Arachnode.net web crawler
is implemented by using cache mechanism as
shown in Figure 5. If a crawler does not find a
Discovery (URL, PPT, PDF, etc.) in the local
cache, then the crawler checks neighbour
crawlers asking for the Discovery, if it is not
found there, then the crawler checks the database.
If the Discovery is not found in the database, the
Discovery request is recorded for future benefit
of itself and other connected crawlers. To ensure
replication consistency of the cached data with
the data that saved in the database, Arachnode.net
web crawler implement cache coherence
protocol. In which the crawler agents have to
check the cached data (e.g. lastCrawlRequest for
a particular URL) in Discoveries table before
they perform crawl action. It compares the
lastCrawlRequest date and time of its copy with
the database copy, if it found out that the
database copy is newer that its copy it will update
the copy. This is important for the crawling
performance and efficiency in not duplicating
efforts.

Figure 5: Replication and Consistency

5.5 Fault Tolerance

Aracnode.net web crawler is fault tolerance,
meaning that when one crawler (instance) agent

goes down, it can still perform crawl actions.
When a fault is happened, the URLs that to be
executed will re-distributed among the remaining
agents. Arachnode.net uses TIMERS to detect
crashes agent. If the crawler sent number of
request to an agent and in case of that agent did
not respond to that request
(CrawlRequestTimeoutInMinutes), the crawler
will assume that the agent is down. The figure
below shows how the fault tolerance is
implemented in Arachnode.net Web crawler.

Crawler

Agent n

URLs

Crawler

Agent 3

Crawler

Agent 2

Crawler

Agent 1

Cloud

crawl crawl

crawl

Figure 6: Fault Tolerance

6. IMPLEMENTATION

In this section, we discuss the major changes
that we have made in the implementation of
arachanode.net distributed web crawler in order
to apply GUIDs on it. In the database side, we
have implemented GUIDs in the tables that
directly participate in URLs crawling process
such as webpages, and Disallow Absolute URIs
Discoveries tables. However, because there are
some tables have foreign key relationships with
those particular tables we therefore applied
GUIDs in them as well as in some stored
procedures. In the crawler engine side we have
created new variables and methods that have
GUID data type.

The tables that we have applied GUIDs on top

of them are the Webpages table which is
responsible for storing the URLs that the crawler
engine assigns them later to a number of threads.
In addition, it also stores the initial and last
discovered pages time. GUID column is the
primary key of the webpages table, that has an
association with webpage ID in such a way that
whenever an update is happened in any table that
has a relationship with the webpages table, the

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

update will set to be send to other tables. The
webpage ID is a foreign key of webpages table in
all other tables that have relationship with
Webpages table. We further applied GUIDs on
Disallow Absolute URIs table that responsible for
discoveries and content types, and it stores the
URIs that we want to run crawling process
against them. For example, when it discovers a
file it will send the files to the Files table, or
when it discovers an image it will direct it to the
Images table. Moreover, Disallow Absolute URIs
table, stores the URIs that have not been
discovered during the crawling process and it
shows the reason why crawler could not
discovered them. For example, the reason could
be, the remote name could not be resolved, or the
remote server returned an error 404 (page not
found). Additionally, we have added a new
variable named @GUID inside a stored procedure
called “arachnode_omsp_WebPages_INSERT”
for sending the input and the output values that
the crawler will store in the Webpage table.

In the crawler (C#) side, we have created a

new private variable _lastWebPageGUID that has
a GUID data type. Also we have created a new
attribute called LastWebPageGUID, the value of
this attribute is passed by the variable
_lastWebPageGUID by using get and set
methods. These methods are responsible for
passing the GUID value of the last web page.
Moreover, we have overridden the insertWebpage
method and we added the variable we have
created (_lastWebPageGUID) to this method.
This method is responsible for the insertion of the
discovered web pages into the GUID database.

7. RESULT AND DISCUSSION

In this section we are going to evaluate the

proposed solution for reducing URLs crawling
time. We also present the equipment that used
during the evaluation process and shows the
evaluation results as shown in Figure 7.

In order to evaluate the crawling time of the

proposed solution we run the crawling process by
using GUIDs and IDs three times. The URLs to
be crawled are selected randomly. Each time we
have selected 40000/ 60000/ 80000 inserted
URLs on the database to evaluate the speed.
Then, the time of URLs that inserted in to the
database is calculated for the purpose of
measurement of the insertion time. Continuously,
a bar chat that shows the time difference between
crawling by using GUIDs and IDs is drawn.

Figure 7: Crawler Agents

The experiments are continued on four laptops
computers and their specifications are as follows:
two computers have Intel CORE i3 processor
2.20 GHz with 4GB of RAM and one of them
have Intel CORE i5 processor 2.6 GHz with 6GB
of RAM and the last one is supported with Intel
CORE i5 processor 2.1 GHz with 4GB of RAM.
The network device that we used in order to
connect these laptops is ST Lab 8 Port 10/100M
Nway Switch Hub.

Figure 8: Switch Hub

We started the crawling process on four machines
or crawler agents. For each crawler agent, we
have assigned 10,000 URLs to crawl. We have
chosen four URLs to crawl. We started crawling
by using IDs and then we started crawling by
GUIDs. The result of the first test showed great
result. The outcome indicated that using GUIDs
are faster than using IDs. Crawling by using IDs
takes 5.88 minutes and GUIDs takes 5.30
minutes. In the second experiment, we also
started crawling process using four crawler
agents. Each agent crawled 15,000 URLs.
Continuously, crawling process results have
showed that comparing with ID, using GUID
reduced the crawling time by 0.33 minutes. We
further started another crawl experiment.
Similarly this time we used four crawler agents,
each one of them was responsible for crawling
20,000 URLs. The results are also proved that
using GUID in distributed web crawler can
reduce the crawling time up to a minute. Figure 9
shows the reduced time in all three experiments.
Based on the three experiments, the average of

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

reduced time is up to 0.68 minutes or 7% of
reduction rate.

Figure 9: Evaluation of URLs Crawling Time

The results have shown that using GUIDs as

an alternate of IDs reduced the crawling time. We
claim that this result is because, unlike GUID, ID
has to check with the server its next value, which
slows down the process of adding new URLs into
the database. Whereas GUID does not have to
check with the server, instead it is directly
inserted into the database, simply because it can
assure uniqueness globally. Of course the result
with few numbers of URLs is not considered
time. However, when we talk about Web crawlers
that retrieve billions of Web pages it becomes an
issue.

7. CONCLUSION

In this paper we have highlighted the major

problems that related to distributed web crawlers.
We also study the uses of GUIDs on varieties of
application and systems. Then GUIDs is
implemented on Arachnode.net web crawler to
evaluate its performance in solving query speed
of distributed web crawlers. The evaluation
results have shown that GUIDs is better
compared to ID in distributed Web crawlers’
environment as it usage could reduce the
crawling time. However, we would recommend
using GUIDs only in large distributed web
crawlers as ID can fit in small ones, because the
reduction of crawling time is no longer exists or
disappears in small ones. Furthermore,
considering the size of GUID (128 bit) a trade-off
should be made between storage spaces and
crawling speed.

 REFRENCES

[1] M. A. Qureshi, 2010 “Analyzing the Web
Crawler as a Feed Forward Engine for an

Efficient Solution to the Search Problem in
the Minimum Amount of Time through a
Distributed,” Information Science and
Applications (ICISA), 2010 International
Conference on, pp. 1,8, 21–23.

[2] M. Gray, 1993 “Internet Growth and
Statistics Credits and Background,” [Online].
Available:
http://www.mit.edu/people/mkgray/net/backg
round.html

[3] M. Burner, 1997 “Crawling towards Eternit,
Building An Archive of The World Wide
Web,” Web Techniques Magazine.

[4] A. Heydon, M. Najork, L. Ave, and P. Alto,
1999 “Mercator : A Scalable , Extensible
Web Crawler Architecture of a Scalable Web
Crawler,” World Wide Web, vol. 2, no. 4, pp.
219–229.

[5] C. Dimou, A. Batzios, A. L. Symeonidis, P.
A. Mitkas, and A. W. Spidering, 2006 “A
Multi-Agent Simulation Framework for
Spiders Traversing the Semantic Web,” Web
Intelligence, WI IEEE/WIC/ACM
International Conference on, vol. pp.736,739,
pp. 736 – 739.

[6] P. Boldi, B. Codenotti, M. Santini, and S.
Vigna, 2004 “UbiCrawler : A Scalable Fully
Distributed Web Crawler,” pp. 1–14.

[7] M. S. Kumar, 2011 “Design and
Implementation of Scalable , Fully
Distributed Web Crawler for a Web Search
Engine,” vol. 15, no. 7, pp. 8–13.

[8] A. Singh, M. Srivatsa, L. Liu, and T. Miller,
2004 “Apoidea : A Decentralized Peer-to-
Peer Architecture for Crawling the World
Wide Web,” Distributed Multimedia
Information Retrieval, pp. 126–142

[9] Q. Chen, X. Yang, and X. Wang, 2011, “A
PEER-TO-PEER BASED PASSIVE WEB
CRAWLING SYSTEM,” pp. 10–13,.

[10] J. Bahru, 2007, “Multi-Agent Crawling
System (MACS) Architecture for
Effective Web Retrieval Siti Nurkhadijah
Aishah Ibrahim and Ali Selamat,” vol., no.
July, pp. 1–4, 2007.

[11] S. S. Vishwakarma, A. Jain, and A. K.
Sachan, 2011 “A Novel Web Crawler
Algorithm on Query based Approach with
Increases Efficiency,” vol. 46, no. 1, pp. 34–
37, 2012.

[12] N. Singhal and R. P. Agarwal, 2011
“Information Retrieval from the Web and
Application of Migrating Crawler,”
International Conference on Computational

Journal of Theoretical and Applied Information Technology
 10

th
 September 2014. Vol. 67 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

Intelligence and Communication Systems, p.
pp.476,480

 [13] N. Singhal, A. Dixit, R. P. Agarwal, and A.
K. Sharma, 2012 “Regulating Frequency of a
Migrating Web Crawler based on Users
Interest,” vol. 4, no. 4, pp. 246–253.

[14] S. Mishra, 2011 “A Query based Approach to
Reduce the Web Crawler Traffic using HTTP
Get Request and Dynamic Web Page,” vol.
14, no. 3, pp. 8–14.

[15] B. Zhou, B. Xiao, Z. Lin, and C. Zhang, 2010
“A Distributed Vertical Crawler Using
Crawling-Period Based Strategy,” IEEE 2nd
International Conference on Future Computer
and Communication, vol. V1–306, pp. 306–
311.

[16] V. Shkapenyuk, 2002 “Design and
Implementation of a High-Performance
Distributed Web Crawler,” Data Engineering,
2002. Proceedings. 18th International
Conference on, p. pp.357 – 368.

[17] J. Akilandeswari, 2008 “An Architectural
Framework of a Crawler for Locating Deep
Web Repositories using Learning Multi-
agent Systems,” Internet and Web
Applications and Services, 2008. ICIW ’08.
Third International Conference on, pp. 558–
562.

[18] B. S. Hoberman, 2008 “Is GUID Good ?,”
no. September.

[19] C. Lutteroth and G. Weber, 2008 “Efficient
Use of GUIDs,” Ninth International
Conference on Parallel and Distributed
Computing, Applications and Technologies,
pp. 115–120.

[20] I. Report, 2001 “JXTA : A Network
Programming Environment,” IEEE
INTERNET COMPUTING, no. June, pp.
88–95.

[21] P. S. et al. 2003 (Eds.), UML 2003 The
Unified Modeling Language. Modeling
languages and Applications. Berlin: Springer-
Verlag, , pp. 2–3.

[22] S. Avancha, A. Joshi, and T. Finin, 2002
“Enhanced Service Discovery in Bluetooth,”
Computer, vol. 35, no. 6, pp. 96–99.

[23] S. Francisco, S. Rhea, P. Eaton, D. Geels, H.
Weatherspoon, B. Zhao, and J. Kubiatowicz,
2003 “FAST ’ 03 : 2nd USENIX Conference
on File and Storage Technologies,” 2nd
USENIX Conference on File and Storage
Technologies.

[24] P. Lucas and J. Senn, 2002 “Toward the
Universal Database : U-forms and the VIA
Repository.

[25] P. Lucas, D. Widdows, J. Hughes, and W.
Lucas, 2005 “Roles in the Universal
Database: Data and Metadata in a Distributed
Semantic Network.

[26] A. Baid, T. Vu, and D. Raychaudhuri, 2012
“Comparing Alternative Approaches for
Networking of Named Objects in the Future
Internet *,” In Computer Communications
Workshops (INFOCOM WKSHPS), IEEE
Conference on, pp. 298–303.

