
Journal of Theoretical and Applied Information Technology 
 10

th
 September 2014. Vol. 67 No.1 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
78 

 

A NOVEL DIFFERENCE EQUATION REPRESENTATION 

FOR AUTOREGRESSIVE TIME SERIES 
 

1
B.SELVARAJ, 

2
M.RAJU, 

3
M.THIYAGARAJAN 

1 Dean, Department of Science and Humanities, Nehru Institute of Engineering and Technology, 
Coimbatore, Tamil Nadu, India – 641105. 

2Department of Science and Humanities, Nehru Institute of Engineering and Technology, Coimbatore, 
Tamil Nadu, India – 641105. 

3 Dean Research, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India – 
641105. 

E-mail: 1professorselvaraj@gmail.com, 2rajumurugasamy@gmail.comand3mthiyagarajan40@gmail.com 

 

ABSTRACT 

The major components of the time series are the long term trend, the short term trend, cyclic variation and 
irregular fluctuations. Various attempts have been made to give necessary conditions for processing the 
specific components. Here we take necessary conditions to predict the asymptotic behavior of the time 
series using second order difference of the combinations of observations obtained from a general time 
series. Specific illustrations are given to authenticate our claim. 
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1. INTRODUCTION 

J.Neyman[10]observed “currently in the period 
of dynamic indeterminism in science, there is 
hardly a serious piece of research, which, if treated 
realistically, does not involve operations on 
stochastic processes”. Deterministic and 
probabilistic models have been studied to real time 
data of time series by M.G.Kendall[5] and average 
processes which help one to predict long time trend 
of the time series. This connects a linear 
combination of any n consecutive observations of a 
given time series. In this paper, the model such 
linear combinations as a result of second order 
difference of any two linear combination of a given 
series. This is an outcome of a decay study of the 
asymptotic behavior of sequence under suitable 
combination of second order functional difference. 
This is an extension of the papers studied by Mei-
RongXu and et al.[15], and Yu-Ping Zhao and Xi-
Lan Liu[17]. The relation suggested by this study 
paves a way to fit even order first type reciprocal 
equation and their solutions, which explains claims 
made in our lemma. Specific illustrations on 
thedifference equation suggest the valid models for 
the auto regressive processes. Here we consider the 
second order neutral delay difference equationwith 
new conditions. R.P.Agarwal[1], R.P.Agarwal and 
et al[2]. discussed the general theory of difference 

equations. Many references to some applications of 
the difference equations discussed by Walter 
G.Kelley and Allan C.Peterson[4]. 

This paper is organized as follows: In section 

2, we give basic concepts and results. Models on 

time series and our novel results in the asymptotic 

behavior are given in section 3. Section 4 deals 

with illustration for time series model and 

difference equations. Last section gives our 

contribution and future work in this direction. 

2. BASIC CONCEPTS AND RESULTS 

We consider the second order neutral delay 
difference equations of the form 

( ) ( ) 0,
2

=+−+∆
−−− lnnjnin xnfxqxpx

ji στ
, (1) 

where pi≥ 0,τi≥ 1, qj≥ 0, σj≥ 1, for i, j, n ∈N = {0, 1, 

2, ...}, l ∈{−s, ..., 0}, s = max {τ, σ}, τ = 
max0≤i<∞{τi}, σ = max0≤j<∞{σj},  ∆ is the forward 
difference operator defined by ∆xn= xn+1− xn and 
the continuous function  f: N − {0} × R → R is 
increasing or decreasing in x and y and f(x, y) y >0, 
for y ≠ 0. 

We use the following notations 
throughout, N = {0, 1, 2, ...}, the set of natural 
numbers including zero;  

N (a) = {a, a + 1, a + 2, ...}, where a ∈N. 
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Many authors [6, 12, 13, 14, 16] have studied the 
cases of pi≡ 0 and fis increasing, the author [11] has 
studied the cases of qj≡ 0. Few authors [6, 17] have 
studied the cases of pi ≠ 0 in the first order 
difference equations. Here we consider the equation 
(1) with the following assumptions: 
(C1) pi= 0, 0 <qj≤ 1, 
(C2) pi= 0, qj>1, 
(C3) pi>0, 0 <qj≤ 1, 
(C4) pi>0, qj>1, 

(C5) 0
2
,inflim

1 1

=







∑∑
−

=

−

=
∞→

n

Ms

n

st
n

tf
ε

, for M >0. 

 
Definition 2.1:By a solution of equation (1), we 
mean a real sequence {xn} which is defined for all k 

≥ mink∈N(1){τk, σk} and satisfies equation (1) for 

sufficiently large k ∈N (a), a ∈N. A nontrivial 
solution {xn} of equation (1) is saidto be 
nonoscillatory if it is either eventually positive or 
eventually negative, and otherwise it is 
oscillatory.An equation is oscillatory if all its 
solutions are oscillatory.  

 

Definition 2.2:A series of observations x(t), t∈T 

made sequentially in time t constitutes a time series. 

Examples of data taken over a period of time are 

found in abundance in diverse fields such as 

meterology, geophysics, biophysics, economics, 

commerce, communication engineering systems 

analysis etc. Daily records of rainfall data, prices of 

a commodity etc. constitute time series. The variate 

t denotes time, i.e., changes occur in time. But this 

need not always be so. For example, the records of 

measurements of the diameter of a nylon fibre 

along its length (distance) t also give a time series. 

Here t denotes length. 

Definition 2.3:The essential fact which 

distinguishes time series data from other statistical 

data in the specific order in which observations are 

taken. While observations from areas other than 

time series are statistically independent, the 

successive observations from a time series may be 

dependent, the dependence based on the position of 

the observation in the series. The time t may be a 

continuous or a discrete variable. A general 

mathematical model of the time series Y(t), t∈T is 

given as Y(t)=f(t)+X(t).Here f(t) represents the 

systematic part and X(t) represents the random part. 

These two components are also known as signal 

and noise respectively. The model is theoretical: 

f(t) and X(t) are not separately observable. While 

the model for Y(t) gives the structure of the 

generating process, a set of observations(or time 

series data) is a realization of a sample function of 

the process. The effect of time may be in both the 

systematic and the random parts. 

We shall use the following propositionsfor model I. 
  
Proposition 2.1: Consider the difference equation 
∆2 (xn+ pnxn−k) + qnmax[n−l,n]xs= 0.  (2) 
Let zn= xn+ pnxn−k. Let the following conditions 
hold: 
(H1) k and l are nonnegative integers, 
(H2) {pn} is a real sequence, 
(H3) {qn} is a sequence of nonnegative real 
numbers, 

(H4) ∞=∑
∞

= 0ns

s
q , and  

p1≤ pn≤ p2≤ −1. Then the following assertions are 
valid: 
(a) If xn>0 eventually, then either zn<0,∆zn<0 and 
∆2zn≤ 0,eventually and limn→∞zn= limn→∞∆zn= −∞ 
or zn<0, ∆zn>0 and ∆2zn≤0, eventually and 
limn→∞zn= limn→∞∆zn= 0. 
(b) If xn<0 eventually, then either zn>0, ∆zn>0 and 
∆2zn≥ 0,eventually and limn→∞zn= limn→∞∆zn= ∞ or 
zn>0,zn<0 and ∆2zn≤ 0,eventually and limn→∞zn= 
limn→∞∆zn= 0. 
 
Proposition 2.2:Let conditions H in proposition 1.1 
hold and −1 < p ≤pn≤ 0. If {xn}is a nonoscillatory 
solution of equation (2), then limn→∞xn= 0. 
 

3. ASYMPTOTIC BEHAVIOR OF 

DIFFERENCE EQUATION IN TIME 

SERIES 
 

3.1. Asymptotic Behavior of Difference 

Equation 

Theorem 3.1.1: If one of the conditions (C1) and 
(C3) is satisfied alongwith (C4), then every 
nonoscillatory solution of the equation (1) tends 
tozero as n → ∞. If the condition (C2) is satisfied, 
then every nonoscillatorysolution of equation (1) 
tends to ∞ or −∞ as n → ∞. 
Proof: Without loss of generality we may assume 
that {xn} be an eventually positive solution of 

equation (1). Then there exists n1∈N (1) such that 

xn>0, for n ∈N (n1). It follows that 
ji nn

xx
στ −−

, and 

0>
−ln

x , for n ∈N(n2), i,j ∈N, where n2 = n1 + s, s 

= max {τ, σ}.  
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Let
ji njninn xqxpxz

στ −−
−+= , for n ∈N (n2).

 (3) 
First we consider the condition (C1). Then from 
equation (3), we have 

jnjnn xqxz
σ−

−= , for n ∈N (n2) .  (4) 

It follows from equation (1.1) that 

( ) 0,
2

<−=∆
−lnn xnfz , for n ∈N (n2). (5) 

By proposition2.1, we have zn<0. We claim 
limn→∞xn= 0.  
Case(i): Suppose fis increasing. Then by 
proposition 2.2, we attain our claim.  
Case(ii) Suppose f>0 is decreasing. We assume that 
limn→∞xn≠ 0. Then there exists aninfinite 
subsequence 

{n(i)}⊂ {n} such that 0lim )( >=
−

∞→

ε
lnn

ix . Therefore 

we can find a sequence of subsets N (i) ⊂N such 
that  

n(i)
∈N(i), fori ∈N (1). So, there exists i1∈N (i) such 

that
2

ε

>
−ln

x , for n ∈N (i1) .Thus 

( ) 







<

−

2
,,
ε

nfxnf
ln

, for n ∈N (i1). (6) 

Now, inequalities (5) and (6) implies that 









−>∆

2
,

2 ε

nfz
n

. 

Summing the above inequality from M ∈N (n2) to n 
− 1, we obtain 

∑
−

=









−>∆

1

2
,

n

Ms

n
sfz
ε

. 

Again summing from M ∈N (n2) to n − 1, we have 

∑ ∑
−

=

−

=









−>

1 1

2
,

n

Ms

n

st

n
tfz
ε

. 

By the condition (C5), we see that zn>0 as n → ∞. 
This is a contradiction to the proposition 2.1. Thus 
limn→∞xn= 0. 

Next, we consider the condition (C3). In 
this case znis in equation (3) and consequently from 
equation (1), we have 

( ) 0,
2

<−=∆
−lnn xnfz , for n ∈N (n2). 

To prove zn<0, for n ∈N (n2). Suppose that zn≥ 0, 
for n ∈N (n2). 

Then there exists n3∈N (n2) and k >0 such that zn≥ 
k. Therefore, fromequation (3), we have 

ji njnin xqxpkx
στ −−

+−≥ , for n ∈N (n3). (7) 

Now two cases arise. 
Suppose {xn} is unbounded.i.e., limsupn→∞xn= ∞. 

Then there exists a subsequence { }∞
=1uu

n ⊂N such 

that nu≥ n3 +σ andnu→ ∞ as u → ∞ and 

{ }ln
l

n uu
xx

−
= max . In view of the inequality(7), we 

have 

juiuu njnin xqxpkx
στ −−

+−≥ . 

⇒
ujuiuu ninjnin xpxqxpkx ≤−+−≤−

−− στ
. 

⇒pi≥ −1, which leads to a contradiction.  
Suppose {xn} is bounded, i.e., limsupn→∞xn= ε<∞.  

Then there exists a subsequence { }∞
=1

*

uun ⊂Nsuch 

that *

u
n → ∞ and *

u
n

x → εas u → ∞ and 

{ }**
*

* max
ln

l
n

uu

xx
−

= . Then, we have ε≤

∞→

*suplim
u

n

u

x . 

In view of the inequality (7), we have 

juiuu njnin
xqxpkx

στ −−

+−≥ *** . 

Taking the superior limit as u → ∞, we obtain ε≥ k 
− piε+ qjε. 

⇒ −ε≤ −k + piε− qjε≤ piε. 

⇒pi≥ −1, which also leads a contradiction. 
 In both cases we obtain thecontradiction to the 
assumption zn≥ 0. Thus zn<0. The proof of 
theremaining is the same as in the first part and 
hence we omit it. 

Finally, we consider the condition (C2). 
Then from the first part of theproof, we see that the 
equation (4), inequality (5) and hence zn<0 hold. 
Now we prove the claim limn→∞xn= ∞by the 
following contradiction that it is impossible that 
limn→∞xn= 0. Suppose that limn→∞xn= 0. Then from 
equation (4), we obtain lim n→∞zn= 0. Therefore 
from equation (4), we have 

0<−
− jnjn xqx
σ

, for n ∈N (n2). 

Now, let us define { }
jn

j
n xx

σγ −
∞<≤

=

0

min . 

Therefore we obtain 
γnjn xqx ≤ . Taking limit as n 

→ ∞, we obtain qj>0.This leads a contradiction to 
qj>1. 
Next, we shall show that it is possible that 
limn→∞xn= ∞. Suppose that limn→∞xn≠∞. Then there 

exists a subsequence {n(i)}⊂N such that 

∞<=<
−

∞→

ε
lnn

ix )(lim0 . Thus there exists n3∈N 

(n2) and i1∈N (1) such that  

n(i) ∈N (n3) and 
2

)(

ε

>
−ln

ix , for i∈N (i1). Now, we 

define { }
jn

j
n xx

σα −
∞<≤

−
=

0

max . Then from the equation 

(4), we obtain  

α

σ

αα −

−

−−

−=

n

nj

n

n

n

n

x

xq

x

x

x

z j
. 
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⇒

α−

−≥

n

n
j

x

z
q .⇒qj≥ 0.This leads to a contradiction 

to the fact that qj≥ 1.  
Thus in both cases,we proved that the solution of 
equation (1) tends to ∞ as n → ∞.The similar 
arguments are used for proving the result while 
{xn} is eventually negative and hence we omit it. 
Hence the theorem is completely proved.  
 
Corollary 3.1.1:Assume that f(n, v) ≥ rnv

β,for all v 
>0, where β is the ratio of odd positive integers 
such that  

0 < β <1 and rn>0, for all n ∈N. Suppose that for 

any sequence of subsets N (i) ⊂N , ∑
∈

∞=

)(iNn

n
r .In 

addition to the condition (C4), every nonoscillatory 
solution {xn} of equation (1) satisfies either 
liminfn→∞xn= 0, or limsup n→∞xn= ∞. 
Proof: Without loss of generality we may assume 
that {xn} be an eventually positive solution of 

equation (1). Then there exists n1∈N (1) such that 

xn>0, for n ∈N (n1). It follows that
ji nn

xx
στ −−

, and

0>
−ln

x , for n ∈N (n2),  

i,j ∈N, where n2 = n1 + s, s = max {τ, σ}. Consider 
the condition (C4), and then from equation (3), we 
have the same equation (3) with the condition (C4). 
It follows from equation (1) that the same 
inequality (5) with condition (C4).Summing the 
new inequality (5) from M >0 to n − 1, we obtain 

0

1

<−∆<∆ ∑
−

=

−

n

Ms

lssMn
xrzz
α , for n ∈N (n2). 

There existsς >0 such that ∆zM≤ ς, for n ∈N (n2). 
Again summing the above inequality from M >0 to 
n − 1, we obtain  

0

1 1

<









−< ∑ ∑

−

=

−

=

−

n

Ms

n

st

lttn
xrz
α

ς , for n ∈N (n2). 

From the above two inequalities, we have ∆zn<0 

and zn<0 respectively,for n ∈N (n2). Thus 
liminfn→∞xn= 0 and limsupn→∞xn= ∞ are follows 
from the proposition 2.1 and proposition2.2. Hence 
the corollary is completely proved. 
 

3.2. Auto Regressive Process (AR Process) 
 The process {X(t)} given by 

Xt+b1Xt-1+b2Xt-2+…+bnXt-n=et, bn≠0,   (8) 

where{et}is purely random process, with mean 0, is 

called an autoregressive process of order n.Xt can 

be obtained as a solution of the linear stochastic 

difference equation 

g(B)Xt=et, where g(B)=∑
=

n

r

r

r
Bb

0

, b0=1. (9) 

Suppose that g(B)= ( ) jii zzBz ≠−∏ ,1 , i.e., 

11

1
,...,

−−

n
zz are the distinct roots of the equation 

g(z)=0. Further suppose that 1<
i
z for all i, i.e., all 

the roots of g(z)=0 lie outside the unit circle; the 

roots zi of the characteristic equation 

( ) 0

0

=≡ ∑
=

−

n

r

rn

r
zbzf (where ( ) ( )1−−

= zgzzf n ) all 

lie within the unit circle. The complete solution of 

(9) can be written as  

( )∑
=

+′=

n

r

trri
e

Bg
zAX

1

1
, where Ar’s are constants. 

Now  

( )
( )

∑ ∑

∏

∞

=

∞

=

−

=

−

=′=′=

−=

0 0

0

1

1

,1,

1
1

r r

rtrt

r

r

n

i

tit

bebeBb

eBze
Bg

 

where
r

b′ are constants involving zi’s.

 

If the process is considered as begun long time ago, 

then the contribution of ∑
=

′

n

r

rr
zA

0

damps out of 

existence.Xt is then given by 

∑
∞

=

−
′=

0r

rtrt
ebX .   (10) 

Thus an AR process can be represented by an MA 

process of infinite order.  

 The coefficients 
r

b′ of et-r in the right hand 

side of (10) can also be obtained as follows. Using 

the expressions for Xt as given in (10), for t, t-

1,…,t-n and then substituting in (8), we get 

.

...

2211

∑

∑∑∑

−−

−−−−−

′+

+′+′+′

rntrn

rtrrtrrtr

ebb

ebbebbeb

Equating the coefficients of et, et-1,... from both 

sides, we get. 
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=′++′+′

=′+′

=′

−−−

0...

......

0

1

01211

011

0

bbbbb

bbb

b

nnn

 (11) 

and 

0...
11

=′++′+′
−− nrnrr

bbbbb , r=n, n+1,…. (12) 

In otherwords, 
r

b′ satisfy the difference equation 

(12) together with the initial conditions (11). Thus, 

r
b′  can be obtained by solving (12) with the help of 

(11). 

 We can put the result in the form of a 

theorem as follows: 

Theorem 3.2.1: If the roots of the equation

( )
n

nn bzbzzf +++=
−

...

1

1
all lie within the unit 

circle, then the autoregressive process  

Xt+b1Xt-1+b2Xt-2+…+bnXt-n=0, can be represented 

as an infinite moving average ∑
∞

=

−
′=

0r

rtrt
ebX ., 

where 
r

b′ are the roots of the difference equation 

0...
11

=′++′+′
−− nrnrr

bbbbb , r=n, n+1,…. subject 

to the initial conditions 1
0
=′b , 0

011
=′+′ bbb ,…,

0...
01211
=′++′+′

−−−

bbbbb
nnn

. 

 

4. ILLUSTRATIONS 

We give the following illustrations to authenticate 
our claim. 
 
Illustration 4.1: Consider the difference equation  

0
3

10

3

1
33

2 =+







−∆

+− nnn
xxx . (13) 

Here pi= 0, 0 <qj=
3

1
<1, σj= 3, ( )

lnln
xxnf

−−

=

3

10
, , 

l = −3. 
Here equation (13) can be written as 

cxb

xbxbxbxbxb

n

nnnnn

=+

++++
+++++

0

1122334455
 (14) 

with the conditions

.
3

10
and,1

2
,

3

1

2
54

3

2

0

1
===

−

==−==− bb
b

bc
b

b

This is the representation of the difference equation 
in autoregressive process. 
Conditions (C1), (C5) of theorem 3.1.1 are 
satisfied. Hence all solutions of equation (13) are 
nonoscillatory. 

In fact,{xn} =








n

2

1
is one such solution of equation 

(13). 
 
Illustration 4.2: Consider the difference equation 

( ) ( )
0

10

10561

5

3

2

1

2

22

21

2

=
−−−

+







−+∆

+

−−

n

nnn

x

eee

xxx

. (15) 

Here pi=
2

1
, 0 <qj=

5

3
<1, τi= 1, σj= 2,

( )
( ) ( )

lnln
x

eee
xnf

−−

−−−
=

10

10561
,

22

, 2.5 < e 

<2.9, l = −2. 
Condition (C3) of theorem 3.1.1 is satisfied.Hence 
all solutions of equation (15) are nonoscillatory. 

In fact,{xn} =








n

e

1
is one such solution of equation 

(15). 
 
Illustration 4.3: Consider the difference equation 

( ) 0
2

1
12

22

2
=+−∆

+− nnn
xxx . (16) 

Here pi= 0, qj= 12>1, σj= 2, ( )
lnln

xxnf
−−

=

2

1
, , l = 

−2. 
Condition (C2) of theorem 3.1.1 is satisfied. Hence 
all solutions of equation (16) are nonoscillatory. 
In fact,{xn} = {2n} is one such solution of equation 
(16). 

 

Illustration 4.4: Let {X(t)} be an MA process of 

order n given by 

Xr=a0et+a1et-1+…+anet-n, an≠0, 

where {et} is a purely random process. If the roots 

of the characteristic equation zn+a1z
n-1+…+an=0all 

lie within the unit circle, then Xt can be represented 

as an autoregressive process of infinite order

t

r

rtr
eXc =∑

∞

=

−

0

,where the coefficients cr satisfy the 

difference equation 0...
11

=+++
−− nrnrr

cacac , 
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r=n, n+1,….and the initial conditions 1
0
=c .

0
11
=+ ac , 0

2111
=++ acac ,..,

0...
1211
=+++

−−− nnn
acac . 

5. CONCLUTION AND FUTURE WORK  

In this paper, we have presented necessary 

conditions to predict the asymptotic behavior of the 

time series using second order difference of the 

combinations of observations obtained from a 

general time series. Specific illustrations are given 

to authenticate our claim. In future, we will 

consider the generalization this model to higher 

order difference equation to study time series 

analysis. 
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