
Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

661

SURVEY ON ADAPTIVE JOB SCHEDULERS IN

MAPREDUCE

MAEDEH MOZAKKA,

FARAMARZ SAFI ESFAHANI, MOHAMMAD H. NADIMI

Faculty of computer engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

E-mail: maedeh.mozaka@gmail.com , fsafi@iaun.ac.ir, nadimi@iaun.ac.ir

ABSTRACT

In recent years the adaptive job schedulers became an attraction point to many researchers, but despite
many efforts that have been made, there are still many challenges in this area. The aim of this paper is to
provide a better understanding of adaptive job schedulers in MapReduce and identify important research
directions in this area. In this paper, adaptive job schedulers in MapReduce are classified in four categories.
The techniques used in them are described briefly, we present advantages and disadvantages of different
adaptive schedulers and then their features and the application of each category of the schedulers are
expressed. Finally, we will discuss some current challenges and future works.

Keywords: Adaptive Job Scheduler, Cloud Computing, Hadoop, Job Scheduling, MapReduce.

1. INTRODUCTION

 One of research challenges in cloud computing is
their software frameworks. Cloud computing provides
a proper platform for hosting large-scale data-
intensive applications. Typically, these applications
leverage MapReduce frameworks such as Hadoop for
scalable and fault-tolerant data processing [1].
MapReduce is a programming model as well as a
framework that supports the model. The main idea of
the MapReduce model is to hide details of parallel
execution and allow users to focus only on data
processing strategies [2]. Users specify the
computation in terms of a map and a reduce function,
and the underlying runtime system automatically
parallelizes the computation across large-scale
clusters of machines, handles machine failures, and
schedules inter-machine communication to make
efficient use of the network and disks [3]. Hadoop is
an open-source implementation for MapReduce. Job
scheduling in multi-user environments is an open
issue that has not been well addressed yet [2]. In
MapReduce, the job submitted by user is divided into
several tasks. There are two types of task in
MapReduce: map task and reduce task. Each node is a
physical machine with computational and storage
capabilities. Hadoop uses the number of slots concept
for each node in order to control the maximum
number of tasks that can be executed concurrently on
a node. Each slot of the node at any time is only
capable of executing one task. In MapReduce, there
are two types of slot: map slot, and reduce slot.
Scheduling decisions are taken by a master node, called the

JobTracker, and the worker nodes that called
TaskTracker execute the tasks [4]. In general, job
schedulers in MapReduce are classified in two
categories: static schedulers (such as FIFO) and
dynamic schedulers. Dynamic schedulers in
MapReduce are classified in two categories: dynamic
schedulers that operate based on non-environmental
factors and dynamic schedulers that operate based on
environmental factors which are called adaptive
scheduler. In section 2, we briefly discuss the
adaptive job schedulers and techniques used for them.
In Section 3, advantages, disadvantages, features and
the application of adaptive job schedulers are
discussed, and Section 4 includes future works and
conclusions.

2. THE ADAPTIVE JOB SCHEDULERS IN

MAPREDUCE

2.1 Data Locality Ameliorator Schedulers

 When input data is nearer to the computation

node, it has a lower data transfer cost. Locality is a

very crucial issue affecting performance in a shared

cluster environment, due to limited network

bisection bandwidth [5]. Leitao Guo (2009) et

al. [6] offered a data distribution aware task

scheduling strategy for MapReduce system. Their

strategy has two main phases: In the initialization

phase, statistics number of copies of data processed

by each map task. At the same time, statistics the

number of localizable tasks for each worker; in the

scheduling phase, according to the information

above, calculating the scheduling priorities for each

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

662

task and each works that requesting task, and

scheduling the task to works based on this priority.

This strategy regarding the distribution of data,

schedules map tasks on the nodes that most likely

contain relevant data, and reduces network

overhead and improves the performance of system.

Hadoop schedules reduce tasks at requesting nodes

without considering data locality leading to

performance degradation. Mohammad Hammoud

(2011) et al. [7] proposed LARTS, a practical

strategy which uses network locations and partition

sizes to improve data locality. JobTracker schedules

reducers only in TaskTrackers which are selected

by reducers. If some of TaskTrackers receive more

reducers than others, scheduling skew will occur.

Because the TaskTrackers that are available but not

selected by any reducer, remain unused and leading

to a reduction in exploiting parallelism and system

efficiency. LARTS attempts to schedule reducers as

close as possible to their maximum amount of input

data and conservatively switches to a relaxation

strategy seeking a balance between scheduling

delay, scheduling skew, system utilization, and

parallelism. In general, the performance of map

tasks is affected by waiting time and transmission

time. The waiting time of a task is the shortest time

that the task has to wait before it is scheduled to

one of the nodes storing the input data. The

transmission time is the time needed to copy the

input data of the task to the node requesting tasks.

Xiaohong Zhang (2011) et al. [8] proposed an

effective data locality aware task scheduling

method for MapReduce framework in

heterogeneous environments. The objective of their

method is to make a tradeoff between waiting time

and transmission time at runtime when schedule a

task to a node and obtain optimal task execution

time. In brief, after receiving a request from a

requesting node, the method preferentially

schedules the task whose input data is stored on the

requesting node. If there exist no such tasks, the

method first selects the task whose input data is

nearest to the requesting node, and then computes

the waiting time and the transmission time of the

selected task. If the waiting time is shorter than the

transmission time, the method reserves the task for

the node storing the input data. Otherwise, it

schedules the task to the requesting node. Despite

previously proposed optimizations related to

management of straggler tasks, MapReduce

implementations were still weak in heterogeneous

clusters. Faraz Ahmad (2012) et al. [9] proposed

some optimization methods for improving

MapReduce performance on heterogeneous clusters

as Tarazu. Tarazu consists of (1) Communication-

Aware Load Balancing of map computation

(CALB) across the nodes, (2) Communication-

Aware Scheduling of map computation (CAS) to

avoid bursty network traffic and (3) Predictive

Load Balancing of reduce computation (PLB)

across the nodes. Shadi Ibrahim (2012) et al. [10]

suggested a replica aware scheduling method as

Maestro to reduce map tasks which process remote

data and cause excessive traffic network. Maestro

schedules the map tasks considering chunk locality

and node availability. The scheduling of Maestro is

in two waves: first wave scheduler and run time

scheduler. The first wave scheduler is responsible

for filling the empty slots of each data node based

on the number of hosted map tasks and on the

replication scheme for their input data. Runtime

scheduling takes into account the probability of

scheduling a map task on a given machine

depending on the replicas of the task’s input data.

These two waves lead to a higher locality in the

execution of map tasks and to a more balanced

intermediate data distribution for the shuffling

phase.

Xiaohong Zhang (2012) et al. [11] proposed a

scheduling method in order to improve data

locality. After receiving a request from a requesting

node, their method preferentially schedules the task

whose input data is stored on the requesting node.

If no such tasks exist, their method will select the

task whose input data is nearest to the requesting

node, and then make a decision on whether to

reserve the task for the node storing the input data

or schedule the task to the requesting node by

transferring the input data to the requesting node on

the fly. This method increases the performance of

the system.

Mohammad Hammoud (2012) et al. [12]

proposed COGRS. COGRS is a locality-aware

skew-aware reduce task scheduler for saving

MapReduce network traffic. This scheduler

attempts to schedule every reduce task at its center-

of-gravity node determined by the network

locations of that task’s feeding nodes and the skew

in the sizes of that task’s partitions. By scheduling

reducers at their center-of-gravity nodes, they argue

for reduced network traffic which can possibly

allow more MapReduce jobs to co-exist on the

same system. CoGRS controllably avoids

scheduling skew, a situation where some nodes

receive more reduce tasks than others, and

promotes pseudo-asynchronous map and reduce

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

663

phases. If there is a tendency for a job to be

assigned the same slot repeatedly, sticky slot

occurs. This problem aroused because following a

strict queuing order forces a job with no local data

to be scheduled [4].

Yanrong Zhao (2012) et al. [13] have designed

and implemented a new job scheduling algorithm

(TDWS) for Tencent Distributed Data Warehouse

(TDW) which is based on Hadoop MapReduce.

This scheduler avoids from occurring sticky slots

and starvation of small jobs. Firstly, TDWS

organizes jobs into several separate groups and

shares resources between these groups to meet the

needs of different applications, each group for one

type of job. Secondly, TDWS takes memory

heterogeneity into account and implements a

memory-awareness mechanism to gather memory

information to handle the problem. TDWS uses

Delay scheduling strategy [14] in order to increase

data locality.

Arun Kumar K. (2012) et al. [15] offered CASH,

which is a Context Aware Scheduler for Hadoop.

This scheduler increases the performance in

heterogeneous Hadoop clusters. CASH Classifies

the jobs as CPU or I/O bound. This scheduler

classifies the nodes as Computational or I/O good.

Then it maps the tasks of a job with different

demands to the nodes which can fulfill the

demands. Thus, by implementing CASH the

performance of the heterogeneous cluster and the

aggregate execution times of the jobs can be

improved.

2.2. Adaptive Schedulers Based on Speculative

Execution

 These schedulers identify slow tasks and then

launch several backup tasks for them on the other

nodes. When a slow task or a backup copy of that

terminates, all the other similar tasks (slow task or

the other backup tasks) are killed. If a backup task

ends earlier than slow task, then the overall

performance improves.

Quan Chen (2010) et al. [16] proposed SAMR

scheduling algorithm. SAMR is inspired by LATE

[17] scheduling algorithm. This scheduling

algorithm holds historical information on each

node. The TaskTracker, reads the historical

information and sets the parameters using these

informations. Quan Chen et al. proposed several

equations for finding slow tasks and slow

TaskTrackers. The scheduler can launch backup

tasks for slow tasks according to these equations.

SAMR launches backup tasks for map tasks on the

rapid nodes or on the slow reduce nodes, and

launches the backup tasks for reduce tasks on the

rapid nodes or on the slow map nodes. When a task

or several tasks execute on TaskTracker, execution

informations feedbacks to TaskTracker, and

historical informations update using them. SAMR

computes progress score of tasks more accurate

than LATE, thus this scheduler launches backup

tasks for really slow tasks that prolong job

execution time.

Although the LATE scheduler is proposed to

resolve some problems that occur in heterogeneous

environments, but this scheduler is designed to

minimize the response time of first job in the job

queue, and will prolong the response time of the

other jobs in the job queue. LATE scheduler uses

the past information to estimate the time to finish of

tasks and is not suitable for environments with

dynamic loading.

Hsin-Han You (2011) et al. [18] offered load-

aware scheduler for MapReduce framework in

heterogeneous cloud environments, and abbreviated

it as LA scheduler. This scheduler improves the

overall performance of Hadoop clusters.

Quan Chen (2011) et al. [19] suggested HAT

scheduler for heterogeneous environments. This

scheduler calculates the progress of tasks more

accurate than previous methods and adapts with

different environments automatically. HAT uses

historical informations which are stored on each

node to set the parameters and identifies slow tasks

dynamically. Quan Chen et al. proposed several

equations to calculate the weight of new phases, the

progress score of map and reduce tasks, to detect

slow tasks and slow nodes. Based on the accurate-

calculated progress of tasks, HAT estimates the

remaining time of tasks accurately and further

launches backup tasks for the tasks that have the

longest remaining time. HAT estimates progress of

a task accurately since it tunes the weight of each

phase of a map task and a reduce task automatically

according to the historical values of the weights.

HAT, further classifies slow nodes into map slow

nodes and reduce slow nodes. In this way, HAT can

launch backup tasks for reduce straggler tasks on

map slow nodes and vice versa.

Self-Adaptive MapReduce scheduling algorithm

(SAMR) uses historical information to adjust stage

weights of map and reduce tasks when estimating

task execution times. However, SAMR does not

consider the fact that for different types of jobs

their map and reduce stage weights may be

different. Even for the same type of jobs, different

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

664

datasets may lead to different weights.

Xiaoyn Sun (2012) [20] proposed the ESAMR

algorithm to overcome these problems. ESAMR

classifies the historical information stored on every

node into k clusters using a machine learning

technique. If a running job has completed some

map tasks on a node, ESAMR records the job’s

temporary map phase weight (i.e., M1) on the node

according to the job’s map tasks completed on the

node. The temporary M1 weight is used to find the

cluster whose M1 weight is the closest. ESAMR

then uses the cluster’s stage weights to estimate the

job’s map tasks’ TimeToEnd on the node and

identify slow tasks that need to be re-executed. If a

running job has not completed any map task on a

node, the average of all k clusters’ stage weights

are used for the job. In the reduce stage, ESAMR

carries out a similar procedure. After a job has

finished, ESAMR calculates the job’s stage weights

on every node and saves these new weighs as a part

of the historical information. Finally, ESAMR

applies k-means, a machine learning algorithm, to

re-classify the historical information stored on

every worker node into k clusters and saves the

updated average stage weights for each of the k

clusters. By utilizing more accurate stage weights

to estimate the TimeToEnd of running tasks,

ESAMR can identify slow tasks more accurately

than SAMR, LATE, and Hadoop default scheduling

algorithms.

2.3 Performance Manager Schedulers

 These schedulers are capable to manage the

scheduling in line with user goals. Jorda Polo

(2009) et al. [21] proposed a QOS-Oriented

scheduler. The goal of this scheduler is to execute

running jobs using as few resources as possible

while trying to meet the user-provided deadline for

each job. The deadline scheduler works by

assigning available task slots to the job with the

largest positive need of CPU, which roughly

translates as the job that needs more resources to be

completed on time. The need is defined as the

difference between the estimated number of slots

required to meet the deadline and the number of

running tasks. Since the scheduler should have an

idea of the job’s needs as soon as possible, jobs

with no completed and no running tasks always

take precedence over other jobs. For jobs that their

deadline is expired, if it isn’t possible to meet their

deadlines, the scheduler tries to at least complete

them as soon as possible, prioritizing them over any

other kind of job, which in turn also helps to avoid

jobs starvation.

Jaideep Datta Dhok (2010) [22] proposed

LSCHED for task scheduling in Hadoop. This

scheduler is able to maintain user specified level of

utilization on cluster nodes. LSCHED builds a list

of candidate jobs. For each job in the queue of the

scheduler, one candidate instance for Map part and

one (or zero, if the job does not have a reduce part)

for the Reduce part is added in the list. Then

LSCHED classifies the candidate jobs into two

classes, good and bad, using a pattern classifier.

Tasks of good jobs do not overload resources at the

TaskTracker during their execution. Jobs labeled

bad are not considered for task assignment. If the

classifier labels all the jobs as bad, no task is

assigned to the TaskTracker. If after classification,

there are multiple jobs belonging to the good class,

then LSCHED chooses the task of a job that

maximizes expected utility (E.U. (J)). Cluster

administrator determines the task priority, and this

priority can be used for execution policy. Once a

task is assigned, LSCHED observes the effect of

the task from information contained in subsequent

heartbeat from the same TaskTracker. Based on this

information, if the TaskTracker is overloaded,

LSCHED concludes that last task assignment was

incorrect. The pattern classifier is then updated

(trained) to avoid such assignments in the future.

The Adaptive scheduler [23] dynamically predicts

the performance of concurrent MapReduce jobs and

adjusts the resource allocation for the jobs. It allows

applications to meet their performance objectives

without overprovisioning of physical resources. But

this scheduler is completely unaware of unique

capabilities of the hardware.

Jorda Polo (2010) et al. [24] improved the

Adaptive scheduler to meet user defined high level

performance goals. They exploited from the

capabilities of hybrid systems transparently and

efficiently. The completed adaptive scheduler is

hardware-aware and is able to co-schedule

accelerable and non-accelerable jobs on a

heterogeneous MapReduce cluster.

Ying Li (2011) et al. [25] proposed a power-

aware scheduling algorithm for MapReduce jobs in

heterogeneous cloud resources in order to energy

saving. This scheduler considers users’ SLAs

(Service Level Agreements). Since MapReduce

framework is generally for data-intensive cloud

computing, they considered energy saving both in

processing elements and in disk storages.

Jorda Polo (2011) et al. [26] proposed RAS in

order to maximize the utilization of system

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

665

resources and to meet the users' job completion

time goals. RAS extends the abstraction of ‘task

slot’ to ‘job slot’, and leverages resource profiling

information to obtain better utilization of resources

and improves application performance. RAS seeks

to meet soft-deadlines via a utility-based approach

and adapts to changes in resource demand by

dynamically allocating resources to jobs. This

scheduler differentiates between map and reduce

tasks when making resource-aware scheduling

decisions.

2.4 Resource Contention Reducer Schedulers

 This category of schedulers with consideration

of the resource metrics of each TaskTracker (such

as CPU utilization, number of page faults per unit

of time, etc.), try to allocate tasks to the

TaskTrackers so that avoid race conditions. This

category of schedulers, increase the resource

utilization of TaskTrackers.

Mark Yong (2009) et al. [27] proposed two

resource-aware scheduling mechanisms to

minimize resource contention on machines:

Dynamic free slot advertisement mechanism and

Free slot priorities/filtering mechanism. In Free slot

priorities/filtering mechanism, cluster

administrators retain the fixed maximum number of

compute slots per node at configuration time. As

TaskTracker slots become free, they are buffered

for some small time period and advertised in a

block. TaskTracker slots with higher resource

availability are presented first for scheduling tasks

on. Instead of scheduling a task onto the next

available free slot, job response time would

improve by scheduling it onto a resource-rich

machine, even if such a node takes a longer time to

become available.

Hong Mao (2011) et al. [28] proposed a load-

driven task scheduler in order to decrease runtime

cost of MapReduce jobs and to improve hardware

resource utilization rate. This scheduler uses

Ganglia [29] to monitor the status of Hadoop

cluster. When the cluster is running MapReduce

job, Ganglia will get all the performance metrics

and load condition of the nodes. Tasks allocate to

the TaskTrackers according to workload of slave

nodes. To this end, the scheduler uses a Dynamic

Slot Controller (DSC). DSC adjusts the number of

map slots and number of reduce slots for

TaskTrackers adaptively. By DSC, the workload of

each slave node running TaskTracker would be

between lower limit and upper limit.

Radheshyam Nanduri (2011) et al. [30] proposed

a job-aware scheduling algorithm for MapReduce

in order to reduce the jobs execution time. From the

list of available pending tasks, the scheduler selects

the one that is most compatible with the tasks

already running on that node. This scheduler

employs an event capturing mechanism on

theTaskTrackers [31] which listens to events

related to cpu, memory, disk and network to

monitor resource usage characteristics of that

particular task.

Yi Yao (2013) et al. [32] proposed LsPS, which

leverages the knowledge of workload patterns to

improve the system performance by dynamically

tuning the resource shares among users and the

scheduling algorithms for each user.

Zhe Wang (2013) et al. [33] proposed a

scheduling strategy for heterogeneous clusters

based on job type classification. This scheduling

strategy includes two parts. 1) Divide the job

dynamically into two types based on cluster

historical operating data: CPU - intensive and I/O-

intensive. 2) To remove the influence of noise data

on the reliability of historical data, they offered a

scheduling strategy-- CICS: CPU and I/O

Characteristic estimation Strategy. This strategy is

mainly based on classical FCFS and has been

modified intensively on Fairness.

3. ADVANTAGES, DISADVANTAGES,

FEATURES AND APPLICATIONS OF

ADAPTIVE JOB SCHEDULERS

Advantages and disadvantages of adaptive job

scheduling methods are expressed in Tables 1, 2, 3

and 4. Reduce tasks are divided into three sub-

phases: shuffle, sort and reduce. Shuffle sub-phase,

copies the map outputs from maps host machines,

to the reducer machines.

If reduce tasks begin after completion of a

certain percentage of map tasks (e.g. 5%), during

the maps executions, the shuffling of partitions will

be done and thus the turnaround time of

MapReduce jobs will decrease, and early shuffle is

done. Sweet spot of a program is the spot at which

early shuffle is triggered and provides the best

performance for the program. But in LARTS and

COGRS, the sweet spot is determined statically,

which is the disadvantage of these schedulers. The

features of adaptive job schedulers are expressed in

Table 5 and the application of adaptive job

schedulers are expressed in Table 6.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

666

Table 1: Data Locality Ameliorator Schedulers

Method Advantages Disadvantages

Leitao Guo

et al.(2009)

• Reduce network overhead

• Improve system efficiency
-

LARTS

• Improve scheduling delay,

scheduling skew, system

utilization, and parallelism

• Reduce network traffic

• Increase of performance

• Static sweet

spot
determination

Xiaohong

Zhang

et al.(2011)

• Reduce normalized runtime

• Reduce job response time
-

Maestro

• Reduce network traffic
• Reduce runtime
• Suitable for homogeneous

and heterogeneous

environments

-

Xiaohong

Zhang

 et al.(2012)

• Increase of performance -

COGRS
• Reduce network traffic

• Reduce job runtime

• Static sweet

spot
determination

TDWS

• Suitable for heterogeneous

environments

• Avoid job starvation

• Avoid occurrence of sticky

slots

• Rapid execution of urgent

jobs

• Maintain FIFO scheduling

benefits

-

CASH
• Reduce runtime

• Increase overall throughput -

Table 2: Adaptive schedulers based on speculative

execution
Method Advantages Disadvantages

SAMR

• Reduce runtime

• Save system

resources

• Scalability

• Ignore different weights

for different job types

and different dataset

sizes

• Ignore data locality for

launching backup tasks

LA

• Reduce response

time

• Increase of cluster

utilization

• Ignore data locality for

launching backup tasks

HAT
• Increase of system

performance

• Scalability

• Ignore different weights

for different job types

and different dataset

sizes

• Ignore data locality for

launching backup tasks

ESAMR

• Reduce runtime

• Save system

resources

• Scalability

• Ignore data locality for

launching backup tasks

Table 3: Performance manager schedulers
Method Advantages Disadvantages

Jorda

Polo et al.

(2009)

• Ability of

performance

prediction and

performance

management

• Save physical

resources

• Inappropriate for

applications with

different performance

objectives

LSCHED

• Ability of fast

learning

• Ability to achieve

the user specified

level of node

utilization

• Increase of

performance

• Low utilization of

resources in learning

phase

• Ineffective for tasks

with unpredictable

behavior

• Decrease of

performance in very

large clusters

Jorda

Polo et al.

(2010)

• Ability to achieve

user specified high

level performance

goals even in the

presence of hybrid

systems and

accelerable jobs

 -

Ying Li

 et al.

(2011)

• Save energy
consumption

• Consider Users'

SLA

 -

RAS

• Meet users'

completion time

goal

• Improve resource

utilization

• Increase of

performance

• Lack of support for

preemption of reduce

tasks

• Need for additional

monitoring and

forecasting capabilities

to manage network

bottlenecks

Table 4: Resource contention reducer schedulers

Method Advantages Disadvantages

Mark Yong

 et al. (2009)

• Reduce contention for CPU

resources and I/O on the

worker machines

• Increase the performance of

cluster

-

Hong Mao

et al. (2011)

• Reduce runtime

• Improve the utilization of

CPU and other cluster

resources

• Lack of

support for

multi job

environments

Radheshyam

Nanduri

et al. (2011)

• Reduce runtime

• Maximize the utilization of

nodes resources

• Ability to plug into FAIR
and Capacity schedulers

• Ability to implement in any

distributed environment

-

LsPS

• Reduce runtime

• Suitable for workloads

which include jobs with

different sizes

• Ignore the

factor of

priority for

the share

assignment

Zhe Wang

et al. (2013)
• Reduce runtime

• Improve resource utilization

• Having

linear

relative with

historical
data

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

667

Table5: Features of adaptive schedulers

R
u

n
ti

m
e
 r

e
d

u
c
ti

o
n

N
e
tw

o
r
k

 t
r
a

ff
ic

r
e
d

u
c
ti

o
n

R
e
so

u
r
c
e
 u

ti
li

z
a

ti
o

n

in
c
r
e
m

e
n

t

S
u

it
a

b
le

fo

r

h
e
te

r
o

g
e
n

e
o

u
s

e
n

v
ir

o
n

m
e
n

ts

S
c
a

la
b

il
it

y

S
a

ti
sf

a
c
ti

o
n

 o
f

u
se

r
s'

h
ig

h
 l

e
v

e
l

p
e
r
fo

r
m

a
n

c
e

g
o

a
ls

Leitao Guo

et al. (2009) �

LARTS � �

Xiaohong

Zhang

et al. (2011)

� � �

CAS � � �

Maestro � � �

Xiaohong

Zhang

et al. (2012)

� �

COGRS � �

TDWS � � �

CASH � � �

SAMR � � � �

LA � �

HAT � �

ESAMR � � �

Jorda Polo

et al. (2009) � �

LSCHED � � �

Jorda Polo

 et al. (2010) � � �

Ying Li

 et al. (2011) � �

RAS � � �

Mark Young

 et al.(2009) �

Hong Mao

et al. (2011) � �

Radheshyam

Nanduri

et al. (2011)
� �

LsPS �

ZheWang

 et al. (2013)
� � �

Table 6: Application of each category of schedulers

Application Scheduling type

• Network traffic reduction

• Performance enhancement

Data locality ameliorator

schedulers

• Performance enhancement in

heterogeneous environments

Adaptive schedulers based

on speculative execution

• Satisfaction of Users' high

level performance goals

(performance management)

Performance manager

schedulers

• Resource utilization

enhancement

• System performance

enhancement

Resource contention

reducer schedulers

4. CONCLUSION AND FUTURE

WORKS

In this paper, adaptive job schedulers categorized

into four groups and each one of them were briefly

described. All schedulers in each group have the

same goals and schedule tasks in similar ways. In

this paper, the positive and negative aspects of each

scheduler and the features of them were expressed.

As mentioned in previous sections, data locality

ameliorator schedulers, by reducing network traffic,

schedulers based on speculative execution, by

launching backup tasks for slow tasks, and resource

contention reducer schedulers, through increasing

utilization of system resources, increase the

performance of system. And performance manager

schedulers are capable to meet high level

performance goals of users. In the following we

mention the important research challenges in this

area. In the proposed method by Leitao Guo (2009)

et al., the optimization of data distribution-aware

scheduling strategy, such as the management of

used resources by jobs and the schedule algorithm

based on the loads of all nodes, is a Promising

direction for future works. There are four main

future directions For LARTS: First, sweet spots can

be located dynamically rather than statically.

Second, LARTS can be applied to speculative tasks

in addition to regular ones. Third, exploring

LARTS’s potential in shared (or heterogeneous)

computation environment with a large-scale cluster.

Testing and analyzing LARTS with various

scientific applications is also an imperative future

direction. Next step in proposed method by

Xiaohong Zhang (2001) et al. is to focus on the

technique which can transmit data sets in Hadoop

environments more effectively. Improving the

Maestro algorithm to work in dynamic settings in

public clouds, and evaluation of Maestro

implementation in shared environments with the

possible integration with existing schedulers such

as the Fair scheduler, are the works that has not

been done yet. Dynamic determination of sweet

spots in COGRS is a promising research direction.

We can extend CASH in three directions. First,

implementing a new ‘data placement policy’ where

the input data of a computationally/disk intensive

job is placed on a computationally/disk better node.

Second, finding a finer classifier for jobs and

nodes. Third, taking into account the network

traffic before assigning a task to a node. One of

future works for HAT is to address the data locality

problem when launching backup tasks. Another

possible future direction for HAT is to profile a

small-scale of the MapReduce application first

before the real execution. In ESAMR algorithm,

lack of consideration of data locality when

launching backup tasks, is one of the problems that

are still unresolved. With consideration of energy

saving techniques in communication devices, we

Method

F
e
a

tu
r
e
s

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

668

can improve the proposed method by Ying Li

(2001) et al. RAS considers three resource

capacities: CPU, memory and I/O. It can be

extended easily to incorporate network

infrastructure bandwidth and storage capacity of the

TaskTrackers. Future work of proposed method by

Radheshyam Nanduri (2011) et al. includes tuning

of MapReduce framework with different

configuration parameters for finding best runtime

of the jobs through machine learning techniques.

presenting scale up/down algorithms with resource-

aware scheduling to switch on/off the virtual

machines/nodes based on the resource usage of the

cluster in order to save energy, is another promising

research direction for proposed method by

Radheshyam Nanduri et al. The ability to make

Hadoop scheduler resource aware is one of

emerging research problems that grabs the attention

of many of researchers. We hope the present article

can take a small pace in introduction of adaptive

job schedulers, survey of positive and negative

aspects of these schedulers and identification of

current challenges in this area.

REFRENCES:

[1] Q. Zhang, L. Cheng et al., "Cloud computing:
state-of-the-art and research challenges",
Journal of Internet Services and Applications,
2010, Vol. 1, No. 1, pp. 7-18.

[2] K. H. Lee, Y. J. Lee et al., "Parallel data
processing with MapReduce: a survey", ACM

SIGMOD Record, 2011, Vol. 40, No. 4, pp. 11-
20.

[3] J. Dean, S. Ghemawat, " MapReduce: simplified
data processing on large clusters",
Communications of the ACM, 2008, Vol. 51,
No. 1, pp. 107-113.

[4] B. T. Rao, L. S. S. Reddy, "Survey on Improved
Scheduling in Hadoop MapReduce in Cloud
Environments", International Journal of

Computer Applications, 2011, Vol. 34, No. 9,
pp. 29.

[5] D. Yoo, K. M. Sim, "A comparative review of
job scheduling for MapReduce", Cloud

Computing and Intelligence Systems (CCIS),

2011 IEEE International Conference, 2011, pp.
353-358.

[6] L. Guo, H. Sun et al., "A Data Distribution
Aware Task Scheduling Strategy for
MapReduce System", Cloud Computing, 2009,
pp. 694-699.

[7] M. Hammoud, M. F. Sakr, "Locality-Aware
Reduce Task Scheduling for MapReduce",
Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International

Conference, 2011, pp. 570-576.

[8] X. Zhang, Y. Feng et al., "An effective data
locality aware task scheduling method for
MapReduce framework in heterogeneous
environments", Cloud and Service Computing

(CSC), 2011 International Conference, 2011,
pp. 235-242.

[9] F. Ahmad, S. T. Chakradhar et al., "Tarazu:
optimizing MapReduce on heterogeneous
clusters", Proceedings of the seventeenth

international conference on Architectural

Support for Programming Languages and

Operating Systems, ACM, 2012, pp. 61-74.

[10] S. Ibrahim, H. Jin et al., "Maestro: Replica-
Aware Map Scheduling for MapReduce",
Cluster, Cloud and Grid Computing (CCGrid),

2012 12th IEEE/ACM International Symposium,
2012, pp. 435-442.

[11] X. Zhang, Y. Ding, "A distribution aware
scheduling method in MapReduce", Electrical

& Electronics Engineering (EEESYM), 2012

IEEE Symposium, 2012, pp. 128-131.

[12] M. Hammoud, M. S. Rehman et al., "Center-of-
Gravity Reduce Task Scheduling to Lower
MapReduce Network Traffic", Cloud

Computing (CLOUD), 2012 IEEE 5th

International Conference, 2012, pp. 49-58.

[13] Y. Zhao, W. Wang et al., "TDWS: A Job
Scheduling Algorithm Based on MapReduce",
Networking, Architecture and Storage (NAS),

2012 IEEE 7th International Conference, IEEE,
2012, pp. 313-319.

[14] M. Zaharia, D. Borthakur et al., "Delay
scheduling: a simple technique for achieving
locality and fairness in cluster scheduling",
Proceedings of the 5th European conference on

Computer systems, ACM, 2010, pp. 265-278.

[15] K. A. Kumar, V. K. Konishetty et al., "CASH:
context aware scheduler for Hadoop",
Proceedings of the International Conference on

Advances in Computing, Communications and

Informatics, ACM, 2012, pp. 52-61.

[16] Q. Chen, D. Zhang et al., "Samr: A self-adaptive
mapreduce scheduling algorithm in
heterogeneous environment", Computer and

Information Technology (CIT), 2010 IEEE 10th

International Conference, 2010, pp. 2736-2743.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

669

[17] A. Konwinski, "Improving mapreduce
performance in heterogeneous environments",
Technical Report No. UCB/EECS-2009-183,

University of California, Berkeley, 2009.

[18] H. H. You, C. C. Yang et al., "A load-aware
scheduler for MapReduce framework in
heterogeneous cloud environments",
Proceedings of the 2011 ACM Symposium on

Applied Computing, 2011, pp. 127-132.

[19] Q. Chen, M. Guo et al., "HAT: history-based
auto-tuning MapReduce in heterogeneous
environments", The Journal of Supercomputing,
2011, pp. 1-17.

[20] X. Sun, "An Enhanced Self-Adaptive
MapReduce scheduling algorithm", Master

Thesis, University of Nebraska, Lincoln, 2012.

[21] J. Polo, D. D. Nadal et al., "Adaptive task
scheduling for multijob mapreduce
environments", Technical report UPC-DACRR-

CAP-2009-28, Departament d’Arquitectura de

computadors, universitat polit `ecnica de

catalunya, 2009.

[22] J. D. Dhok, "Learning Based Admission Control
and Task Assignment in MapReduce", Master

Thesis, International Institute of Information

Technology, Hyderabad, India, 2010.

[23] J. Polo, D. Carrera et al., "Performance-driven
task co-scheduling for mapreduce
environments", Network Operations and

Management Symposium (NOMS), 2010 IEEE,
2010, pp. 373-380.

[24] J. Polo, D. Carrera et al., "Performance
management of accelerated mapreduce
workloads in heterogeneous clusters", 39th

International Conference on Parallel

Processing (ICPP2010), 2010.

[25] Y. Li, H. Zhang et al., "A Power-Aware
Scheduling of MapReduce Applications in the
Cloud", Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth

International Conference, 2011, pp. 613-620.

[26] J. Polo, C. Castillo et al., "Resource-aware
adaptive scheduling for mapreduce clusters",
Middleware 2011, 2011, pp. 187-207.

[27] M. Yong, N. Garegrat et al., "Towards a
Resource Aware Scheduler in Hadoop", Proc.

ICWS, 2009, pp. 102-109.

[28] H. Mao, S. Hu et al., "A Load-Driven Task
Scheduler with Adaptive DSC for MapReduce",
Green Computing and Communications

(GreenCom), 2011 IEEE/ACM International

Conference, IEEE, 2011, pp. 28-33.

[29] Ganglia monitoring system, Available:
http://ganglia.sourceforge.net/.

[30] R. Nanduri, N. Maheshwari et al., "Job Aware
Scheduling Algorithm for MapReduce
Framework", Cloud Computing Technology

and Science (CloudCom), 2011 IEEE Third

International Conference, IEEE, 2011, pp. 724-
729.

[31] JobTracker Architecture, Available:
http://hadoop.apache.org/ common
/docs/current/mapred_tutorial.html.

[32] Y. Yao et al. "Scheduling heterogeneous
MapReduce jobs for efficiency improvement in
enterprise clusters." Integrated Network

Management (IM 2013), 2013 IFIP/IEEE

International Symposium on. IEEE, 2013, pp.
872-875.

[33] Wang, Zhe, et al. "A New Schedule Strategy for
Heterogenous Workload-aware in Hadoop."
ChinaGrid Annual Conference (ChinaGrid),

2013 8th. IEEE, 2013, pp. 80-85.

