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ABSTRACT 

 
In recent years the adaptive job schedulers became an attraction point to many researchers, but despite 
many efforts that have been made, there are still many challenges in this area. The aim of this paper is to 
provide a better understanding of adaptive job schedulers in MapReduce and identify important research 
directions in this area. In this paper, adaptive job schedulers in MapReduce are classified in four categories. 
The techniques used in them are described briefly, we present advantages and disadvantages of different 
adaptive schedulers and then their features and the application of each category of the schedulers are 
expressed. Finally, we will discuss some current challenges and future works. 
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1. INTRODUCTION  

 
     One of research challenges in cloud computing is 
their software frameworks. Cloud computing provides 
a proper platform for hosting large-scale data-
intensive applications. Typically, these applications 
leverage MapReduce frameworks such as Hadoop for 
scalable and fault-tolerant data processing [1]. 
MapReduce is a programming model as well as a 
framework that supports the model. The main idea of 
the MapReduce model is to hide details of parallel 
execution and allow users to focus only on data 
processing strategies [2]. Users specify the 
computation in terms of a map and a reduce function, 
and the underlying runtime system automatically 
parallelizes the computation across large-scale 
clusters of machines, handles machine failures, and 
schedules inter-machine communication to make 
efficient use of the network and disks [3]. Hadoop is 
an open-source implementation for MapReduce. Job 
scheduling in multi-user environments is an open 
issue that has not been well addressed yet [2]. In 
MapReduce, the job submitted by user is divided into 
several tasks. There are two types of task in 
MapReduce: map task and reduce task. Each node is a 
physical machine with computational and storage 
capabilities. Hadoop uses the number of slots concept 
for each node in order to control the maximum 
number of tasks that can be executed concurrently on 
a node. Each slot of the node at any time is only 
capable of executing one task. In MapReduce, there 
are two types of slot: map slot, and reduce slot. 
Scheduling decisions are taken by a master node, called the 

JobTracker, and the worker nodes that called 
TaskTracker execute the tasks [4]. In general, job 
schedulers in MapReduce are classified in two 
categories: static schedulers (such as FIFO) and 
dynamic schedulers. Dynamic schedulers in 
MapReduce are classified in two categories: dynamic 
schedulers that operate based on non-environmental 
factors and dynamic schedulers that operate based on 
environmental factors which are called adaptive 
scheduler. In section 2, we briefly discuss the 
adaptive job schedulers and techniques used for them. 
In Section 3, advantages, disadvantages, features and 
the application of adaptive job schedulers are 
discussed, and Section 4 includes future works and 
conclusions. 

2. THE ADAPTIVE JOB SCHEDULERS IN 

MAPREDUCE 

2.1 Data Locality Ameliorator Schedulers 

  When input data is nearer to the computation 

node, it has a lower data transfer cost. Locality is a 

very crucial issue affecting performance in a shared 

cluster environment, due to limited network 

bisection bandwidth [5]. Leitao Guo (2009) et 

al. [6] offered a data distribution aware task 

scheduling strategy for MapReduce system. Their 

strategy has two main phases: In the initialization 

phase, statistics number of copies of data processed 

by each map task. At the same time, statistics the 

number of localizable tasks for each worker; in the 

scheduling phase, according to the information 

above, calculating the scheduling priorities for each 
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task and each works that requesting task, and 

scheduling the task to works based on this priority. 

This strategy regarding the distribution of data, 

schedules map tasks on the nodes that most likely 

contain relevant data, and reduces network 

overhead and improves the performance of system. 

Hadoop schedules reduce tasks at requesting nodes 

without considering data locality leading to 

performance degradation. Mohammad Hammoud 

(2011) et al. [7] proposed LARTS, a practical 

strategy which uses network locations and partition 

sizes to improve data locality. JobTracker schedules 

reducers only in TaskTrackers which are selected 

by reducers. If some of TaskTrackers receive more 

reducers than others, scheduling skew will occur. 

Because the TaskTrackers that are available but not 

selected by any reducer, remain unused and leading 

to a reduction in exploiting parallelism and system 

efficiency. LARTS attempts to schedule reducers as 

close as possible to their maximum amount of input 

data and conservatively switches to a relaxation 

strategy seeking a balance between scheduling 

delay, scheduling skew, system utilization, and 

parallelism. In general, the performance of map 

tasks is affected by waiting time and transmission 

time. The waiting time of a task is the shortest time 

that the task has to wait before it is scheduled to 

one of the nodes storing the input data. The 

transmission time is the time needed to copy the 

input data of the task to the node requesting tasks. 

Xiaohong Zhang (2011) et al. [8] proposed an 

effective data locality aware task scheduling 

method for MapReduce framework in 

heterogeneous environments. The objective of their 

method is to make a tradeoff between waiting time 

and transmission time at runtime when schedule a 

task to a node and obtain optimal task execution 

time. In brief, after receiving a request from a 

requesting node, the method preferentially 

schedules the task whose input data is stored on the 

requesting node. If there exist no such tasks, the 

method first selects the task whose input data is 

nearest to the requesting node, and then computes 

the waiting time and the transmission time of the 

selected task. If the waiting time is shorter than the 

transmission time, the method reserves the task for 

the node storing the input data. Otherwise, it 

schedules the task to the requesting node. Despite 

previously proposed optimizations related to 

management of straggler tasks, MapReduce 

implementations were still weak in heterogeneous 

clusters.  Faraz Ahmad (2012) et al. [9] proposed 

some optimization methods for improving 

MapReduce performance on heterogeneous clusters 

as Tarazu. Tarazu consists of (1) Communication-

Aware Load Balancing of map computation 

(CALB) across the nodes, (2) Communication-

Aware Scheduling of map computation (CAS) to 

avoid bursty network traffic and (3) Predictive 

Load Balancing of reduce computation (PLB) 

across the nodes. Shadi Ibrahim (2012) et al. [10] 

suggested a replica aware scheduling method as 

Maestro to reduce map tasks which process remote 

data and cause excessive traffic network. Maestro 

schedules the map tasks considering chunk locality 

and node availability. The scheduling of Maestro is 

in two waves: first wave scheduler and run time 

scheduler. The first wave scheduler is responsible 

for filling the empty slots of each data node based 

on the number of hosted map tasks and on the 

replication scheme for their input data. Runtime 

scheduling takes into account the probability of 

scheduling a map task on a given machine 

depending on the replicas of the task’s input data. 

These two waves lead to a higher locality in the 

execution of map tasks and to a more balanced 

intermediate data distribution for the shuffling 

phase.  

Xiaohong Zhang (2012) et al. [11] proposed a 

scheduling method in order to improve data 

locality. After receiving a request from a requesting 

node, their method preferentially schedules the task 

whose input data is stored on the requesting node. 

If no such tasks exist, their method will select the 

task whose input data is nearest to the requesting 

node, and then make a decision on whether to 

reserve the task for the node storing the input data 

or schedule the task to the requesting node by 

transferring the input data to the requesting node on 

the fly. This method increases the performance of 

the system.  

Mohammad Hammoud (2012) et al. [12] 

proposed COGRS. COGRS is a locality-aware 

skew-aware reduce task scheduler for saving 

MapReduce network traffic. This scheduler 

attempts to schedule every reduce task at its center-

of-gravity node determined by the network 

locations of that task’s feeding nodes and the skew 

in the sizes of that task’s partitions. By scheduling 

reducers at their center-of-gravity nodes, they argue 

for reduced network traffic which can possibly 

allow more MapReduce jobs to co-exist on the 

same system. CoGRS controllably avoids 

scheduling skew, a situation where some nodes 

receive more reduce tasks than others, and 

promotes pseudo-asynchronous map and reduce 
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phases. If there is a tendency for a job to be 

assigned the same slot repeatedly, sticky slot 

occurs. This problem aroused because following a 

strict queuing order forces a job with no local data 

to be scheduled [4].  

Yanrong Zhao (2012) et al. [13] have designed 

and implemented a new job scheduling algorithm 

(TDWS) for Tencent Distributed Data Warehouse 

(TDW) which is based on Hadoop MapReduce. 

This scheduler avoids from occurring sticky slots 

and starvation of small jobs. Firstly, TDWS 

organizes jobs into several separate groups and 

shares resources between these groups to meet the 

needs of different applications, each group for one 

type of job. Secondly, TDWS takes memory 

heterogeneity into account and implements a 

memory-awareness mechanism to gather memory 

information to handle the problem. TDWS uses 

Delay scheduling strategy [14] in order to increase 

data locality.  

Arun Kumar K. (2012) et al. [15] offered CASH, 

which is a Context Aware Scheduler for Hadoop. 

This scheduler increases the performance in 

heterogeneous Hadoop clusters. CASH Classifies 

the jobs as CPU or I/O bound. This scheduler 

classifies the nodes as Computational or I/O good. 

Then it maps the tasks of a job with different 

demands to the nodes which can fulfill the 

demands. Thus, by implementing CASH the 

performance of the heterogeneous cluster and the 

aggregate execution times of the jobs can be 

improved. 

 

2.2. Adaptive Schedulers Based on Speculative 

Execution 

 These schedulers identify slow tasks and then 

launch several backup tasks for them on the other 

nodes. When a slow task or a backup copy of that 

terminates, all the other similar tasks (slow task or 

the other backup tasks) are killed. If a backup task 

ends earlier than slow task, then the overall 

performance improves.  

Quan Chen (2010) et al. [16] proposed SAMR 

scheduling algorithm. SAMR is inspired by LATE 

[17] scheduling algorithm. This scheduling 

algorithm holds historical information on each 

node. The TaskTracker, reads the historical 

information and sets the parameters using these 

informations. Quan Chen et al. proposed several 

equations for finding slow tasks and slow 

TaskTrackers. The scheduler can launch backup 

tasks for slow tasks according to these equations. 

SAMR launches backup tasks for map tasks on the 

rapid nodes or on the slow reduce nodes, and 

launches the backup tasks for reduce tasks on the 

rapid nodes or on the slow map nodes. When a task 

or several tasks execute on TaskTracker, execution 

informations feedbacks to TaskTracker, and 

historical informations update using them. SAMR 

computes progress score of tasks more accurate 

than LATE, thus this scheduler launches backup 

tasks for really slow tasks that prolong job 

execution time.  

Although the LATE scheduler is proposed to 

resolve some problems that occur in heterogeneous 

environments, but this scheduler is designed to 

minimize the response time of first job in the job 

queue, and will prolong the response time of the 

other jobs in the job queue. LATE scheduler uses 

the past information to estimate the time to finish of 

tasks and is not suitable for environments with 

dynamic loading.  

Hsin-Han You (2011) et al. [18] offered load-

aware scheduler for MapReduce framework in 

heterogeneous cloud environments, and abbreviated 

it as LA scheduler. This scheduler improves the 

overall performance of Hadoop clusters.  

Quan Chen (2011) et al. [19] suggested HAT 

scheduler for heterogeneous environments. This 

scheduler calculates the progress of tasks more 

accurate than previous methods and adapts with 

different environments automatically. HAT uses 

historical informations which are stored on each 

node to set the parameters and identifies slow tasks 

dynamically. Quan Chen et al. proposed several 

equations to calculate the weight of new phases, the 

progress score of map and reduce tasks, to detect 

slow tasks and slow nodes. Based on the accurate-

calculated progress of tasks, HAT estimates the 

remaining time of tasks accurately and further 

launches backup tasks for the tasks that have the 

longest remaining time. HAT estimates progress of 

a task accurately since it tunes the weight of each 

phase of a map task and a reduce task automatically 

according to the historical values of the weights. 

HAT, further classifies slow nodes into map slow 

nodes and reduce slow nodes. In this way, HAT can 

launch backup tasks for reduce straggler tasks on 

map slow nodes and vice versa.  

Self-Adaptive MapReduce scheduling algorithm 

(SAMR) uses historical information to adjust stage 

weights of map and reduce tasks when estimating 

task execution times. However, SAMR does not 

consider the fact that for different types of jobs 

their map and reduce stage weights may be 

different. Even for the same type of jobs, different 
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datasets may lead to different weights.  

Xiaoyn Sun (2012) [20] proposed the ESAMR 

algorithm to overcome these problems. ESAMR 

classifies the historical information stored on every 

node into k clusters using a machine learning 

technique. If a running job has completed some 

map tasks on a node, ESAMR records the job’s 

temporary map phase weight (i.e., M1) on the node 

according to the job’s map tasks completed on the 

node. The temporary M1 weight is used to find the 

cluster whose M1 weight is the closest. ESAMR 

then uses the cluster’s stage weights to estimate the 

job’s map tasks’ TimeToEnd on the node and 

identify slow tasks that need to be re-executed. If a 

running job has not completed any map task on a 

node, the average of all k clusters’ stage weights 

are used for the job. In the reduce stage, ESAMR 

carries out a similar procedure. After a job has 

finished, ESAMR calculates the job’s stage weights 

on every node and saves these new weighs as a part 

of the historical information. Finally, ESAMR 

applies k-means, a machine learning algorithm, to 

re-classify the historical information stored on 

every worker node into k clusters and saves the 

updated average stage weights for each of the k 

clusters. By utilizing more accurate stage weights 

to estimate the TimeToEnd of running tasks, 

ESAMR can identify slow tasks more accurately 

than SAMR, LATE, and Hadoop default scheduling 

algorithms. 

 

2.3 Performance Manager Schedulers 

 These schedulers are capable to manage the 

scheduling in line with user goals. Jorda Polo 

(2009) et al. [21] proposed a QOS-Oriented 

scheduler. The goal of this scheduler is to execute 

running jobs using as few resources as possible 

while trying to meet the user-provided deadline for 

each job. The deadline scheduler works by 

assigning available task slots to the job with the 

largest positive need of CPU, which roughly 

translates as the job that needs more resources to be 

completed on time. The need is defined as the 

difference between the estimated number of slots 

required to meet the deadline and the number of 

running tasks. Since the scheduler should have an 

idea of the job’s needs as soon as possible, jobs 

with no completed and no running tasks always 

take precedence over other jobs. For jobs that their 

deadline is expired, if it isn’t possible to meet their 

deadlines, the scheduler tries to at least complete 

them as soon as possible, prioritizing them over any 

other kind of job, which in turn also helps to avoid 

jobs starvation.  

Jaideep Datta Dhok (2010) [22] proposed 

LSCHED for task scheduling in Hadoop. This 

scheduler is able to maintain user specified level of 

utilization on cluster nodes. LSCHED builds a list 

of candidate jobs. For each job in the queue of the 

scheduler, one candidate instance for Map part and 

one (or zero, if the job does not have a reduce part) 

for the Reduce part is added in the list. Then 

LSCHED classifies the candidate jobs into two 

classes, good and bad, using a pattern classifier. 

Tasks of good jobs do not overload resources at the 

TaskTracker during their execution. Jobs labeled 

bad are not considered for task assignment. If the 

classifier labels all the jobs as bad, no task is 

assigned to the TaskTracker. If after classification, 

there are multiple jobs belonging to the good class, 

then LSCHED chooses the task of a job that 

maximizes expected utility (E.U. (J)). Cluster 

administrator determines the task priority, and this 

priority can be used for execution policy. Once a 

task is assigned, LSCHED observes the effect of 

the task from information contained in subsequent 

heartbeat from the same TaskTracker. Based on this 

information, if the TaskTracker is overloaded, 

LSCHED concludes that last task assignment was 

incorrect. The pattern classifier is then updated 

(trained) to avoid such assignments in the future. 

The Adaptive scheduler [23] dynamically predicts 

the performance of concurrent MapReduce jobs and 

adjusts the resource allocation for the jobs. It allows 

applications to meet their performance objectives 

without overprovisioning of physical resources. But 

this scheduler is completely unaware of unique 

capabilities of the hardware.  

Jorda Polo (2010) et al. [24] improved the 

Adaptive scheduler to meet user defined high level 

performance goals. They exploited from the 

capabilities of hybrid systems transparently and 

efficiently. The completed adaptive scheduler is 

hardware-aware and is able to co-schedule 

accelerable and non-accelerable jobs on a 

heterogeneous MapReduce cluster.  

Ying Li (2011) et al. [25] proposed a power-

aware scheduling algorithm for MapReduce jobs in 

heterogeneous cloud resources in order to energy 

saving. This scheduler considers users’ SLAs 

(Service Level Agreements). Since MapReduce 

framework is generally for data-intensive cloud 

computing, they considered energy saving both in 

processing elements and in disk storages.  

Jorda Polo (2011) et al. [26] proposed RAS in 

order to maximize the utilization of system 
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resources and to meet the users' job completion 

time goals. RAS extends the abstraction of ‘task 

slot’ to ‘job slot’, and leverages resource profiling 

information to obtain better utilization of resources 

and improves application performance. RAS seeks 

to meet soft-deadlines via a utility-based approach 

and adapts to changes in resource demand by 

dynamically allocating resources to jobs. This 

scheduler differentiates between map and reduce 

tasks when making resource-aware scheduling 

decisions. 

 

2.4 Resource Contention Reducer Schedulers 

  This category of schedulers with consideration 

of the resource metrics of each TaskTracker (such 

as CPU utilization, number of page faults per unit 

of time, etc.), try to allocate tasks to the 

TaskTrackers so that avoid race conditions. This 

category of schedulers, increase the resource 

utilization of TaskTrackers.  

Mark Yong (2009) et al. [27] proposed two 

resource-aware scheduling mechanisms to 

minimize resource contention on machines: 

Dynamic free slot advertisement mechanism and 

Free slot priorities/filtering mechanism. In Free slot 

priorities/filtering mechanism, cluster 

administrators retain the fixed maximum number of 

compute slots per node at configuration time. As 

TaskTracker slots become free, they are buffered 

for some small time period and advertised in a 

block. TaskTracker slots with higher resource 

availability are presented first for scheduling tasks 

on. Instead of scheduling a task onto the next 

available free slot, job response time would 

improve by scheduling it onto a resource-rich 

machine, even if such a node takes a longer time to 

become available.  

Hong Mao (2011) et al. [28] proposed a load-

driven task scheduler in order to decrease runtime 

cost of MapReduce jobs and to improve hardware 

resource utilization rate. This scheduler uses 

Ganglia [29] to monitor the status of Hadoop 

cluster. When the cluster is running MapReduce 

job, Ganglia will get all the performance metrics 

and load condition of the nodes. Tasks allocate to 

the TaskTrackers according to workload of slave 

nodes. To this end, the scheduler uses a Dynamic 

Slot Controller (DSC). DSC adjusts the number of 

map slots and number of reduce slots for 

TaskTrackers adaptively. By DSC, the workload of 

each slave node running TaskTracker would be 

between lower limit and upper limit.  

Radheshyam Nanduri (2011) et al. [30] proposed 

a job-aware scheduling algorithm for MapReduce 

in order to reduce the jobs execution time. From the 

list of available pending tasks, the scheduler selects 

the one that is most compatible with the tasks 

already running on that node. This scheduler 

employs an event capturing mechanism on 

theTaskTrackers [31] which listens to events 

related to cpu, memory, disk and network to 

monitor resource usage characteristics of that 

particular task.  

Yi Yao (2013) et al. [32] proposed LsPS, which 

leverages the knowledge of workload patterns to 

improve the system performance by dynamically 

tuning the resource shares among users and the 

scheduling algorithms for each user.  

Zhe Wang (2013) et al. [33] proposed a 

scheduling strategy for heterogeneous clusters 

based on job type classification. This scheduling 

strategy includes two parts. 1) Divide the job 

dynamically into two types based on cluster 

historical operating data: CPU - intensive and I/O- 

intensive. 2) To remove the influence of noise data 

on the reliability of historical data, they offered a 

scheduling strategy-- CICS: CPU and I/O 

Characteristic estimation Strategy. This strategy is 

mainly based on classical FCFS and has been 

modified intensively on Fairness. 

 

3. ADVANTAGES, DISADVANTAGES, 

FEATURES AND APPLICATIONS OF 

ADAPTIVE JOB SCHEDULERS 

Advantages and disadvantages of adaptive job 

scheduling methods are expressed in Tables 1, 2, 3 

and 4. Reduce tasks are divided into three sub-

phases: shuffle, sort and reduce. Shuffle sub-phase, 

copies the map outputs from maps host machines, 

to the reducer machines. 

If reduce tasks begin after completion of a 

certain percentage of map tasks (e.g. 5%), during 

the maps executions, the shuffling of partitions will 

be done and thus the turnaround time of 

MapReduce jobs will decrease, and early shuffle is 

done. Sweet spot of a program is the spot at which 

early shuffle is triggered and provides the best 

performance for the program. But in LARTS and 

COGRS, the sweet spot is determined statically, 

which is the disadvantage of these schedulers. The 

features of adaptive job schedulers are expressed in 

Table 5 and the application of adaptive job 

schedulers are expressed in Table 6. 
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Table 1: Data Locality Ameliorator Schedulers 

Method Advantages Disadvantages 

Leitao Guo  

et al.(2009) 

• Reduce network overhead  

• Improve system efficiency  
- 

LARTS 

 

• Improve scheduling delay, 

scheduling skew, system 

utilization, and parallelism 

• Reduce network traffic   

• Increase of performance  

 

• Static sweet 

spot 
determination 

Xiaohong 

Zhang   

et al.(2011) 

• Reduce normalized runtime  

• Reduce job response time   
- 

Maestro 

• Reduce network traffic   
• Reduce runtime   
• Suitable for  homogeneous 

and heterogeneous  

environments 

- 

Xiaohong 

Zhang  

 et al.(2012) 

• Increase of performance   - 

COGRS 
• Reduce network traffic   

• Reduce job runtime  

• Static sweet 

spot 
determination 

TDWS 

• Suitable for heterogeneous  

environments 

• Avoid job starvation 

• Avoid occurrence of sticky 

slots  

• Rapid execution of urgent 

jobs  

• Maintain FIFO scheduling 

benefits 

 

- 

CASH 
• Reduce runtime  

• Increase overall throughput  - 

 
Table 2: Adaptive schedulers based on speculative 

execution 
Method  Advantages  Disadvantages 

 

SAMR 

 

• Reduce runtime  

• Save system 

resources 

• Scalability 

• Ignore different weights 

for different job types 

and different dataset 

sizes  

• Ignore data locality for 

launching backup tasks 

LA 

• Reduce response 

time  

• Increase of cluster 

utilization  

• Ignore data locality for 

launching backup tasks 

 

HAT 
• Increase of system 

performance 

 

• Scalability 

• Ignore different weights 

for different job types 

and different dataset 

sizes  

•  Ignore data locality for 

launching backup tasks 

ESAMR 

• Reduce runtime   

• Save system 

resources  

• Scalability 

• Ignore data locality for 

launching backup tasks 

Table 3: Performance manager schedulers 
Method Advantages Disadvantages 

Jorda 

Polo et al. 

(2009) 

• Ability of 

performance 

prediction and 

performance 

management 

• Save physical 

resources 

• Inappropriate for 

applications with 

different performance 

objectives 

LSCHED 

• Ability of fast 

learning 

• Ability to achieve 

the user specified 

level of  node 

utilization 

• Increase of 

performance 

• Low utilization of 

resources in learning 

phase 

• Ineffective for tasks 

with unpredictable 

behavior 

• Decrease of 

performance in very 

large clusters 

Jorda 

Polo et al. 

(2010) 

• Ability to achieve 

user specified high 

level performance 

goals even in the 

presence of  hybrid 

systems and 

accelerable jobs 

  

  

 - 

Ying Li  

 et al. 

(2011) 

• Save energy 
consumption 

• Consider Users' 

SLA  

 -  

 

 

RAS 

• Meet users' 

completion time 

goal 

• Improve resource 

utilization 

• Increase of 

performance 

•  Lack of support for 

preemption of reduce 

tasks 

•  Need for additional 

monitoring and 

forecasting capabilities 

to manage network 

bottlenecks 

 
Table 4: Resource contention reducer schedulers 

Method  Advantages Disadvantages 

Mark Yong 

 et al. (2009) 

• Reduce contention for CPU 

resources and I/O on the 

worker machines 

• Increase the performance of 

cluster 

- 

Hong Mao   

et al. (2011) 

• Reduce runtime  

•  Improve the utilization of 

CPU and other cluster 

resources  

• Lack of 

support for 

multi job 

environments 

Radheshyam 

Nanduri   

et al. (2011) 

• Reduce runtime  

• Maximize the utilization of 

nodes resources 

• Ability to plug into FAIR 
and Capacity schedulers 

• Ability to implement in any 

distributed environment 

 

- 

LsPS  

• Reduce runtime  

• Suitable for workloads 

which include jobs with 

different sizes 

• Ignore the  

factor of 

priority for 

the share 

assignment 

Zhe Wang  

et al. (2013)  
• Reduce runtime   

• Improve resource utilization   

• Having 

linear 

relative with 

historical 
data 
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Table5: Features of adaptive schedulers 
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Leitao Guo  

et al. (2009)  �     

LARTS  � �    

Xiaohong 

Zhang  

et al. (2011) 

� �  �  
 

CAS � �  �   

Maestro � �  �   

Xiaohong 

Zhang 

et al. (2012) 

� �    
 

COGRS � �     

TDWS � �  �   

CASH � �  �   

SAMR �  � � �  

LA   � �   

HAT    � �  

ESAMR �  � �   

Jorda Polo  

et al. (2009)   �   � 

LSCHED   � �  � 

Jorda Polo 

 et al. (2010)   � �  � 

Ying Li 

 et al. (2011) �     � 

RAS �  �   � 

Mark Young 

 et al.(2009)   �  
  

Hong Mao  

et al. (2011) �  �    

Radheshyam 

Nanduri 

et al. (2011) 
�  �    

LsPS �      

ZheWang 

 et al. (2013) 
�  � � 

  

 
Table 6: Application of each category of schedulers 

Application Scheduling type 

• Network traffic reduction 

• Performance enhancement 

Data locality ameliorator 

schedulers 

• Performance enhancement in 

heterogeneous environments 

Adaptive schedulers based 

on speculative execution 

• Satisfaction of Users' high 

level performance goals 

(performance  management) 

Performance manager 

schedulers 

•  Resource utilization  

enhancement  

•  System performance  

enhancement 

Resource contention 

reducer schedulers 

 

4. CONCLUSION AND FUTURE 

WORKS 

In this paper, adaptive job schedulers categorized 

into four groups and each one of them were briefly 

described. All schedulers in each group have the 

same goals and schedule tasks in similar ways. In 

this paper, the positive and negative aspects of each 

scheduler and the features of them were expressed. 

As mentioned in previous sections, data locality 

ameliorator schedulers, by reducing network traffic, 

schedulers based on speculative execution, by 

launching backup tasks for slow tasks, and resource 

contention reducer schedulers, through increasing 

utilization of system resources, increase the 

performance of system. And performance manager 

schedulers are capable to meet high level 

performance goals of users. In the following we 

mention the important research challenges in this 

area. In the proposed method by Leitao Guo (2009) 

et al., the optimization of data distribution-aware 

scheduling strategy, such as the management of 

used resources by jobs and the schedule algorithm 

based on the loads of all nodes, is a Promising 

direction for future works. There are four main 

future directions For LARTS: First, sweet spots can 

be located dynamically rather than statically. 

Second, LARTS can be applied to speculative tasks 

in addition to regular ones. Third, exploring 

LARTS’s potential in shared (or heterogeneous) 

computation environment with a large-scale cluster. 

Testing and analyzing LARTS with various 

scientific applications is also an imperative future 

direction. Next step in proposed method by 

Xiaohong Zhang (2001) et al. is to focus on the 

technique which can transmit data sets in Hadoop 

environments more effectively. Improving the 

Maestro algorithm to work in dynamic settings in 

public clouds, and evaluation of Maestro 

implementation in shared environments with the 

possible integration with existing schedulers such 

as the Fair scheduler, are the works that has not 

been done yet. Dynamic determination of sweet 

spots in COGRS is a promising research direction. 

We can extend CASH in three directions. First, 

implementing a new ‘data placement policy’ where 

the input data of a computationally/disk intensive 

job is placed on a computationally/disk better node. 

Second, finding a finer classifier for jobs and 

nodes. Third, taking into account the network 

traffic before assigning a task to a node. One of 

future works for HAT is to address the data locality 

problem when launching backup tasks. Another 

possible future direction for HAT is to profile a 

small-scale of the MapReduce application first 

before the real execution. In ESAMR algorithm, 

lack of consideration of data locality when 

launching backup tasks, is one of the problems that 

are still unresolved. With consideration of energy 

saving techniques in communication devices, we 

Method 
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can improve the proposed method by Ying Li 

(2001) et al. RAS considers three resource 

capacities: CPU, memory and I/O. It can be 

extended easily to incorporate network 

infrastructure bandwidth and storage capacity of the 

TaskTrackers. Future work of proposed method by 

Radheshyam Nanduri (2011) et al. includes tuning 

of MapReduce framework with different 

configuration parameters for finding best runtime 

of the jobs through machine learning techniques. 

presenting scale up/down algorithms with resource-

aware scheduling to switch on/off the virtual 

machines/nodes based on the resource usage of the 

cluster in order to save energy, is another promising 

research direction for proposed method by 

Radheshyam Nanduri et al. The ability to make 

Hadoop scheduler resource aware is one of 

emerging research problems that grabs the attention 

of many of researchers. We hope the present article 

can take a small pace in introduction of adaptive 

job schedulers, survey of positive and negative 

aspects of these schedulers and identification of 

current challenges in this area. 
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