
Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

788

HARDWARE-SOFTWARE PARTITIONING ALGORITHM

BASED ON BINARY SEARCH TREES AND GENETIC

ALGORITHM TO OPTIMIZE LOGIC AREA FOR SOPC

1
SONIA DIMASSI,

2
MEHDI JEMAI,

 3
BOURAOUI OUNI,

4
ABDELLATIF MTIBAA

Laboratory of Electronic and microelectronic,

University of Monastir, Monastir 5000, TUNISIA

E-mail: 1sdimassi@yahoo.com, 2jmehdie@gmail.com, 3ouni_bouraoui@yahoo.fr,
4abdellatif.mtibaa@enim.rnu.tn

ABSTRACT

This paper presents an approach based on hardware/software partitioning to minimize the logic area of
System on a Programmable Chip (SOPC) while respecting a time constraint. Our contribution focuses on
introducing a new hardware/software partitioning algorithm. This algorithm is based on the principle of
Binary Search Trees (BST) and genetic algorithms. It aims to define the tasks that will run on the Hardware
(HW) part and those that will run on the Software (SW) part. The proposed algorithm will determine the
best partition that will reduce the number of tasks used by the HW and increase the number of tasks used by
the SW and thereafter the area will be reduced. The results show that our algorithm significantly reduces
the logic area compared to other well known algorithms.

Keywords: Logic area, Hardware/software partitioning algorithm, Binary search trees, Genetic

algorithms, SOPC.

1. INTRODUCTION

Using a System on a Programmable Chip

(SOPC) is increasingly common in embedded
applications. A SOCP is a circuit comprising
multiple functions such as one or more processors,
one or more reconfigurable areas, a signal processor
DSP (Digital Signal Processor), various peripherals
and memory or analog parts. These circuits are
increasingly used because of their small size and
reduced costs compared to the use of various
circuits for performing the same function.
Therefore, many hardware and software techniques
must be developed to satisfy specific constraints in
terms of area, performance, power consumption,
etc.

The term "Co-design" appeared in the early 1990s
to mark a new way of thinking about the design of
integrated circuits and systems. The co-design of
software and hardware became necessary to meet the
requirements of the embedded systems' market.
Indeed, the emergence of multimedia systems
(mobile phones, game consoles, etc.) resulted in a
greater complexity of the electronics and economic
competition requires a shorter design time. Many
research teams have addressed the problem of
hardware/software partitioning [1], [2], [3], [4] and

[5]. Nevertheless, several specific tools that are
related to platform simulation (or emulation) showed
a genuine interest to help the designer in the design
stage. Automation would guide the designer to
decide the partitioning. Indeed, the partitioning
problem is extremely difficult and depends on
technological parameters (speed, consumption, etc.),
application (architecture), economic parameters (cost
of design and manufacturing) and "sociological"
parameters (security, maintainability, testability,
etc.).

Thus, in this paper, we present an effective
approach based on hardware/software partitioning,
Binary Search Trees (BST) and genetic algorithms to
implement a data flow graph on SOPC circuit while
minimizing the logic area. In this paper, we have
implemented the hardware tasks of the graph in the
Left Sub Tree (LST) of our binary search tree and the
software tasks in the Right Sub-Tree (RST).
However, the implementation of the hardware
modules may degrade the design in terms of area.
The main objective of our hardware/software
partitioning approach is to balance all the design
parameters to find a better trade-off between the
logic area of the application and its execution time.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

789

This paper is structured following six parts. After
the introduction, we give an overview of the related
works; in the third section, we present the
hardware/software partitioning model. The fourth
section shows the problem formulation and our
suggested algorithm. In the fifth part, we present the
experiments and their results. Finally, we end up
with a conclusion.

2. RELATED WORKS

Cutting or partitioning hardware/software is an
important phase of the system design. It consists of
seeking the best compromise hardware/software and
then deciding whether the implementation of the
different parts of the system will be hardware or
software. In general, the software is used to reduce
the cost of the design and the hardware is used to
increase the performance. Many techniques and
algorithms have been proposed to assist the designer
in this task. The ultimate goal is to automate this
task.

Also, the designers were moving towards a mixed
approach to design a system at a reasonable cost
while meeting the performance imposed. A portion
was performed with programmable components, it is
the software part. The other part was conducted with
specific hardware components in the application, it is
the hardware part. The combined use of software and
hardware resources required to design new methods
to find the best trade-off between software and
hardware parts (software / hardware partitioning) and
enable them to design simultaneously.

In the design system, an optimization method
generally consists of applying an optimization
algorithm on the set of sub-functions of the
specification. A partitioning algorithm is an
optimization algorithm that seeks to minimize or
maximize one or more criteria, such as the area, the
execution time, consumption etc. In fact, an
optimization algorithm can overcome the problems
of estimating these criteria for one or more target
architectures and to seek one or more optimized
realizations for a given problem. [6] has introduced
such heuristics and [7] conducted a comparison of
several minimization algorithms implemented in the
hardware/software partitioning.

In the literature, the problem addressed by the
software/hardware partitioning, was meant to reduce
the overall cost of the implementation in terms of
hardware resources and improving performance in
terms of execution time. Indeed, as opposed to
hardware, the implementation of a software module

requires more flexibility and less cost, but more
execution time.

The exploration of the design space usually
requires a partitioning step. That it is manual or
automatic; its purpose is to spread the "functions" of
the application on the software and hardware parts of
the target architecture. This process is repeated until
a solution or a set of solutions has been found
satisfactory. The partitioning problem is very
complex (NP-complete) and many approaches have
been developed. In this context, we find the exact
algorithms that are based on the Integer Linear
Programming (ILP) [8], [9] uses the PACE
partitioning [10] based on a dynamic programming
algorithm [11] and branch and bound in [12]. The
disadvantage of these algorithms is that they are very
slow and can only be applied to small graphs. So, to
solve these problems, researchers have tried heuristic
algorithms that are more flexible and effective as the
network throughput [13], simulated annealing [14]
and [15], Tabu search [16], genetic algorithm [17],
combined algorithm [18] and greedy algorithm [19].
We note also that there are many methods that rely
on scheduling algorithms [20], [21], [22], [23] are
combined with steps of selecting components.

Among the tools and methods of partitioning, we
mention the following:

• COSYMA [15] is an environment for the
exploration of the process of co-synthesis.

• Lycos [9] is a co-design environment that
allows the exploration of the design space systems
composed of a microprocessor and a hardware
accelerator.

• SpecSyn [24], [25] is an environment of co-
design, which is before the hardware / software
synthesis. The heart of the methodology is the
paradigm "SER" (Specify-Explore Refine).

• POLISHED [26] is a co-design environment
that starts from the system specification and goes
down to logic synthesis and the synthesis software.

• PICO (Program In, Chip Out) [27] is a co-
design environment to generate systems compound
of a VLIW or EPIC processor dedicated to the target
application, a hierarchy of cache memories and non-
programmable accelerator (systolic deviation).

As mentioned earlier, these optimization
algorithms seek one or more achievements optimized
for a given problem. In this paper, we have suggested
an algorithm for hardware/software partitioning
based on a binary search tree and a genetic algorithm
that minimizes the logic area of the SOPC circuit.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

790

3. HARDWARE/SOFTWARE

PARTITIONING MODEL

The HW/SW partitioning model, defined in this
section, considers the following characteristics:
granularity, metrics associated with the functional
blocks, computational model, representation of the
solution and the cost function.

The behavioral description given in a high-level
language is transformed into a data flow graph. Each
node v�∈ V corresponds to a part of the application
that itself belongs to the base granularity (a single
instruction or a basic block). Hence, a data flow
graph G (V; E) is a directed to the acyclic graph
describing the dependencies between the operations
of an application. Where V= �v�, v�, … , v�� is the set
of nodes, n is the number of nodes and E is the set of
edges {e��|1≤ i, j ≤n}.

Once the system is represented under this model,
values for the metrics are associated to each node	v�.
The following metrics are used: software latency
(L�	v�

, occupied hardware area in slice (A	v�
),
and the hardware latency (L�	v�
).

In this model, a partitioning solution is expressed
as an indicator vector Xm that is defined as follows:
Xm=Xm(i); Where: i∈[1,n] and Xm (i) = 1, if node
(i) will be implemented in hardware; however, Xm
(i) = 0, if the node (i) will be implemented in
software.

Hence, our optimization problem can be modeled
as follows:

																	�			
���
���	 � ��	�
A	�	
	

�∈	
	

						�
																																																																																																					
�������	��	L	G
 � 	T															
																																																																																														

Where :-T is the temporal constraint

 -L(G) is the whole latency of the graph G

4. PROBLEM FORMULATION AND

PROPOSED ALGORITHM

The trees are mainly the data structure used to
store ordered data and according to Knuth they are
the largest non-linear structure involved in the
computer science. They are widely used in all fields,
because they are well adapted to the natural
representation of organized and homogeneous
information, and they have a great speed and a
handling convenience. We find this structure in all
computing areas, whether for the example of
compilation (syntax trees to represent expressions or
possible productions of language), imaging

(quaternary trees), algorithmic (for example it is the
support of sorting methods or management
information in tables), or in the fields of artificial
intelligence (game trees, decision trees, resolution
trees etc).

The method of storage and retrieval of information
by a binary tree is well known to programmers and is
frequently used. They are also interesting because
they optimize the access time to information. Our
purpose behind using binary search trees is to reduce
our search space and to have an optimized data
access time. Recall, first of all, the bulk of this
method. In computer science, a BST, sometimes also
called an ordered or sorted binary tree, is a node-
based binary tree data structure where each node has
a comparable key (and an associated value) and
satisfies the restriction that the key in any node is
larger than the keys in all nodes in that node's left
sub-tree and smaller than the keys in all nodes in that
node's right sub-tree. Each node has no more than
two child nodes. Each child must either be a leaf
node or the root of another binary search tree. The
left sub-tree contains only nodes with keys less than
the parent node; the right sub-tree contains only
nodes with keys greater than the parent node. The
main advantage of binary search trees is that it
remains ordered, which provides a quicker search
time than many other data structures. The common
properties of binary search trees are as follows [28]:

• The left sub-tree of a node contains only
nodes with keys less than the node's key.

• The right sub-tree of a node contains only
nodes with keys greater than the node's key.

• The left and right sub-tree each must also be
a binary search tree.

• Each node can have up to two successor
nodes.

• There must be no duplicate nodes.

• A unique path exists from the root to every
other node.

To achieve our partitioning algorithm HW/SW, we
relied on the principle of Binary Search Trees BST,
which aims to reduce the search space. Our idea was
to build a binary search tree whose root is a virtual
node that we have defined as the average of the
larger and the smaller size of a module. By definition
of a BST, the left sub-tree will contain modules with
a small size and the right sub-tree will contain those
with large sizes. In this way, we will have a HW/SW
partitioning with tasks, that will run on the HW part,
were in the left sub tree and the ones, that will run on

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

791

the SW part, were in the right sub-tree. The question
that arises is if this partitioning HW/SW is the
optimal one according to our time constraint or not.
Two cases may arise: the first case in which the
application execution time of the realized
partitioning is less than our time constraint, so in this
case, we will find what are the HW tasks that we can
migrate to the SW part and vice versa in the second

case where the application execution time exceeds
the time constraint. In this way, we have reduced our
search space, in fact, instead of performing a search

in a whole binary tree; we search in the left or right

sub-tree as appropriate. This investigation tasks in
question will be carried out according to the principle
of genetic algorithms. The pseudocode of our
proposed algorithm is shown in figure 1.

5. EXPERIMENTS AND RESULTS

To confirm our approach, we have implemented the
16-DCT task graph on FPGA Xilinx Virtex®-5. The
Xilinx Virtex®5 development kit enables a high
performance embedded design in Xilinx FPGAs.

1: Begin

2: Initialize the number of the generation size and the temporal constraint Tconst;

3: Build the Binary Search Tree (BST)

4: Assign the Left Sub-Tree (LST) to the hardware part and the Right Sub-Tree (RST) to the Software part of

-: architecture;

5: Calculate the execution time Tex;

6: If (Tex ≤ Tconst) then

7: Initialize the first generation P0 with the individuals of the LST;

8: Calculate the fitness of each individual in P0;

9: Copy the individual with the smallest fitness to the solution;
10: while (termination conditions) do

11: Select two individuals (g1, g2) from the current generation;

12: Perform crossover on (g1, g2) to produce two new individuals (gc1, gc2);

13: If (min {fitness (gc1), fitness (gc2)} ≤ min {fitness (g1), fitness (g2)}) then
14: If (Texgc ≤ Tconst) then // where the Texgc is the execution time of the crossover individuals //

15: Accept the crossover;

16: else
17: Reject the crossover with gc1 = g1, gc2 = g2;

18: end if

19: else
20: Reject the crossover with gc1 = g1, gc2 = g2;

21: end if

22: Perform mutation on gc1 to produce gm1;

23: If (min {fitness (gm1)} ≤ min {fitness (gc1)}) then
24: If (Texgm ≤ Tconst) then // where the Texgm is the execution time of the mutation individuals //

25: Accept the mutation;

26: else

27: Reject the mutation with gm1 = gc1;

28: end if

29: else

30: Reject the mutation with gm1 = gc1;

31: end if

32: Perform step 22-31 on gc2 to produce gm2;

33: Calculate the fitness of each individual in current generation;
34: If (the smallest fitness of the current generation ≤ fitness (solution)) then

35: Copy the individual with the smallest fitness to the solution;

36: end if
37: Increase the generation number;

38: end while

39: Return solution x[i] with i ∈ [1, n]; // with n is the number of the LST nodes//

40: else

41: Perform step 7-39 to produce solution x[i] with i ∈ [1, n]; // with n is the number of the RST nodes//

42: end if

43: Return the final solution of the Hardware-software partitioning;

44: End

Figure 1: Pseudo-code

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

792

 In our approach, the software resource is the
PowerPC and the hardware resources are
configurable logic blocs (CLBs). Hence, to compute
the parameters of each node and to access to the
PowerPC, we have used Xilinx ISE tool and Xilinx
EDK tool. These Xilinx design tools provide
resources and timing report incorporates timing delay
and resources to provide a comprehensive area and
timing summary of the design. Our algorithm has
been written in JAVA language and executed under
Windows-7 on Acer-PC (Intel Core 2 Duo T5500;
1.66 GHz; 1GB of RAM). In order to demonstrate the
effectiveness of the proposed algorithm, we compare
it to Tabu, simulated annealing and genetic algorithm.
The simulation results are presented in table 1.

Table 1: Design Results

Algorithm
Run time

(ms)
Latency

(ns)
Area

(Slice)
Proposed
algorithm

766 2664 2202

Tabu
algorithm

58281 2704 2757

simulated
annealing
algorithm

843 3012 2214

Genetic
algorithm

40375 2928 2274

To evaluate the design results shown in table 1, we

have introduced the following metric β

! " �

�������
 (3)

Amax: all nodes of the graph are implemented to
the hardware part of the architecture.

AL: the logic area consumed by the graph

L: the whole latency of the graph

Therefore, based on the above equation, a
partitioning algorithm is classified to be good if it
decreases the value of β.

Table 2: Design Results

Proposed
algorithm

Tabu
algorithm

simulated
annealing
algorithm

Genetic
algorithm

β 1.153 1.541 1.311 1.308

Based on the above design results shown in table

2, we show that our algorithm is the best one in terms
of β value. Indeed, our algorithm provides a gain
reaching 25.2% compared to Tabu algorithm, of
12.05 % compared to simulated annealing algorithm
and of 11.85 % compared to the Genetic algorithm.

6. CONCLUSION

Many methods and algorithms have addressed the
problem of hardware/software partitioning; they have
emerged in the late 90s without providing
satisfactory solutions. The evolution of design, the
characteristics of the components and the complexity
of applications and architectures are certainly
responsible for the ineffectiveness of the solutions in
this field. In this context, we have proposed a
hardware/software partitioning algorithm based on
binary search trees and genetic algorithms to
determine the best partition that minimizes the logic
area. Compared to Tabu, simulated annealing and
genetic algorithm, our proposed algorithm has
provided the better design results in term of the logic
area.

REFRENCES:

[1] Bouraoui Ouni, Ramzi Ayadi and Abdellatif
Mtibaa, "Combining Temporal Partitioning and
Temporal Placement Techniques for
Communication Cost Improvement" Advances

in Engineering Software, Elsevier Publishers,
Volume 42, Issue 7, July 2011, pp : 444-451.

[2] Ouni, B. , Ayadi, R., Mtibaa, A. "Temporal
partitioning of data flow graph for dynamically
reconfigurable architecture", Journal of

Systems Architecture, Volume 57, Issue 8,
September 2011, Pages 790-798

[3] Bouraoui OUNI, Abdellatif MTIBAA,
"Optimal placement of modules on partially
reconfigurable device for reconfiguration time
improvement", Microelectronics International

published by Emerald Group Publishing

Limited, volume 29, Issue 2, 2012, Pages 101-
107.

[4] Ramzi Ayadi, Bouraoui Ouni and Abdellatif
Mtibaa, "A Partitioning Methodology that
Optimizes the Communication Cost for
Recongurable Computing Systems"
International Journal of Automation and

Computing (IJAC), Institute of Automation and

Springer-Verlag Publishers, Volume 9, N° 3,
June 2012, Pages 280-287.

[5] Mehdi Jemai, Sonia Dimassi, Bouraoui Ouni
and Abdellatif Mtibaa, "Optimization of logic
area for System on Programmable Chip based
on hardware-software partitioning",
International Conference on Embedded Systems

and Applications (ICESA) Hammamet-

Tunisia,March 2014.
[6] SIARRY P., Application des métaheuristiques

d’optimisation en électronique, [RE 8], traité

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

793

recherche,Techniques de l'Ingénieur, 2002.
[7] LOPEZ-VALLEJO M., LOPEZ J.C., "On the

Hardware-Software Partitioning Problem:
System Modeling and Partitioning Techniques",
ACM Transactions On Design Automation of

Electronic Systems (TODAES), 2003, vol. 8, n°
3, pp. 269-297.

[8] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt,
"Integration physical constraints in hw-sw
partitioning for architectures with partial
dynamic reconfiguration," IEEE Transactions
on Very Large Scale Integration (VLSI)

Systems, vol. 14, no. 11, 2006, pp. 1189 -1202.
[9] J. Madsen and al. Lycos," the lyngby co-

synthesis system", Design Automation for

Embedded Systems, 2(2), March 1997.
[10] P. V. Knudsen and J. Madsen. Pace, "A

dynamic programming algorithm for
hardware/software partitioning", In

International Symposium on

Hardware/Software Codesign (CODES),
Pittsburgh, USA, March 1996.

[11] J. Wu and T. Srikanthan, "Low-complex
dynamic programming algorithm for
hardware/software partitioning," Information

processing letters, vol. 98, no. 2, 2006, pp. 41-
46.

[12] K. Chatha and R. Vemuri, "Hardware-software
partitioning and pipelined scheduling of
transformative applications", IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 10, no. 3, 2002, pp. 193-
208.

[13] H. Liu and D. F. Wong, "Efficient network
flow based multiway partitioning with area and
pin constraints", IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 17, no. 1, 1998,
pp. 50–59.

[14] Z. Peng and K. Kuchcinski, "An Algorithm for
Partitioning of Application Specific Systems,"
Proc. European Conf. Design Automation

(EDAC’93), 1993, pp.316-321.
[15] A. Österling, Th. Benner, R. Ernst, D.

Herrmann, Th. Scholz, and W. Ye.
"Hardware/Software Co-Design : Principles and
Practice, chapter The COSYMA", System.

Kluwer Academic Publisher, 1997.
[16] T. Wiangtong, P.Y.K. Cheung, and W. Luk,

"Comparing Three Heuristic Search Methods
for Functional Partitioning in Hardwaresoftware
Codesign," Design Automation for Embedded

Systems, vol. 6, no. 4, 2002, pp. 425-449.
[17] Hong jun He; Qiang Dou and Weixia Xu ,

"Hardware/Software Partitioning for
Heterogeneous Multicore SoC Using Genetic

Algorithm", IEEE Intelligent System Design

and Engineering Application (ISDEA), 2012, pp
1267-1270.

[18] Yu Jiang, Hehua Zhang, Xun Jiao, Xiaoyu
Song, William N. N. Hung, Ming Gu, and
Jiaguang Sun," Uncertain Model and Algorithm
for Hardware/Software Partitioning", IEEE

Computer Society Annual Symposium on VLSI,
2012.

[19] K.S. Chatha and R. Vemuri, "Magellan:
Multiway Hardware- Software Partitioning and
Scheduling for Latency Minimization of
Hierarchical Control-Dataflow Task Graphs,"
Proc. Ninth. Hardware/Software Codesign

(CODES ’01), 2001, pp. 42-47.
[20] T. Grandpierre, C. Lavarenne, and Y. Sorel.

"Optimized rapid prototyping for real-time
embedded heterogeneous multiprocessors", In

International Symposium on

Hardware/Software Codesign (CODES), Roma,
Italy, May 1999.

[21] L. Bianco, M. Auguin, G. Gogniat, and A.
Pegatoquet, "A path based partionning
algorithm for time constrained embedded
systems design", In International Symposium on

Hardware/Software Codesign (CODES),
Seattle,USA, March 1998.

[22] R. Szymanek and K. Kuchcinski. "Design
space exploration in system level synthesis
under memory constraints", In Euromicro

conference, Milano, Italy, March 1999.
[23] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and

P. Pop, "Scheduling of conditional process
graphs for the synthesis of embedded systems".
In Design Automation and Test in Europe

Conference (DATE), Paris, France, February
1998.

[24] D. D. Gajski, F. Vahid, S. Narayan, and J.
Gong, "System-level exploration with specsyn",
In ACM/IEEE Design Automation Conference

(DAC), San Francisco, USA, 1998.
[25] D.D. Gajski, F. Vahid, S. Narayan, and J.

Gong. Specsyn, "An environment supporting
the specify-explore-refine paradigm for
hardware/software system design", IEEE

Transaction on VLSI Systems, 6(1) :84-100,
March 1998.

[26] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A.
Jurecska, L. Lavagno, C. Passerone, A.
Sangiovanni-Vincentelli, E. Sentovich, K.
Suzuki, and B. Tabbara, "Hardware-Software
Co-Design of Embedded Systems : The Polis
Approach. Kluwer" Academic Publisher, June
1997.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2014. Vol. 66 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

794

[27] B. R. Rau and M. Schlansker, "Embedded
computer architecture and automation". IEEE

Computer, 2001, pages 75-83.
[28] Gilberg, R.; Forouzan, B. (2001), "8", Data

Structures: A Pseudocode Approach With C++,
Pacific Grove, CA: Brooks/Cole, p. 339,
ISBN 0-534-95216-X

