ABSTRACT

This paper deals with a method to improve the performance characteristics of the closed loop DC motor drive by using proportional integral derivative controller (PID) with Pulse width modulation (PWM) full bridge DC-DC converter. The PID parameters are found by Zeigler-Nichols PID tuning method with unipolar voltage switching technique is implemented. The overall system is modeled in MATLAB/SIMULINK software, where different modes of operation were presented and discussed. In the proposed method, RMS ripple output voltage is reduced and also high power factor is achieved in the AC input line current. The design of the speed controller for four quadrant operation of the closed loop DC Motor has proved successfully runs at close to the reference speed.

Keywords: DC Motor, DC-DC converters, PWM, Four quadrant operation, Unipolar voltage switching, PID controller, Ziegler-Nichols method.

I. INTRODUCTION

Many industrial equipments driving a load need prime mover. There are various types of prime movers such as steam, hydraulic and other types of engines but most commonly used prime mover is an electric motor. The main advantage of an electric motor is, its various characteristics like speed, current, speed-torque etc, which can be adjusted by a control equipment and also a good starting torque which can be started on load. Some industrial equipments need precise speed control. With the help of an electric motor such as a speed, up to accuracy of 1% also can be achieved, using a suitable control equipment.

The implementation of DC Motor drive system with phase control is simple. As a result, it has gained high popularity. The disadvantage of this system is that the value of phase delay angle is large, which causes reduced input power factor and high harmonic content in the input AC line current in the discontinuous period (Abdelhamid, 2000). In general the current through phase controlled converter is unidirectional, while the output voltage is reversible. The two quadrant operation is not suitable for DC motor braking with reversible voltage, which requires the voltage to be unidirectional but the current to be reversible. Four quadrant operation is possible with two back to back connected thyristor converter. Therefore for regenerative braking two back to back connected thyristor converter is suitable. For the same armature inductance, reduced zone of discontinuous conduction operation and reduced load current ripple are achieved when compared to phase controlled converters (Kazmierkowski and Malesani, 1998). Uniform pulse width modulation techniques are extensively used in converter circuits due to the simple implementation of their control circuit and advantages gained from increasing switching frequency (Hamed, 1997). However, this will lead to the increased switching losses. The more availability of high frequency high power switching devices, such as MCT, IGBT and MOSFET are expected to reinforce self-commutated AC to DC converters with PID-PWM control techniques to replace the conventional phase-controlled converters within the available power ratings (Hui et al., 2000).

In the simulation result the performance of the single phase variable DC drives controlled by PID controller has been improved obviously (Lin and Lu, 2000; Al-Mashakeh, 2009; Zhang, 2008; Thomas and Poongodi, 2009; Mehra et al., 2010; Montiel et al., 2007; Yu and Hwang, 2004; Hang et al., 1991; Krishnan, 2001). The performance
characteristics of a new four quadrant single phase DC drive closed loop system controlled by PID-PWM full bridge DC-DC converter with bipolar Voltage switching was found to be more efficient in improving the step response characteristics such as , reducing the steady state error, rise time, settling time and maximum overshoot in closed loop speed response of a DC motor with PID controller when compared to the open loop system(P.Karpagavalli,2013) .The PID controller parameter values has been obtained using the Ziegler-Nichols method. This paper presents PID-parameter values has been obtained using the Ziegler-Nichols method. This paper presents PID-controller of motor and load in N-m/(rad/sec). The PID controller (P.Karpagavalli,2013) compared to the open loop time and maximum overshoot in closed loop speed are the input signals to the PID controller. The reference speed. The reference and measured speed are the input signals to the PID controller. The diagonally opposite switches are controlled by PWM technique with PID controller. The diagonally opposite switches M1,M3 and M2, M1 are treated as two switch pairs where pair of switches is turn on and off simultaneously such that the motor voltage is of a bipolar nature. Independent control of the switch in each leg such that the motor voltage of unipolar nature its adopted in the proposed method. Conventional PID controller is used as a speed controller for recovering the actual motor speed to the reference speed. The reference and measured speed are the input signals to the PID controller. The Kp, Kt, and Kd values of controller are determined by Ziegler-Nichols methods. The controller output is limited to give the reference signals for one input of current PID controller and other one as measured current from motor .The current error amplified through this controller which is emerged as a control voltage (Vc). This control voltage (Vc) is limited and compared with a triangular signal, to generate PWM pulses to MOSFET switches.

2. DC MOTOR EQUIVALENT CIRCUIT

A separately excited DC Motor equivalent circuit is shown in fig.1. The current in the field coil and the armature is independent of each other. As a result, these motors have excellent speed control. Hence DC motors are typically used in applications that require five or more horse power. The equations describing the dynamic behavior of the separately excited D.C. motor are as follows.

\[V = R_a I_a + L_a \frac{dI_a}{dt} + e_b \]
\[T_m = K_t I_a(t) \]
\[T_m = J \frac{d^2a(t)}{dt^2} + B \frac{da(t)}{dt} \]
\[e_b = e_b(t) = K_b \frac{da(t)}{dt} \]

Simplification and taking the ratio of \(a(t)/v(s) \) we will get the transfer function as below

\[\frac{a(s)}{v(s)} = \frac{K_b}{J s^2 + (R_a + L_a) s + (K_b R_a + K_f)} \]

Where, \(R_a = \)Armature resistance in ohm, \(L_a = \)Armature inductance in henry, \(I_a = \)Armature in

ampere,\(V_f = \)Armature voltage in volts, \(e_b = e_b(t) = \)back emf in voltage in volts, \(K_f = \)back emf constant in volt/(rad/sec).\(K_t = \)torque constant in N-m/Ampere, \(T_m = \)torque developed by the motor in N-m,\(w(t) = \)angular speed of shaft in radians/seconds,\(J = \)moment of inertia of motor and load,\(B = \)frictional constant of motor and load in N-m/(rad/sec).

3. NUMERICAL VALUES

The DC motor under study has the following specification and parameters

\[a) \hspace{0.5cm} \text{Specifications} \quad : \quad 5 \text{hp}, 240 \text{volts}, 16 \text{amps}, 1500 \text{rpm} \]
\[b) \hspace{0.5cm} \text{Parameters} \quad : \quad R_a = 0.5 \text{ ohm}, \]
\[L_a = 0.01 \text{H} \quad K_b = 1.02 \text{ volts/(rad/sec)} \]
\[J = 0.05 \text{ kg-m}^2/\text{rad}, B = 0.02\text{N-m/ rad/sec}. \]

The overall transfer function of the DC motor

\[\frac{a(s)}{v(s)} = \frac{1.48}{5s^2 + 0.025s + 2.2002} \]

4. PROPOSED FULL BRIDGE DC-DC CONVERTER WITH PID-PWM

The proposed single phase DC drive controlled by PID-PWM full bridge with unipolar voltage switching technique is shown in fig. 2. The single phase ac supply applied to diode bridge rectifier and a LC filter with braking resistor, such that a constant amplitude dc link voltage is established. DC motor load is powered through PID-PWM full bridge DC-DC converter which consists of four MOSFET switches (M1,M2,M3 and M4) and their respective anti-parallel diodes (D1,D2,D3 and D4) , these switches are controlled by PWM technique with PID controller. The diagonally opposite switches M1,M3 and M2, M1 are treated as two switch pairs where pair of switches is turn on and off simultaneously such that the motor voltage is of a bipolar nature. Independent control of the switch in each leg such that the motor voltage of unipolar nature its adopted in the proposed method. Conventional PID controller is used as a speed controller for recovering the actual motor speed to the reference speed. The reference and measured speed are the input signals to the PID controller. The Kp, Kt, and Kd values of controller are determined by Ziegler-Nichols methods. The controller output is limited to give the reference signals for one input of current PID controller and other one as measured current from motor .The current error amplified through this controller which is emerged as a control voltage (Vc). This control voltage (Vc) is limited and compared with a triangular signal, to generate PWM pulses to MOSFET switches.
5. CLOSED LOOP CONTROL OF DC DRIVE WITH UNIPOLAR VOLTAGE SWITCHING

In practical DC motor drive system, it is required to operate the drive at a constant power or constant torque with controlled acceleration and deceleration. Most of the industrial drives operates in closed loop control system has advantages like fast dynamic response, reduced effect of load disturbances and improved accuracy.

In this control technique, the switches in each leg are controlled independently of the other leg. The switching patterns are such that when $V_c > V_{tri}$, M_1 is on, and when $-V_c > V_{tri}$, M_3 is on and switching in the same leg have compliment switching patterns. The switching patterns are illustrated in fig. 3. The duty ratio of the switches M_1 and M_2 are same as the bipolar voltage switching scheme which is given below and the average voltage is also same and varies linearly with control voltage.

![Figure 3: Switching patterns of Unipolar voltage switching.](image)

The duty cycle (α_1 and α_2) of the switch pairs are given by

$$\alpha_1 = 0.5\left(1 + \frac{V_c}{V_{tri}}\right) \quad (7)$$

$$\alpha_2 = 1 - \alpha_1 \quad (8)$$

Therefore, the converter output voltage V_o is given by

$$V_o = \alpha_1 V_{dc} - \alpha_2 V_{dc} \quad (9)$$

$$= (2\alpha_3 - 1) V_{dc} \quad (10)$$

Substituting by α_3 from equation 7 yields

$$V_o = \frac{V_c}{V_{tri}} V_{dc} \quad (11)$$

$$V_o = k V_{dc} \quad (12)$$

Where $k = \frac{V_c}{V_{tri}}$

The following modes of operation can be defined. The motor current is carried by switch pair M_1 and M_4 in the powering mode. For freewheeling mode, the motor current continues to flow in an anti-parallel diode when the conducting switch is turned off as in M_1, D_3 and M_4, D_2. A regenerative mode may arise during light loading.

6. PID CONTROLLER – ZIEGLER-NICHOLS METHOD

The control system performs poor characteristics and even it becomes unstable, if improper values of the controller tuning constants are used. So it becomes necessary to tune the controller parameters to achieve good control performance with the proper choice of tuning constants. Controller tuning involves the selection of the best values of K_c, T_I and T_D. This is often a subjective procedure and is certainly process dependent. It is widely accepted and straightforward method for tuning the PID controller. First, the controller is set to P mode only. The gain of the controller (K_c) is set to a small value. A small set point change is made and the response of the controlled variable is observed. If K_c is low the response will be sluggish. Increasing K_c by a factor of two and making another small change in the set point or the load is preceded until the response becomes oscillatory. Finally, K_c is adjusted until a response is obtained that produces continuous oscillations. This is known as the ultimate gain (K_u). The period of the oscillations (T_u) is shown in fig.4. The procedure of the method includes to set the integral and derivative coefficients to zero and increasing the proportional coefficient gradually from 0 till the system just begins to oscillate continuously. The proportional coefficient at this point is called the ultimate gain K_u and the period of oscillation at this point is called ultimate period T_u. The controller settings are then obtained from the following table 1.
7. SIMULATION RESULTS AND DISCUSSION

The simulation of the proposed four quadrant operation of single phase DC motor drive controlled by PID-PWM full bridge DC-DC converter with unipolar voltage switching was done using the software package MATLAB/Simulink. The simulink model of proposed PID-PWM full bridge DC-DC converter is illustrated in fig.5.

PID gains calculated using the above table no.1 was performed using MATLAB/Simulink. The calculated gains of PID control are provided in table 2. The performance characteristics of DC motor were recorded and analyzed.

Table 2: PID Parameters

<table>
<thead>
<tr>
<th>PID Gain</th>
<th>Kp</th>
<th>Ti</th>
<th>Td</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>44</td>
<td>0.0485</td>
<td>0.012</td>
</tr>
</tbody>
</table>

7.1 Performance Characteristics of DC Motor for Four Quadrant Operation.

Figure 6: Input Voltage and Input current waveform (Conventional Method)

Figure 7: Input Voltage and Input current waveform (Proposed converter.)

Figure 8: Motor Speed response –Four Quadrant (Bipolar)

Figure 9: Motor Speed response –Four Quadrant (Unipolar)
Figures 14 and 15 shows that for unipolar voltage switching, the output voltage changes in the forward motoring mode \(0\) to \(+ V_{dc}\) and \(0\) to \(-V_{dc}\) in the reverse motoring mode while motor current can be either positive or negative such that the motor can be operated in the four quadrants of the \(V_o-I_o\) plane. The switching frequency of two PID-PWM techniques is the same, but unipolar voltage switching has proved better output voltage waveform, output current waveform and better frequency response. Hence output voltage is doubled, RMS ripple voltages are reduced and power factor is improved.

8. CONCLUSION

A single phase DC Motor drive system fed from a full bridge DC-DC Converter controlled by PID-PWM with bipolar voltage switching technique has been presented. The simulation of the DC motor with full bridge DC-DC converter was done using the software package MATLAB / Simulink. PID controller based on the Ziegler-Nichols method is also presented and applied to DC motor. The PID designed has been simulated and observed to be good performer. During the course of this work, the closed loop response of DC Motor is investigated and observed the improvement in the speed, torque, current, less RMS ripple in output load voltage in the closed loop response with unipolar voltage switching compared to bipolar voltage switching and Power factor is improved to 0.93 from 0.65 by using LC filter. Finally a speed controller has been designed successfully for closed loop four quadrant operation of the DC motor.

9. REFERENCE

Figure 2: Circuit diagram of PID-PWM full bridge DC-DC converter fed D.C.Motor

Figure 5: Simulink model of proposed PID-PWM full bridge DC-DC converter fed DC Motor