
Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

618

NETWORK INTRUSION DETECTION SYSTEM: AN

IMPROVED ARCHITECTURE TO REDUCE FALSE POSITIVE

RATE

1
 P.BRINDHA,

 2
 Dr.A.SENTHILKUMAR

1 Assistant Professor, Department of Electronics and Communication Engineering, Velalar College of
Engineering and Technology, Erode-638012, Tamil Nadu, India

2 Professor and Head, Department of Electrical and Electronics Engineering, Dr.Mahalingam College of
Engineering and Technology, Pollachi-642001, Tamil Nadu, India

E-mail: 1brindhavlsi@gmail.com, 2 ask_rect@yahoo.com

ABSTRACT

Counting Bloom Filter (CBFs) is widely employed in networking applications. They support membership
queries with minimal error and surmount the drawback of Bloom filters. However, they engross large
amount of memory. A new Sidon sequence based CBF is introduced to improve the competency of the
CBFs. Unlike CBF, the hashed Variable increment is queried for its present. This method achieves 24% of
the improvement in false positive rate and a lower inundate probability bound than CBF. The proposed
work is described in Verilog and simulated using Xilinx 12.1. The functional block is implemented as
hardware using Virtex 4 (XC4VSX25) Field Programmable Gate Array (FPGA). It is observed that the
hardware complexity and memory overhead increases, which could be a trade-off for improving FPR in
order to increase the Network Security.

Keywords: Intrusion Detection, Bloom Filter, Sidon sequence, Counting Bloom filter, False Positive Rate.

1. INTRODUCTION

Information is always deliberated to be the most

valuable liability of any organization or as an
individual and hence, it should be secured.
However, the rapid proliferation of the internet and
web applications has increased the threat of
information security breaches. Traditional
mechanisms are often not adequate to protect the
data against new attacks. Such attacks are detected
by an Intrusion Detection System (IDS). IDS
chosen for such action should be flexible, memory
efficient and maintaining database is not so much
easy in practice. To enhance the detection and to
improve the false positive rate of Counting Bloom
Filter(CBF), a new Sidon sequence based CBF is
presented in this paper.

1.1 Bloom Filter

Burton H. Bloom introduced a new hash coding
method. This method is suggested for application in
which the great majority of messages to be tested
will not belong to the large set. First, the average
time required for classifying the element as a non-
member of large set is high. Second, the probability
of error should be minimized (i.e.) the false
identification of the member to be in the set will
create a small error. Third, computation time and
space should be efficient to meet the practical
applications [1],[2],[3].

Consider a set S = {a1,a2,a3……an} of ‘n’
elements and a set H = {h1,h2,h3……hk} of ‘k’
independent and uniformly distributed hash
function. The individual hash, say h1 will range
from {0,1,2,……m-1}. Consider an example: If S =

{AA,AB,BA,BB……ZZ} where n 100 and
assume k = 3, then H = {h1,h2,h3}. Using ‘k’ hash
function of H makes each element of S map to the
vector whose size is ‘m’. An array is constructed
whose length is ‘m’. The initial value in the array is
maintained at zero as depicted in Figure 1. As the
hash function starts, depending on the hash output
the corresponding locations are set to one as in
Fig.2. On the other hand, the query is done to check
whether the element belongs to set [4],[5].

The problem with the standard BF is, the same
location is accessed for multiple times based on the
hash output as shown in Figure 2.The item deletion
always required to make it flexible for many
applications. There are three operations awaited by
an IDS user.

• Signature insertion: to maintain a database
of the existing virus signatures and
eventually include new items whenever it
is required.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

619

Figure 1: Empty Bloom Filter At The Initial Condition

• Signature deletion: this is to revoke the
items when it is found to be harmless.

• Signature matching: to give a diligence to
the user.

Figure 2: Bloom Filter After Insertion Of 2 Elements

A flawless BF should perform all the three about

said operations. But unfortunately BF can perform
only first and last operation. As shown in Figure 3,
if multiple items are hashed to the same index,
while deletion of one item may cause changes in
the hash index of other. This shortcoming of BF
makes it obsolete in many applications.

 The hash locations hi(a) is checked to ensure the
presence of one in all the locations that are hashed.

If the presence is confirmed, then and if not,
then . The querying is shown for a element
B in Figure 4. Furthermore, if all the hash values
mapped to the vector is ‘1’ but, the element says
‘AA’ is not a member of the set, then this is
referred as False Positive. Hereafter the main focus
is on False Positive Rate (FPR), which is to be
reduced to enhance the performance of the IDS.

1.2. False Positive Rate (FPR) of BF

 The False Positive Rate (FPR) can be
expressed as

 (1)

Where, is the False Positive Rate (FPR) and

is the probability that all the bits are set to ‘0’.

Then

 (2)

Where, is the random bit of the vector is set to ‘1’

by hash function hi. Then can be approximated
to

 (3)

An element is said to be false positive, only if

, then it can be expressed by

Figure 3: Bloom Filter After Deleting ‘AA’

Figure 4: Querying A Signature ‘B’

 (4)

 (5)

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

620

 (6)

 (7)

 (8)

The False Positive can be reduced by increasing

the value of m/n. But increasing the value of ‘m’
will increase the memory space and reducing the
term ‘n’ will scale down the set S. Both these
actions abet to many detriments in intrusion
detection applications.

2. COUNTING BLOOM FILTER (CBF)

Counting Bloom Filter emerged to overcome the
pitfalls of BF. CBF have been contrived for multi-
set representation that may be dynamic due to
increment/decrement. This aspect makes it as a
natural virtue in many networking solicitations [6],
[7].

2.1. Functionality of CBF

The BF uses an imperfect representation of the
large set to be searched. CBF has a counter array
which is indexed by the hashing the input signature.
In case of multiple entries the counter gets
incremented to keep track of it. The two important
facets of CBF are:

• Deletion of a signature, which is not
facilitated in BF.

• To cognizant on the multiple access.

Ideally, CBF has a discrete entry which would exist
for each single element of the set as in Figure 5. In
this case, the CBF would be capable of precisely
representing any set [8].

Before measuring the false negative items, let us
recall the four rubrics to delete an item ‘AA’ from a
pertinent CBF of a set S.

• If a membership query for an item

acknowledges a correct answer, the CBF
performs the item deletion operation by
decrementing corresponding counters by
one.

• If a membership query for an item

acknowledges a false negative, the CBF
rejects the item deletion operation. It
shows that the CBF does not emulate the
set S correctly.

Figure 5: CBF After Inserting 2 Elements

Figure 6: CBF After Deleting ‘AA’

• If a membership query for a S

acknowledge a correct answer, the CBF
ignores the item deletion operation.

• If a membership query for a S response

a false positive judgment, the CBF still
performs the item deletion operation.

2.2. False Positive Rate of CBF

According to the CBF basic theory, the false
positive probability of a CBF should decrease, if it
performs an item deletion operation. Thus, the
second point indicates it may increase the false
positive probability of a CBF as an item is not
deleted, although it should be deleted. In summary,
the fourth point implies not only it produces false
negative items directly, but also it may increase the
probability of false positive judgments obliquely.

In Figure 6, a signature ‘AA’ is deleted from the
CBF (i.e.) the count is deduced from ‘1’ to facilitate
the item deletion. When the element ‘AB’ is
queried, the CBF provides an alert that it is a
member. Even though the CBF has enhanced
feature compared to BF there is a little hindrance in
CBF too.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

621

The foremost problem in CBF is signature
identification. As the signature database is
maintained as counter value, there is no definite
way to differentiate the counting value in terms of
signature. CBF suffers from counter overflow with
a probability that depends on the size of the
counter. To overcome all these flaws in CBF, a new
design based on Sidon sequence came into the
scenario [9].

3. SIDON SEQUENCE

In this section we introduce the Sidon Sequence
which is commonly known as Bh-set or Bh
sequence [10]. We start with the basic Scenarios of
Bh sequences. B2 sequences are also called Sidon
sequences.

Rule 1): Let (X;) be an Abelian group.
Let G = { 1, 2…. n} be a sequence of elements of
X. Then G is a Bh sequence over X if all the sums

with

are distinct.

Example 1: Let G = and G = { 1, 2, 3, 4}=
{1,4,11,13} G. We can see that all the 10 sums of
2 elements of G and 20 sums of 3 elements are
distinct. Therefore, G is a B2 and B3 sequence.
However, the two sums of 4 elements are repeated
as shown in Table 1, hence G is not a B4 sequence.

3.1. Functionality Of Bh Sequence

The Bh sequence can be now used to improve the

performance of CBF. Basic CBF will increment the
counter by 1, which is constant throughout the
entries. While in Bh sequence based CBF there will
be two counters [10].

• First counter will have a constant
increment of one, it counts the number of
elements hashed into the CBF.

• Second counter will have an inconstant
incremental of weighted sum of the
elements as shown in Table.1.

There are three basic operations performed by
each of these counters.

• Insertion or update phase

• Deletion or removal phase

• Query or test phase
Figure 7.(a,b,c) indicates the basic operation with
an example.

•

Figure 7: A) Bh Element Insertion

Figure 7: B) Bh Element Query.

Figure 7: C) Bh Element Deletion.

3.1.1 Element insertion: Here in this example

an element ‘AA’ is inserted whose G {1,4,11,13}

and k 3. In this, {h1(AA),h2(AA),h3(AA)}

={1,4,8} and {g1(AA),g2(AA),g3(AA)}={2,1,4}.
The element ‘AA’ is hashed to 1,4,8 locations in

the array using h1, h2 and h3. It increment the
counter C1 by one and it increments the second

counter by hashing { g1(AA), g2(AA), g3(AA)}

{ 2, 1, 4} {4,1,13} respectively.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

622

3.1.2 Element querying: To query whether an
element ‘AB’ is present in the set S, both the
counters are checked for its presence.

• If C1(i) 0 then the constant increment counter

determines that ‘AB’ S.

• The C2(i) is checked for exact sum of the a
value based on G.

3.1.3. Element deletion: The deletion of an
element says ‘AB’ is performed similar to element
insertion. First counter of hi(a) is decremented by

one and second counter is decremented by gi(a).

For example, as indicated in Figure7. the element
‘AB’ is removed by decrementing the first counter
C1 using h1(AB),h2(AB) and h3(AB) by 1 and their
second counter C2 by 13,1 and 4 respectively.

3.2. False Positive Rate (FPR)

False Positive Rate (FPR) of CBF is given by

assuming n as the number of elements, m is the
number of counters and k is the hash function.

 (9)

 When m

 (10)

To avoid overflow, the precise counter should be
used to avoid errors. For four bit counter,
probability to avoid overflow is

False Positive Rate (FPR) of Bh-based Bloom filter

given by Ori Rottenstreich et al., [10] is:

 (11)

The probability at X j which indicates the number
of elements hashed into the indices.

 (12)

The probability that an element, x
cannot deduce from each of the k hash entries that

x is,

(13)

By substituting appropriate values for in the
equation (10) and (12) it can be seen that the false
positive rate reduces as there is an increase in the
value of h, l.

FPR is 1 when m→∞. As k varies, the FPR
varies as pointed in the Figure 8, there is a
significant variation in the plot, as k increases the
FPR of the CBF decreases. The theoretical values
for different scenarios are displayed in Table 2.
Based on the equation (12), for any value of k, m, n
the positive rate always decreases when h and l are
increased. The plot shown in Figure 9, directs the
disparity of FPR for different values of h (at l=15,
l=5).

Figure 8: The Probability Function Of CBF Assuming M

Tends To Infinity

Table 2: Bh Sequence Variations By Holding N=100,

M=16 As Constraints

h l k FPR

1 15 2 0.99999

8 5 2 0.95010

15 4 5 0.99997

4 3 1 0.75177

11 12 1 0.76459

From Table 2, the false positive rate is minimum
for h=4, l=3 and k=1.

4. IMPLEMENTATION RESULTS

In this section, the discussion is on
implementation of CBF and Bh architecture.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

623

Upon discussion several issues are considered
like bits/cycle, throughput and number of LUTs
required for different hashing complexities. The
proposed work is described in Verilog and
simulated using Xilinx 12.1. The functional block is
implemented as hardware using Virtex 4
(XC4VSX25) Field Programmable Gate Array
(FPGA).

Figure 9: The Probability Function Of Bh Sequence For

N=100, K=2, M=16

Figure 10, Presents the implementation of CBF
in which the flow ID of the packet is hashed into
one of the CBF array entries. The corresponding
Linear Shift register based counter value C1 in the
Look-up array are considered [11]. If it equals zero,

CBF determines that . If it equals one, then
CBF continues to check the next hash entry.

Figure 11, Illustrates the implementation of Bh

sequence architecture. Components that are present
in CBF are also present here and in addition to that
few new components are incorporated to enable the
use of two hash functions instead of one. The first
hash function points to an entry in the Bh

architecture array with the pair of counters (C1, C2)
and the second hash function points to an increment

from the set G denoted by .
To powerfully determine whether the weighted

sum of C2 whose value is comprised of using C1
addends we suggested table based on G. Based on
the entry in C1 and the weighted sum of addends in
C2, the presence of packet is determined.

Figure 10: Functional Module For Counting Bloom Filter

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

624

Figure 11: Enhanced Counting Bloom Filter with Bh Sequence

The FPR increases as increases in the number of

entries. As the hash component (1,2,3…. k) is
increasing the FPR decreases with little expense in
speed.

Many real time domains that depends on the
advantages of Bloom filters are Authentication,
Firewalling, Anomaly detection, Trace backing,
Node replication detection, Anonymous routing,
privacy-preserving, String matching, DoS and
DDoS addresses, Email protection, and
misbehavior detection. Upon this CBF found its
area in Firewalling, String matching, Email
protection, SYN flooding addressing etc.,

A hardware module for Bh is presented in Figure.
As narrated in previous sections two hash functions
are used. Blocks similar to CBF are shown in pink
color, and the second hash in shown in white color.
The weighted sum is monitored to make decision
on the incoming query. The experimental result
shows the variation in throughput, number of
entries and LUTs required.

As there is aggrandize in number of entries the
throughput decreases rapidly. For 128 entries the
throughput in Gpbs achieved is 3.26 and 2.81 for
k=2 and k=5 respectively. Variation is duly by the
rise in k (i.e. hash function). Another important
factor is LUT requirement.

Extend in number of entries gives rise to the new
upgraded counter to uphold the new entries. Due to
which the LUTs also increases from 331 to 428. As
the number of entries is doubled the throughput is
reduced to 3.02Gbps, which is around 7.3% less.
Similar degraded throughputs are observed for
different entries as shown in Table 3.

Next looking upon the LUTs required, there is a
huge drift from 331 to 1219 and from 428 to 1990
for k=2 and k=5 respectively.

5. CONCLUSION

In this paper, we presented a new Sidon sequence
based CBF to improve the competency of the
CBFs. Unlike CBF, the hashed Variable increment
is queried for its presence. This method

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

625

achieves 24% of the improvement in false positive
rate and a lower inundate probability bound than
CBF. We showed that it can be resourcefully
implemented in hardware. Although the FPR
improves with added complexity, memory
overhead has to be considered while the array size
increases. The results show that the throughput is
increased from 2.01 to 3.26Gbps as the number of
entries is reduced from 1000 to 128. Similarly the
area complexity (ie)., the number of LUTs
utilization gets reduced as the hash is kept low.
Always the networking applications require
complex coding techniques and increased h states
to secure the data. Sidon sequences efficiently
compress the h states so it can be successfully used
for network applications with low complexity. In
future this work can be extended to optimize
memory requirement and hardware complexity.

REFERENCES:

[1] Burton H. Bloom, “Space/Time trade-offs in
Hash coding with Allowable Errors,
Communication of the ACM, Vol.13, No.7,
1970, pp. 422-426.

[2] A.Broder and M.Mitzenmacher, “Network
Application of Bloom Filter: A Survey”,
Internet Mathematics, Vol.1, No.4, 2004, pp.
484-509.

[3] Shaha beddin Geravand and Mahmood Ahmadi,
“Bloom filter applications in network security:
A state-of-the-art survey”, Computer Networks,
Vol.57, No.18, 2013, pp. 4047-4064.

[4] Christian Esteve Rothenberg, Carlos Alberto
Braz Macapuna, Maurício Ferreira Magalhaes,
Fabio Luciano Verdi and Alexander Wiesmaier,
“In-packet Bloom filters: Design and
networking applications”, Computer Networks,
Vol.55, 2011, pp. 1364–1378.

[5] A.Broder and M.Mitzenmacher, “Using
Multiple Hash Function to Improve IP
Lookups”, in proceedings of IEEE INFOCOM,
April 22-26, 2001, pp. 1454-1463.

[6] Gianni Antichi and Domenico, “Counting
Bloom Filter for pattern matching and Anti-
Evasion at the wire speed”, IEEE Network,
Vol.23, No.1, 2009, pp. 30-35.

[7] Deke Guo, Yunhao Liu, Xiang Yang Li, and
Panlong Yang, “False Negative Problem of
Counting Bloom Filter”, IEEE Transactions on

Knowledge and Data Engineering, Vol.22,
No.5, 2010, pp. 651 – 664.

[8] Elham Safi, Andreas Moshovos and Andreas
Veneris, “L-CBF: A Low-Power, Fast Counting
Bloom Filter Architecture”, IEEE Transactions

on Very Large Scale Integration (VLSI) systems,
Vol.16, No.6, 2008, pp. 628-638.

[9] Zhang Jin, Wu Jiang Xing and Lan Julong Liu
Jianqiang, “Performance Evaluation and
Comparison of Three Counting Bloom Filters,
Journal of Electronics, Using Multiple Hash
Function to Improve IP Lookups”, in

proceedings of IEEE INFOCOM, Vol. 26,
No.3, 2009,pp. 332-340.

[10] Greg Martin and Kevin O’Bryant,
“Constructions of Generalized Sidon Sets”,
Journal of Combinatorial Theory, Series A, Vol.
113, 2006, pp. 591–607.

[11] DW. Clark, “Maximal and Near-Maximal Shift
Register Sequences: Efficient Event Counters
and Easy Discrete Logarithms”, IEEE T

Comput. Vol.43, No.5, 2002, pp. 560-568.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2014. Vol. 66 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

626

Table 1: Weighted Sum Of Bh Sequence

Table 3: Comparison Of Throughput, Total Number Of Entries And Luts Consumed For Bh Sequence Implementation

For K=2 And K=5 Hashing

Method Power in µw Throughput (Gbps) Number of

entries

LUTs

k=2 k=5 k=2 k=5 k=2 k=5

Bh architecture

(8 bits/cycle)

1.409 1.785 3.26 2.81 128 331 428

 4.549 5.112 3.02 2.61 256 567 701

6.708 6.523 2.72 2.47 512 890 915

10.980 15.977 2.01 1.89 1k 1219 1990

CBF

architecture

(8 bits/cycle)

1.112 1.385 2.6 2.18 128 215 276

 3.549 4.132 2.4 2.01 256 420 563

5.718 6.115 1.87 1.47 512 710 854

9.910 12.916 1.8 1.09 1k 998 1311

