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ABSTRACT 

 
A mixed method is proposed for the order reduction of an interval system using pole clustering technique 
and simple mathematical manipulation process. kharitonov polynomial is employed in the interval system 
before the model order reduction technique is come into the approximation process.  The pole clustering 
technique is used to obtain the reduced order denominator polynomial and the corresponding numerator 
polynomial is obtained through cross multiplication of transfer function polynomials. Genetic Algorithm is 
employed in the model order reduction process by which reduced order system parameters can be adjusted. 
The stability of the interval system is analyzed through the Routh-Hurwitz stability criterion. 

Keywords: Pole Clustering, Integral Squared Error (ISE), Kharitonov Polynomial, Genetic Algorithm. 
 

1. INTRODUCTION  

 
The determination of the performance and 

stability of a system is the prime concern of control 
engineers. Classical control system techniques are 
used for system transfer function with fixed 
coefficients. Yet there is uncertainty in the 
parameters of a system. Such systems even though 
not treated as nonlinear systems, have limits in the 
upper and lower bounds in the parameters. Most 
practical systems, such as flight vehicles, electric 
motors, and robots, are formulated in continuous-
time uncertain settings. The uncertainties in these 
systems arise from unmodelled dynamics, 
parameter variation, sensor noises, actuator 
constraints, etc. These variations do not follow any 
of the known probability distributions in general, 
and are most often quantified in terms of amplitude 
and/or frequency bounds. Hence, practical systems 
or plants are most suitably represented by 
continuous-time parametric interval models, instead 
of deterministic mathematical models.   

The Routh-Hurwitz criterion, Nyquist criterion 
and root locus plot are some of the techniques used 
to study the system with parameter uncertainty. The 
characteristic equation or polynomial of such 
uncertain system becomes a family of characteristic 
polynomials and the study of stability in the 

presence of uncertainty has gained its own 
importance. The fundamental stability problem is to 
check whether all the polynomials due to plant 
uncertainty are Hurwitz table. This property is 
known as robust stability of parameter uncertain 
systems. Robust stability was largely ignored in the 
early years. 

2. INTERVAL SYSTEM 

 
The system with parametric uncertainty is called 

interval system. An interval polynomial is a 
polynomial, where each coefficient varies in a 
prescribed interval. The property of interval system 
satisfying the stability requirements is known as 
robust stability. Uncertainty in a system will be 
producing the following two adverse effects of 
degradation of system performance and loss of 
stability. By virtue of the cause that produces this 
uncertainty it can be divided as 

(i) Structured uncertainty 

(ii) Unstructured uncertainty 

Structured uncertainty can be treated as the 
uncertainty, which arises from imperfect 
knowledge of system parameters. Unstructured type 
of uncertainty can be defined as the uncertainty in 
which the dynamics of the system in the higher 
frequency ranges is not incorporated in the system 
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model. Until 1980, no good theory was developed 
by scientists to study a system with parametric 
uncertainties. 

However, in recent years there has been a huge 
increase in research involving real parametric 
uncertainty. A major reason for this is the crucial 
theorem of [12], which is in the Russian technical 
literature.  

In many situations, it is also desirable to replace 
the high-order system by a lower order model. 
Typical methods for model reduction include 
aggregation method, moment matching technique, 
Pade approximation, and Routh approximation, etc. 
Recent developments of model reduction have been 
made towards the direction to handle uncertain 
interval systems based on variants of the Routh 
approximation methods, where interval arithmetic 
is performed to derive Routh α-β or γ-δ canonical 
continued-fraction expansion and inversion. This 
technique is employed in the methods proposed by 
[6], [4], [18] and [8]. It has been shown, however, 
that some interval Routh approximants may not be 
robustly stable even though the original interval 
system is robustly stable. The same case occurred 
in the methods subsequently proposed by [16]. 
Several methods are available for the model 
reduction of higher order systems. The pade 
approximation technique employed in [16] has 
simple features such as computational simplicity 
and fitting of time moments. A major disadvantage 
of this method is that it sometimes leads to an 
unstable reduced order model.   

As far as model reduction of discrete interval 
systems is concerned, very limited discussions have 
been found in literature such as reduction methods 
discussed in [7], [2], [5], [3], [15], [8], [9], [11] and 
[19]. Among them,  [7] proposed a method of 
model order reduction using Pade approximation to 
retain dominant poles, where the denominator of 
the reduced order model is formed by retaining the 
dominant poles of the given discrete interval 
system, while the numerator is obtained by 
matching the first r moments of the model with that 
of the system.  

The feedback control system with uncertain 
parameters can be written as  

n
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The above equations indicate the box bounding 
the uncertain parameter vector q. 

3. KHARITONOV POLYNOMIAL 

 
The kharitonov theorem is an extension of the 

Routh stability criterion to interval polynomials. An 
interval polynomial is polynomial, where each 
coefficient varies at prescribed interval. The 
kharitonov theorem states that an interval 
polynomial family, which has an infinite number of 
members, is Hurwitz stable if and only if a finite 
small subset of four polynomials known as the 
kharitonov polynomial of the family are stable.  

Consider a set of monic nth order polynomial of 
the form, 
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with all real coefficients. The polynomial P(s) is 
said to be Hurwitz stable if all of its zeros belong to 
left half of the s-plane. Let the coefficients are 
bounded between upper and lower limits as 
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The parameters associated with P(s) define an ‘n’ 
dimensional parameter space, where every point in 
the space represents the n coefficients of P(s). 
According to the Kharitonov theorem, the Hurwitz 
stability of just four polynomials selected from set 
‘N’ guarantees stability of all polynomials belong 
to ‘N’ where N is the set of all polynomials whose 
coefficients belong to specified intervals. 

The polynomial P(s) is split into two components 
g(s) and h(s) where, g(s) is polynomial of even 
degree and h(s) is polynomial of odd degree. 

Defining two even polynomials, 
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Defining two odd polynomials, 
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The main drawback on application of Kharitonov 
theorem is that it cannot be applied to polynomials 
with affine linear uncertainty structures. For such 
systems, the generalized Kharitonov theorem 
provide solution. The edge theorem states that the 
whole family of polynomial is stable if and only if 
all the exposed edges of the polytopic family are 
stable. 

4. PROBLEM STATEMENT 

 
The mathematical representation of an interval 

system is given by, 
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Where, ],[ i

i
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−

−

for i=0 to n-1 and ],[ i

i
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−

for i=0 

to n are the interval parameters. By applying the 
proposed model order reduction techniques, the 
corresponding reduced order model is obtained as, 
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Instead of applying the Model Order Reduction 
(MOR) procedure to single interval system as a 
whole the system can be split up to 4 Kharitonov 
polynomials of the denominator and 4 Kharitonov 
polynomials of the numerator. After arriving at the 
reduced denominator and each denominator has 4 
possible combinations of the numerator and for the 
4 denominator functions totally 16 possible system 
models are obtained.  

5. PROPOSED MOR METHOD 

 
The proposed model order reduction method 

consists of three steps. In step1, the reduced order 
denominator polynomial is obtained through the 
improved pole clustering method and the 
corresponding numerator polynomial will be 
obtained through simple mathematical model in 
Step 2. In step3, reduced model system coefficients 
are adjusted using Genetic Algorithm.  

Step1: Obtain the Reduced Order Denominator 

Polynomial 

Let the transfer function of higher order transfer 
function be, 
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and the corresponding reduced order model is in the 
form of 
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Where, n>r. Calculate the ‘n’ number of poles 
from the given higher order system denominator 
polynomial. The number of cluster centers to be 
calculated is equal to the order of the reduced 
system. The poles are distributed into the cluster 
center for the calculation such that none of the 
repeated poles present in the same cluster center. 
The minimum number of poles distributed per each 
cluster center is at least one. There is no limitation 
for the maximum number poles per cluster center. 
Let k number of poles be available in a cluster 
center: p1, p2, p3. . .pk. The poles are arranged in a 

manner such that 
k

ppp ...

21
〉 . The cluster centers 

are adjusted with the help of improved pole 
clustering technique as detailed in Ramesh et al. 
(2012) except that the pole clusters are calculated 
form their own position. i.e. the cluster center is 
calculated by using the formula as  
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The reduced order denominator polynomial 
obtained through step1 is in the form of, 
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To eliminate the steady state error the value of d0 
is obtained as follows. 
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Step 2: Determination of Numerator Polynomial 

 
On equating and cross multiplying the transfer 

functions G(s) and Gr(s), (r+2) number of equations 
are obtained. On solving those equations remaining 
numerator polynomial unknown parameters can be 
calculated. 

Equating the higher order and lower order system 
as, 
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After cross multiplying the terms, the 
coefficients of same power of ‘s’ on both sides of 
Equation (20) are equated and they are given by,      
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The (n+2) number equations in Equation (21) are 

solved with the values of 
00

,ed obtained by 

Equation (18).  On solving for remaining 
differential equations the unknown parameters 
results in ‘n’ number of solutions. Based on the 
optimal ISE value, the appropriate values for the 
unknown parameters are selected to obtain the 
reduced order model as, 
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Step 3: Parameter Tuning Using GA 

 
The resultant reduced order model parameters 

are tuned by using the Genetic Algorithm (GA) as 
detailed in Ramesh et al. (2011). The reduced order 
(2nd order) model obtained from the proposed 
method given in Equation (23) is modified into an 
initial form as,  
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The cumulative error index J using the integral 
square error of the unit step time responses of the 
given higher order system G(s) and the initial 

second order approximant ( )sG
ri

 is calculated using 

the formula, 
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Where, y (t) is the output response of the higher 
order system at the Nth instant of time, y

r
(t) is the 

output response of the second order model at the 
Nth instant of time and N is the time interval in 
seconds over which the error index is computed. 
The coefficients A0, B0 and B1 are adjusted based 
the cumulative error index (J) using Genetic 
Algorithm (GA). The resultant reduced order model 
will closely match with the corresponding higher 
order model. 

In this article, the proposed MOR is applied to 
any four transfer functions in 16 possible system 
transfer functions with the help of Kharitinov 
polynomial. The interval limits of reduced order 
system transfer function are chosen from four 
reduced order system transfer functions obtained 
from the 16 groups. The stability of the interval 
system is analyzed with the help of Kharitonov 
polynomials through Routh-Hurwitz stability 
criterion. The validity of the proposed method for 
an interval system is investigated with the help of a 
numerical example. 

6. NUMERICAL ILLUSTRATION 

 
The 3rd order interval system stated in [20] is 

considered as 
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The given interval system transfer function is in 
the form of  
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For which, the reduced order interval system is to 
be derived in the form of 
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From Equation (24), the following values are 
noted down and are used to obtain the Kharitonov 
polynomials. 
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The kharitonov polynomials are obtained 
separately for the higher order interval system’s 
numerator and denominator polynomials. 
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6.1 Numerator Kharitonov Polynomials 

Consider the numerator polynomial, 
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The polynomial N(s) is split into two 
components g(s) and h(s) where, g(s) is polynomial 
of even degree and h(s) is polynomial of odd 
degree. 

Defining two even polynomials, 
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Defining two odd polynomials, 
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The four Kharitonov polynomials would be 

22

21011111
35.1715)()()()( sssasaashsgsKsN ++=++=+==

−

−−

 (32) 

22

21021122
35.1815)()()()( sssasaashsgsKsN ++=++=+==

−−

−

 (33) 

22

21012213
25.1716)()()()( sssasaashsgSKsN ++=++=+==

−−

−  (34) 

22

21022224
25.1816)()()()( sssasaashsgSKsN ++=++=+==

−

−−  (35) 

6.2 Denominator Kharitonov Polynomials 

Consider the denominator polynomial, 
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The polynomial D(s) is split into two 
components g(s) and h(s) where, g(s) is polynomial 
of even degree and h(s) is polynomial of odd 
degree. 

Defining two even polynomials, 
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Defining two odd polynomials, 
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The four Kharitonov polynomials would be 
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From the kharitonov polynomials available for 
numerator and denominator of higher order interval 
system, the following four interval system transfer 
functions may be obtained. 
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6.3 Order reduction of G1(s), G2(s), G3(s) and 

G4(s) 

      
The proposed model order reduction method is 

applied for the system interval functions G1(s), 
G2(s), G3(s) and G4(s). From their corresponding 
reduced order interval systems, the reduced order 
interval systems of given higher order system can 
be constituted. By applying the proposed model 
order reduction technique, the following reduced 
order models are obtained.                                          
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From the reduced order system transfer functions 
available in Equations (49)-(52), the following 
conditions are obtained.  
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From the above resulting values, the reduced 
order interval system transfer function can be 
obtained as, 
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By using GA, the reduced order model is updated 
with respect to an ISE as, 
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The change in error rate for the lower limit and 
upper limit transfer functions of an interval system 
are shown in Figure 1 and 2 respectively. The unit 
step responses of higher order interval system and 
reduced order interval system are shown in Figure 
3. 

The closeness between the higher order model 
and reduced order lower limit system is analyzed 
with the help of ISE value and is listed in Table 1. 

7. STABILITY ANALYSIS OF INTERVAL 

SYSTEM 

 
The Kharitonov theorem states that the stability 

of a polynomial can be determined by testing just 
the four Kharitonov polynomials which are 
obtained by using upper and lower bounds of the 
unknown parameters. The Kharitonov theorem is 
based on Mikhailov criterion which states that for a 
control system to be stable if it is necessary and 
sufficient that the locus of its characteristic 
equation of order ‘n’ starts on for s=jω and move 
successfully in the counter clockwise direction 
through ‘n’ quadrants as ω increases from 0 to ∞.   

The value set of an interval polynomial at a fixed 
frequency is a rectangle called Kharitonov triangle 
whose sides are parallel to the real and imaginary 
axes. The inclusion or exclusion of the origin from 
this rectangle value set can be known easily from 
the corner points, which corresponds to the 
Kharitonov polynomials. The movement of 
Mikhailov loci of K11(s), K12(s), K21(s) and K22(s) 

should not include its origin in the value sets and it 
is possible to find minimum gain and phase 
margins of an interval plant from a subset of fixed 
transfer function. 

The stability of an interval system also can be 
determined by applying the Routh-Hurwitz 
criterion to the selected Kharitonov polynomials of 
given interval system. If the elements in the first 
column of the Routh array are positive then the 
interval system is stable, otherwise not. The nth 
order interval system is considered as, 
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The characteristic equation of the system 

1+G(s)=0 is obtained as, 
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which results in the polynomial, 
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Consider the 3rd order interval system stated in 
Equation (24), 
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The corresponding characteristic polynomial P(s) 

is obtained as, 
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Routh-Hurwitz criterion is easily used to check 

the stability of a simple polynomial which becomes 
difficult to apply to families of polynomials 
because it gives nonlinear equations with the 
unknown parameters.  The polynomial P(s) is 
Hurwitz stable, if and only if the following 
polynomials are Hurwitz stable according to the 
Kharitonov theorem. The Kharitonov polynomials 
of polynomial obtained in Equation (56) are, 
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These polynomials are called Kharitonov 
polynomials. The nominal polynomial is the 
polynomial with coefficients at the midpoint of the 
interval and is given by, 

5.365.53205.2)(
23

+++= sssSK   (61) 

 
The stability of the above nominal system is 

determined by applying the Routh-Hurwitz 
criterion and is depicted in Table 2. Since there is 
no sign change in the first column of Routh array, 
there are no roots in the right half of the s-plane. 
Hence, the system is stable. For each of the four 
polynomials stated in Equations (32) to (35), Routh 
array can be obtained and there is no sign change in 
the elements of first column of the array. This 
indicates that the given interval system is stable. 
The same procedure may be repeated to check the 
stability of reduced order model. 

Consider the reduced order system transfer 
function obtained in Equation (53) as, 
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The corresponding characteristic equation is 
obtained as, 

     
0

]937.2,0458.2[]5274.3,1315.3[]1,1[

]1872.2,4996.1[]5636.1,5087.1[
1

2
=

++

+
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0]1242.5,5454.3[]091.5,6402.4[]1,1[)( 2
=++= sssP  

The correponding midpoint reduced order 
polynomial is obtained as, 

03348.48656.4
2

=++ ss   (62) 

 
The Routh-Hurwitz table for the above 

characteristic equation is given in Table 3. In this 
table, there is no sign change in the elements of first 
column of the array. This indicates the reduced 
order system is stable. In a similar fashion, the 
stability can be analyzed for remaining three 
possible groups of kharitonov polynomial transfer 
functions. Thus the reduced order interval systems 
obtained through the proposed model order 
reduction methods are stable. 

8. CONCLUSION 

 
The unit step response of original interval system 

and reduced order interval system using proposed 
method were plotted for different illustrations. The 
step responses of the original and reduced order 
model interval systems are closer to each other. 
Hence, depending upon the closeness of 

approximation desired, the order of reduction in 
modeling is chosen. The proposed methods are 
versatile and simple. The time response pattern is 
excellently preserved in reduced order systems 
even for lower order approximations. The 
simulation results show the flexibility of extending 
the proposed scenarios to the reduction of interval 
systems.  
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Figure 1: Change in Error Rate of Lower Limit Interval 

System in GA Tuning Process 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 2: Change in Error Rate of Upper Limit Interval 

System in GA Tuning Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Step Responses of Higher Order and Reduced Order Interval Systems 
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Table 1: Comparison of error index values with existing methods for Example 1 
 

Reduction Method 
ISE 

Lower limit Upper limit 

Rajeswari Mariappan (2004) 0.4132 0.5825 

Sastry G.V.K. et al (2000) 0.2256 0.0095 

Kranthikumar et al (2011) 0.0124 0.0169 

Kranthikumar et al (2011 a) 0.0089 0.0113 

Proposed method 0.0004248 0.000146 

 
Table 2: Routh-Hurwitz table for nominal Kharitonov Polynomial 

 

S3 2.5 53.5 

S2 20 36.5 

S1 48.9375 0 

S0 36.5  

 

Table 3 Routh-Hurwitz table for reduced order system 

 

S2 1 4.3348 

S1 4.8656 0 

S0 4.3348  

 

 
 

    

 


