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ABSTRACT

High performance, energy efficient logic style is a popular research topic in the field of very large scale
integrated (VLSI) circuits. A complex constant logic style is used to implement a logic expression to
achieve high speed operation. This logic style is well suited for arithmetic circuit where critical path
comprises of large cascaded inverting gates. Multiplication is a most utilized arithmetic operator that forms
a part of filters, convolvers, and transforms processors in digital signal processing applications. This paper
focuses on the design of the Wallace tree multiplier, Baugh wooley and Array multiplier using static logic
style, dynamic logic style and compound constant delay logic style .The performance of energy delay
product of Wallace tree multiplier, array multiplier and Baugh wooley multiplier using compound constant
delay logic style is reduced considerably while compared to static and dynamic logic style.

Keywords: Wallace Tree multiplier, Array multiplier, Carry Skip adder, Cadence and Baugh Wooley
Multiplier

1. INTRODUCTION wiring capacitances. The circuit size is dependent
on the number of transistors, its size and the wiring
In low power Very Large Scale complexity. The switching activity and the node
Integration,  different  design levels like capacitances made up of gate, diffusion, and wire
architectural, layout, circuit level and technology capacitances are used to determine the power
optimization level are addressed [1]. In the circuit  dissipation which helps to control the circuit size.
design, the proper choices of levels are used to  The wiring complexity is estimated by the number
implement combinational logic circuits for power of connections, their lengths and type of rail logic
savings. The chosen logic style influences the used [2]. These characteristics vary from one logic
parameters that govern the power dissipation, style to another making the proper choice of logic
switching capacitance, transition activity and short  style crucial for circuit performance.
circuit currents. This paper present the multipliers
designed using static logic style, dynamic logic 2.1 Requirements of Low Power

style and constant delay logic style. The power The dynamic power is expressed as
dissipation characteristics of various multipliers P dynamic = C V2 £ )
using static logic, dynamic logic and constant delay It is directly proportional to the

logic style are compared qualitatively and capacitance C, supply voltage and switching
quantitatively with actual logic gate  frequency. The power dissipation is reduced by

implementations. proper selection of these parameters. When the
frequency is decreased the dynamic power also
2. LOGIC STYLE decreases with an increase in delay as frequency is

The logic style used in logic gates inversely proportional to delay.

influences the speed, size, power dissipation, and
the wiring complexity of a circuit. The circuit delay
can be determined from the number of inversion
levels, number of transistors in series, transistor
sizes i.e., channel widths, and intra- and inter-cell

2.2 Static Logic Style vs Dynamic Logic Style
Static Logic styles consist of pull up and
pull down network. In dynamic circuit, clock is
applied to make it function in two phases, a pre-
charge and evaluation phase [3]. In dynamic logic
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style, the logic function is implemented using only
n-type devices while the clock is applied to both p-
type and n-type devices. In pre-charge phase, the
output node is pre-charged to high, while the path
to ground is turned off. In the evaluation phase, the
path to high is turned off when the clock is high and
path to ground is turned on. Therefore, the output
node will either be high or low depending on the
input [4].

An advantage of dynamic logic style is that it
reduces the silicon area. Therefore static logic style
requires 2n transistors and dynamic logic style
requires nt2 transistors. The disadvantage of
dynamic logic style is the impossibility of
cascading the blocks to implement complex logic
and also excessive load on the clock signal that
need to be connected to every dynamic gate [5].

2.3 Constant Delay Logic Style

When CLK is high, CD logic enters pre-
discharge period and when CLK is low, CD logic
enters the evaluation period. Three modes will take
place like the contention, C—Q delay, and D-Q
delay modes. When CLK is low, the circuit enters
into the contention mode while input remains at
logic “1.” Here, it experiences a temporary glitch
when X is at a nonzero voltage level. When input
make a transition from high to low, C-Q delay
modes take place before CLK becomes low. While
CLK is at low, X rises to logic “1” and Y remains at
logic “0” for the entire evaluation cycle. D—Q delay
mode operates at the pre-evaluated characteristic of
CD logic to enable high-performance operations. In
this mode, CLK falls from high to low before input
transit hence X initially raises to a nonzero voltage
level [6].

3. DESIGN AND ANALYSIS

The multiplier architectures are studied for
high speed signal processing applications,
specifications for the multiplier design, modeling
the architecture, functional verification, and
developing the test bench to verify the design for all
possible input combinations using logic style
discussed in chapter 2.

3.1 Wallace Tree Multiplier
In 1964 C. S. Wallace introduced the
multiplication based on summing the partial
product bits in parallel using a tree of carry save
adders known as the Wallace tree [7]. This method
uses a three step process to multiply two numbers.
Step 1: Assigning two 8 bit numbers as an input.
Step 2: Finding the product of the bit formation.

Step 3: Using compressor technique, the bit
product matrix is compressed to a two row matrix
by using carry save adders known as Wallace tree.
Step 4: The last 12 bits are added using a ripple
carry adder to produce the product.

Sum J

| Carry skip adder ‘

.

Products

Figure 1: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Static Logic Style

This method yields multipliers with delay
proportional to log O(n). The block diagram of 8 bit
Wallace tree multiplier is shown in Figure 1. The
principle is to achieve partial product by reducing
the number of bits in each column using full adders
or half adders. From each column of the partial
product matrix, three bits are added to produce two
output bits, the sum bit in the same column and the
carry bit in the next column. Hence the output
matrix has been obtained by using the full adder
known as the 3:2 compressors. The Wallace tree
consists of numerous levels of column compressor
structures till it remains with only two full width
operands [9]. These two operands can then be
added using regular 2N bit adders to obtain the
product or 2:2 compressors respectively. Finally the
partial product matrix has a depth of only two. The
Wallace tree multiplier uses maximum hardware to
compress the partial product matrix to obtain the
final product.

The 8 bit Wallace tree multiplier using
dynamic logic style is shown in Figure 2. The
dynamic logic is identified when the clock goes
high for which the input signal is applied to the D
flip flop and output to the carry save adder. Here
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three bits are added to form a partial product and
produces two output bits with the sum and the
carry. The sum and carry bits are applied to the next
stage. The compressed bits is passed to carry
propagate adder to generate product.
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Figure 2: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Dynamic Logic Style

The 8 bit Wallace tree multiplier using
compound constant delay logic style is shown in
Figure 3.The timing block consists of D flip flop,
XOR gate and AND gate. The inputs to the XOR is
the input and output of the D flip flop [7]. The
clock signal and the output of XOR gate are applied
to the AND gate to generate the clock signal. This
signal acts as the clock signals for D flip flop. The
output of timing block is applied to the carry save
adder to form the partial product which is
compressed to the sum and carry. Each stage of
output is applied to the carry save adder till it

propagates through the carry skip adder.
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Figure 3: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Compound Constant Delay Logic Style

3.2 Array Multiplier

Array multiplier is based on add and shift
algorithm. Each partial product is generated by the
multiplication of the multiplicand with one
multiplier bit. The partial product are shifted
according to their bit orders and then added.
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Figure 4: Block Diagram Of 8 Bit Array Multiplier Using
Static Logic Style

The 8 bit array multiplier using static logic
style is shown in Figure 4. The addition can be
performed with normal carry propagate adder. N-1
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adders are required where N is the multiplier
length.

The 8 bit array multiplier using dynamic
logic style is shown in Figure 5. The product of bits
is applied to carry save adder at each stage. The
sum and carry bits are applied to the next stage.
Finally the partial products propagate through carry
propagate adder to generate product [10].
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Figure 5: Block Diagram Of 8 Bit Array Multiplier Using
Dynamic Logic Style

The 8 bit array multiplier using compound
constant delay logic style is given in Figure 6. The
data path used for the current input; the path will
remain in precharge mode when the circuit switches
ON. The timing block consists of D flip flop, XOR
gate and AND gate. The input to the XOR is the
input and outputs of the D flip flop. The clock
signal and the output of XOR gate are applied to
the AND gate to generate the clock signal. This
signal acts as the clock signals for D flip flop. The
output of timing block is applied to the carry save
adder to form the partial product which is
compressed to the sum and carry. The product of
the bits is applied to the carry save adder. The result

then propagates through the carry skip adder.

Figure 6: Block Diagram Of 8 Bit Array Multiplier Using
Compound Constant Delay Logic Style

3.3 Baugh Wooley Multiplier

The Baugh wooley (BW) algorithm is a
straightforward approach of performing signed
multiplications. An 8-bit Baugh wooley multiplier
using static logic style is shown in Figure 7, where
the partial product bits have been reorganized
according to Hatamian’s scheme.

Figure 7: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Static Logic Style

The creation of the reorganized partial-
product array of an N-bit wide multiplier comprises
three steps: i) The most significant bit (MSB) of the
first N —1 partial-product rows and all bits of the
last partial-product row, except its MSB, are
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inverted. i) A 1’ is added to the N column. iii)
The MSB of the final result is inverted.

The 8 bit Baugh wooley multiplier using
dynamic logic style is shown in Figure 8. All the
input signals are applied to the D flip flop and it is
activated when the clock is high [10]. Furthermore,
the output is applied to the carry save adder. The
sum and carry bits are generated when the three bits
are added .The product of bits are applied to carry
save adder at each stage. The sum and carry bits
are applied to the next stage. Finally the partial
products propagate through carry propagate adder
to generate products
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Figure 8: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Dynamic Logic Style

The 8 bit Baugh wooley multiplier using
compound constant delay logic style is shown in
Figure 9. The data path used for the current input,
remains in the evaluate mode. The timing block
consists of D flip flop, XOR gate and AND gate.
The input to the XOR is the input and outputs of
the D flip flop. The clock signal and the output of
XOR gate are applied to the AND gate to generate
the clock signal. This signal acts as the clock
signals for D flip flop. The output of timing
block is applied to the carry save adder to form the
partial product which is compressed to the sum and
carry. The product of the bits is applied to the

carry save adder and gets propagating through the
carry skip adder.
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Figure 9: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Compound Constant Delay Logic Style

4. SIMULATION RESULTS

The integrated software environment (ISE)
is Xilinx design software suit that allows taking the
design from design entry through Xilinx device
programming. The ISE project navigator manages
and processes the design through varies steps in the
design flow. Xilinx 9.1i provides design entry and
synthesis supporting Very High speed integrated
Hardware description Language (VHDL)/Verilog,
place and route, completed verification and debug.
The ISE design suit is the central Electronic Design
Automation (EDA) product family sold by
Xilinx.ISE controls all aspects of the design flow.
Through the project navigator interface, we can
access all the various design entry and design
implementation tools.

In this paper, delay, power, power delay
product and energy delay product are analyzed
using Cadence tool. The analyzed data are
computed for Wallace tree multiplier, Array
multiplier and Baugh wooley multiplier using static
logic style, dynamic logic style and constant delay
logic style.
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4.3 Results of Multiplier Using Compound
Constant Delay Logic Style
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4.4 Performance analysis 4.5 Comparison table

Table 1: Static Logic Style

Static Logic style

Types of Delay Power PDP EDP
multiplier (ns) (pw) ) (fj.ns)
Wallace
EWALLACE tree 2911 45.245 131.1 381.63
TREE multiplier
MULTIPLIER ﬁlfl‘:ly e 2.804 39.050 109.4 306.75
“A Y Ba gﬁ
1}
MULTIPLIER wooley 3.006 41.210 123.87 372.35
multiplier
4BAUGH
WOOLEY ) . .
MULTIPLIER Table 2: Dynamic Logic Style
Types of Delay Power PDP EDP
multiplier (ns) (uw) fj) (fj.ns)
Figure 28: Performance Analysis Of Multipliers Using Wallace
Static Logic Style tree 3232 53.087 171.57 554.51
multiplier
f;:ﬁiypner 3.126 47316 14790 | 46233
Dynamic Logic style Baugh
wooley 3.446 47.567 163.91 564.83
multiplier
#WALLACE
TREE
MULTIPLIER Table 3: Compound Constant Delay Logic Style
B ARRAY
MULTIPLIER
Types of Delay Power PDP EDP
multiplier (ns) (pw) i) (fj.ns)
Wallace
tree 3.243 13.112 425 137.89
multiplier
Array 3.204 13.868 44.43 142.35
multiplier
: . : 7 . Baugh
Figure 29: Perﬁ)rmance.Analy‘szs Of Multipliers Using wooley e 5e 47.70 164.66
Dynamic Logic Style multiplier

. 5. CONCLUSION
Compound constant delay logic
style Multipliers are the major portions in
hardware consumption for filters. Carry skip adder
is used to speed up the accumulation. Wallace tree
 Wallace tree multiplier red}lces the delay by taking par?ial
multiplier product reduction method. Wallace tree multiplier,
array multiplier and Baugh wooley multiplier are
implemented using static logic style, dynamic logic
style and Compound constant delay. From the
tabulated results it is clear that the Energy Delay
product for a Wallace Tree Multiplier is 137.89
fj.ns, Array multiplier is 142.35 fj.ns and the Baugh
Wooley Multiplier is 164.66 fj.ns. The simulation
result shows that energy delay product of Wallace
tree multiplier, array multiplier and Baugh wooley
multiplier using compound constant delay logic
style is better than static logic style and dynamic
logic style.

® Array multiplier

M Baugh wooley

Figure 30: Performance Analysis Of Multipliers Using
Compound Constant Delay Logic Style
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