Journal of Theoretical and Applied Information Technology
10" August 2014. Vol. 66 No.1 \Y

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 WWww jatit.org E-ISSN: 1817-3195

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND
CONSTANT DELAY LOGIC STYLE

'S. DARWIN,? A. BENO, ° L. VIJAYA LAKSHMI
142 Agsistant Professor — Electronics & Communication Engineering Department,
Dr. Sivanthi Aditanar College of Engineering, Tamilnadu, INDIA
* PG Scholar, ME VLSI Design, Dr.Sivanthi Aditanar College of Engineering, Tamilnadu, INDIA
E-mail: 'ssdarwin@live.com, *benoaustin@gmail.com *vijeyalaxmi@gmail.com

ABSTRACT

High performance, energy efficient logic style is a popular research topic in the field of very large scale
integrated (VLSI) circuits. A complex constant logic style is used to implement a logic expression to
achieve high speed operation. This logic style is well suited for arithmetic circuit where critical path
comprises of large cascaded inverting gates. Multiplication is a most utilized arithmetic operator that forms
a part of filters, convolvers, and transforms processors in digital signal processing applications. This paper
focuses on the design of the Wallace tree multiplier, Baugh wooley and Array multiplier using static logic
style, dynamic logic style and compound constant delay logic style .The performance of energy delay
product of Wallace tree multiplier, array multiplier and Baugh wooley multiplier using compound constant
delay logic style is reduced considerably while compared to static and dynamic logic style.

Keywords: Wallace Tree multiplier, Array multiplier, Carry Skip adder, Cadence and Baugh Wooley
Multiplier

1. INTRODUCTION wiring capacitances. The circuit size is dependent
on the number of transistors, its size and the wiring
In low power Very Large Scale complexity. The switching activity and the node
Integration, different design levels like capacitances made up of gate, diffusion, and wire
architectural, layout, circuit level and technology capacitances are used to determine the power
optimization level are addressed [1]. In the circuit dissipation which helps to control the circuit size.
design, the proper choices of levels are used to The wiring complexity is estimated by the number
implement combinational logic circuits for power of connections, their lengths and type of rail logic
savings. The chosen logic style influences the used [2]. These characteristics vary from one logic
parameters that govern the power dissipation, style to another making the proper choice of logic
switching capacitance, transition activity and short style crucial for circuit performance.
circuit currents. This paper present the multipliers
designed using static logic style, dynamic logic 2.1 Requirements of Low Power

style and constant delay logic style. The power The dynamic power is expressed as
dissipation characteristics of various multipliers P dynamic = C V2 £)
using static logic, dynamic logic and constant delay It is directly proportional to the

logic style are compared qualitatively and capacitance C, supply voltage and switching
quantitatively with actual logic gate frequency. The power dissipation is reduced by

implementations. proper selection of these parameters. When the
frequency is decreased the dynamic power also
2. LOGIC STYLE decreases with an increase in delay as frequency is

The logic style used in logic gates inversely proportional to delay.

influences the speed, size, power dissipation, and
the wiring complexity of a circuit. The circuit delay
can be determined from the number of inversion
levels, number of transistors in series, transistor
sizes i.e., channel widths, and intra- and inter-cell

2.2 Static Logic Style vs Dynamic Logic Style
Static Logic styles consist of pull up and
pull down network. In dynamic circuit, clock is
applied to make it function in two phases, a pre-
charge and evaluation phase [3]. In dynamic logic

e
135

Journal of Theoretical and Applied Information Technology

10™ August 2014. Vol. 66 No.1 N

S

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645

WWww jatit.org

E-ISSN: 1817-3195

style, the logic function is implemented using only
n-type devices while the clock is applied to both p-
type and n-type devices. In pre-charge phase, the
output node is pre-charged to high, while the path
to ground is turned off. In the evaluation phase, the
path to high is turned off when the clock is high and
path to ground is turned on. Therefore, the output
node will either be high or low depending on the
input [4].

An advantage of dynamic logic style is that it
reduces the silicon area. Therefore static logic style
requires 2n transistors and dynamic logic style
requires nt2 transistors. The disadvantage of
dynamic logic style is the impossibility of
cascading the blocks to implement complex logic
and also excessive load on the clock signal that
need to be connected to every dynamic gate [5].

2.3 Constant Delay Logic Style

When CLK is high, CD logic enters pre-
discharge period and when CLK is low, CD logic
enters the evaluation period. Three modes will take
place like the contention, C—Q delay, and D-Q
delay modes. When CLK is low, the circuit enters
into the contention mode while input remains at
logic “1.” Here, it experiences a temporary glitch
when X is at a nonzero voltage level. When input
make a transition from high to low, C-Q delay
modes take place before CLK becomes low. While
CLK is at low, X rises to logic “1” and Y remains at
logic “0” for the entire evaluation cycle. D—Q delay
mode operates at the pre-evaluated characteristic of
CD logic to enable high-performance operations. In
this mode, CLK falls from high to low before input
transit hence X initially raises to a nonzero voltage
level [6].

3. DESIGN AND ANALYSIS

The multiplier architectures are studied for
high speed signal processing applications,
specifications for the multiplier design, modeling
the architecture, functional verification, and
developing the test bench to verify the design for all
possible input combinations using logic style
discussed in chapter 2.

3.1 Wallace Tree Multiplier
In 1964 C. S. Wallace introduced the
multiplication based on summing the partial
product bits in parallel using a tree of carry save
adders known as the Wallace tree [7]. This method
uses a three step process to multiply two numbers.
Step 1: Assigning two 8 bit numbers as an input.
Step 2: Finding the product of the bit formation.

Step 3: Using compressor technique, the bit
product matrix is compressed to a two row matrix
by using carry save adders known as Wallace tree.
Step 4: The last 12 bits are added using a ripple
carry adder to produce the product.

Sum J

| Carry skip adder ‘

.

Products

Figure 1: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Static Logic Style

This method yields multipliers with delay
proportional to log O(n). The block diagram of 8 bit
Wallace tree multiplier is shown in Figure 1. The
principle is to achieve partial product by reducing
the number of bits in each column using full adders
or half adders. From each column of the partial
product matrix, three bits are added to produce two
output bits, the sum bit in the same column and the
carry bit in the next column. Hence the output
matrix has been obtained by using the full adder
known as the 3:2 compressors. The Wallace tree
consists of numerous levels of column compressor
structures till it remains with only two full width
operands [9]. These two operands can then be
added using regular 2N bit adders to obtain the
product or 2:2 compressors respectively. Finally the
partial product matrix has a depth of only two. The
Wallace tree multiplier uses maximum hardware to
compress the partial product matrix to obtain the
final product.

The 8 bit Wallace tree multiplier using
dynamic logic style is shown in Figure 2. The
dynamic logic is identified when the clock goes
high for which the input signal is applied to the D
flip flop and output to the carry save adder. Here

136

Journal of Theoretical and Applied Information Technology

10" August 2014. Vol. 66 No.1 S\." i‘
© 2005 - 2014 JATIT & LLS. All rights reserved- S ATIT
ISSN: 1992-8645 www jatit.org E-ISSN: 1817-3195

three bits are added to form a partial product and
produces two output bits with the sum and the
carry. The sum and carry bits are applied to the next
stage. The compressed bits is passed to carry
propagate adder to generate product.

7] b[6] B[] b{4] B3] b[2] B[] bl0] 7] al6] &S] al4] &3]

L]

a2] af1] a[0]

|

D Flip flop

csa 2 ‘ ’ csal |
Sus Canry Sum Carty
’ CsaA 4 ‘ ‘ CsA 3
Sum Cany Sum Cany
’ csA s ‘
Sum Cany
(CsA 6

l Canry

| Cany skip addes J

I

Products

Figure 2: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Dynamic Logic Style

The 8 bit Wallace tree multiplier using
compound constant delay logic style is shown in
Figure 3.The timing block consists of D flip flop,
XOR gate and AND gate. The inputs to the XOR is
the input and output of the D flip flop [7]. The
clock signal and the output of XOR gate are applied
to the AND gate to generate the clock signal. This
signal acts as the clock signals for D flip flop. The
output of timing block is applied to the carry save
adder to form the partial product which is
compressed to the sum and carry. Each stage of
output is applied to the carry save adder till it

propagates through the carry skip adder.

b{7] bl6] B[] b{4] bl3] B[z} B{i] b[o] A7) alé) als] als] al3] af2] Al afo]

- 1
137

‘ Timing Block ‘

| csA 2 ‘ ‘ csal \

Figure 3: Block Diagram Of 8 Bit Wallace Tree
Multiplier Using Compound Constant Delay Logic Style

3.2 Array Multiplier

Array multiplier is based on add and shift
algorithm. Each partial product is generated by the
multiplication of the multiplicand with one
multiplier bit. The partial product are shifted
according to their bit orders and then added.

ATHOFIEOI 1B SEBONTEOIS0 wiSHIOYVBOTEO. aBOIINSBIEO i SETBION 801180

Y S B B

Csa 1 |

a[7:0b1

Figure 4: Block Diagram Of 8 Bit Array Multiplier Using
Static Logic Style

The 8 bit array multiplier using static logic
style is shown in Figure 4. The addition can be
performed with normal carry propagate adder. N-1

Journal of Theoretical and Applied Information Technology

10™ August 2014. Vol. 66 No.1 N

S

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645

WWww jatit.org

E-ISSN: 1817-3195

adders are required where N is the multiplier
length.

The 8 bit array multiplier using dynamic
logic style is shown in Figure 5. The product of bits
is applied to carry save adder at each stage. The
sum and carry bits are applied to the next stage.
Finally the partial products propagate through carry
propagate adder to generate product [10].

o7) b{6] Bf3] bf4] B3] 2] Bt} O{0] 7] af€] af5] 4] aB] a2 afl] A0

pldgb b d 4 Ldd gy

D Flipflop

J ,‘WWJM,M J.@./_W,,{,W,wl,p..w.m;‘MIWWPW l s

’ €SA 1

[70p1

Products

Figure 5: Block Diagram Of 8 Bit Array Multiplier Using
Dynamic Logic Style

The 8 bit array multiplier using compound
constant delay logic style is given in Figure 6. The
data path used for the current input; the path will
remain in precharge mode when the circuit switches
ON. The timing block consists of D flip flop, XOR
gate and AND gate. The input to the XOR is the
input and outputs of the D flip flop. The clock
signal and the output of XOR gate are applied to
the AND gate to generate the clock signal. This
signal acts as the clock signals for D flip flop. The
output of timing block is applied to the carry save
adder to form the partial product which is
compressed to the sum and carry. The product of
the bits is applied to the carry save adder. The result

then propagates through the carry skip adder.

Figure 6: Block Diagram Of 8 Bit Array Multiplier Using
Compound Constant Delay Logic Style

3.3 Baugh Wooley Multiplier

The Baugh wooley (BW) algorithm is a
straightforward approach of performing signed
multiplications. An 8-bit Baugh wooley multiplier
using static logic style is shown in Figure 7, where
the partial product bits have been reorganized
according to Hatamian’s scheme.

Figure 7: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Static Logic Style

The creation of the reorganized partial-
product array of an N-bit wide multiplier comprises
three steps: i) The most significant bit (MSB) of the
first N —1 partial-product rows and all bits of the
last partial-product row, except its MSB, are

138

Journal of Theoretical and Applied Information Technology

10™ August 2014. Vol. 66 No.1 N

S

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645

WWww jatit.org

E-ISSN: 1817-3195

inverted. i) A 1’ is added to the N column. iii)
The MSB of the final result is inverted.

The 8 bit Baugh wooley multiplier using
dynamic logic style is shown in Figure 8. All the
input signals are applied to the D flip flop and it is
activated when the clock is high [10]. Furthermore,
the output is applied to the carry save adder. The
sum and carry bits are generated when the three bits
are added .The product of bits are applied to carry
save adder at each stage. The sum and carry bits
are applied to the next stage. Finally the partial
products propagate through carry propagate adder
to generate products

b[7) b{6] b(S] bf4] 3] b[2] 1] b{O] a7 af6] afS) al4] af3) al2] a(] a0

JEENIANNEENENED

‘ D Flipflop

Figure 8: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Dynamic Logic Style

The 8 bit Baugh wooley multiplier using
compound constant delay logic style is shown in
Figure 9. The data path used for the current input,
remains in the evaluate mode. The timing block
consists of D flip flop, XOR gate and AND gate.
The input to the XOR is the input and outputs of
the D flip flop. The clock signal and the output of
XOR gate are applied to the AND gate to generate
the clock signal. This signal acts as the clock
signals for D flip flop. The output of timing
block is applied to the carry save adder to form the
partial product which is compressed to the sum and
carry. The product of the bits is applied to the

carry save adder and gets propagating through the
carry skip adder.

7L GG NS B GB] B N GO) 6]) W) N a0

L L

’ Tiing Block

Figure 9: Block Diagram Of 8 Bit Baugh Wooley
Multiplier Using Compound Constant Delay Logic Style

4. SIMULATION RESULTS

The integrated software environment (ISE)
is Xilinx design software suit that allows taking the
design from design entry through Xilinx device
programming. The ISE project navigator manages
and processes the design through varies steps in the
design flow. Xilinx 9.1i provides design entry and
synthesis supporting Very High speed integrated
Hardware description Language (VHDL)/Verilog,
place and route, completed verification and debug.
The ISE design suit is the central Electronic Design
Automation (EDA) product family sold by
Xilinx.ISE controls all aspects of the design flow.
Through the project navigator interface, we can
access all the various design entry and design
implementation tools.

In this paper, delay, power, power delay
product and energy delay product are analyzed
using Cadence tool. The analyzed data are
computed for Wallace tree multiplier, Array
multiplier and Baugh wooley multiplier using static
logic style, dynamic logic style and constant delay
logic style.

139

Journal of Theoretical and Applied Information Technology
10™ August 2014. Vol. 66 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

ISSN: 1992-8645 WWww jatit.org

4.1 Results of multiplier using static logic style N ApeniaE AR AR

fle Eat Yew Jermnal Taps Heip

Cose | EnchontziE] Gonmrated by: Encounter (R} RTL Compiler vO9, 10-5186 2

Genorated on: Jan 37 2014 64:89:42 PH

. l| Module:
inf| | 4t Technelegy Labrary: 1.0
Operating congitions: nced_tree) o
Wireload mode: 1
Area mode: timing Library
dBicayout Leakage Dynamic Total
Instance Colls Power(nW) Power{(nW) Pgus
A
A DOHRL 2 [H] 1467 areay 122 5301320 3%
9 a8y 1 95,503
19278 [7% fatn 1 95,470
1997 NANDABXL i 13 1524 [EX %656 F fase 1 94,816 1070448
192/8 0o 28855 fatg 1 91.81a 501.927
4 NANDZBKL T 00, (el 59 | fat2 1 94,853 385.373
16) wtport 0g 0V fas1 1 94.650 740,425
- fas3 1 24.542 525.661
Tas? 1 94.520 1106.585
Ta3d 1 a4 668,646
az6 1 076

GEprig

& rootmiocainost... || . (Design Brows.. [Consale - Sim... || = (wavererm 1 - .., ||] [Cadence Enco,

EECHCECHI=PL]0! Figure 13: Power Of Array Multiplier

@ appiications Places System %

Figure 10: Delay Of Wallace Tree Multiplier

Detalled Timing Report

a

root@localhost:~/cadenc

File Edit View Terminal Tabs Help

rci/> report power

Generated by: Encounter (R) RTL Compiler veg.19-5106_2 Pt ()~ T Sew (g3 [Dby ipe) [_aetpdipe) [
Generated on: Mar 13 2014 01:06:21 PM =

Module: wtm_skip @180

Technology Llibrary: slow_normal 1.0 s i ait] 2]
Operating conditions: slow (balanced tree) s 5 e - .
Wireload mode: enclosed iyl = =
Area mode: timing library

Leakage Dynamic Total
Instance Cells Power(nW) Power(ni) Power (nW)

wtm_skip 148 5469.967
fa3g 1 95.140

fa28 1 94,971 1315.858 1418.029
fa26 1 94.846 715.607 810.453
fad3 1 94,625 1011.775 1106.400
fals 1 94,616 79.184 899,799
fals 1 94,584 1627.303 1121.887 1= e
fa 1 94584 558.823 652,527] | ro... Dk
fal7 1 94,476 704,018 798,494
fa3e 1 94.475 1136.351 1230.826 |
fadd 1 94,474 880.740 975,220 . . 7.
Figure 14: Delay Of Baugh Wooley Multiplier
Figure 11: Power Of Wallace Tree Multiplier M Appications _Places System @) " 131 Q
E root@localhost:~/cadence_db =E=|
Fle Edit View Te | Tabs Hel
) ippicaions Haces Syt @ @ e Edb Mew Terminal Taps Help 3
Detalled Timing Report Generated by: Encounter(R) RTL Compiler v09,10-5106 2 il
cose | Enpont 5] Generated on: Mar 18 2014 01:11:28 PM
e = e S = Module: baugh_skip
= . . Technology library: slow normal 1.8
Operating conditions: slow (balanced_tree)
Wireload mode: enclosed
Area mode: timing library
3 |
s - 1 L L 1 Leakage Dynamic Total
B o i | Instance Cells Power(nw) Power(nw) Fower(nw)
| oo oo | i 25 73 LE See F | mmmememmesemeemesessesescesaoaooos
sy I i i baugh skip 144 5597.679 35612.
ok 1 | | tas6 1 95.414 281
|- os4rc = 20 20N fas1 1 94.824 729.398 824.223
g poor_| 4) 20 L) 20048 ’J ta39 1 94.814 776.578 871.392
e e - - - T B | tadl 1 94.748 618.989 765.73%
" a5 1 94.711 972.879 1067.598
tas2 1 94.631 1176.760 1271.399
ta2d 1 94.513 668.646 763.150
a3l 1 94.505 823.250 917.755
ta33 1 94.296 385.747 480.242
fa3g 1 94.491 902.850 997.341
fal7 1 94.462 ©608.676 694.539
tals 1 94.452 359.698 454.149 H
Figure 15: Power Of Baugh Wooley Multiplier

Figure 12: Delay Of Array Multiplier

140

Journal of Theoretical and Applied Information Technology
10™ August 2014. Vol. 66 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

B Applications Flaces System T a1a1 G

4.2 Results of Multiplier Using Dynamic Logic
Style

ATL Compiler veo.10-5166 3 A
13030524 AM

Module : array_dyn
Tochnology Library: slow normal 1.6
Operating condirions slow (balanced tren)
Wireload mode: ancloved
Aron mode timing Library

Ciose | Endpoint:[olie]

1 Leakage Dynamic Total
Instance €ells Power(nW) Power (nW) Fow

W

arcay_oym 138 sa7s,
fas? 1 05,
raon
rasy

iyt

DDHAL 3 [E] 457

NAND4EHL 1 12 524,

NANDZERL i a5 FrE —
ut port]

°
H

843,708 32

| | @ groot@iocainost ~ica 1 [Cadence Encountert... || B mot@ocamnase. —/ca; [Cadence Encountert... | &

Figure 19: Power Of Array Multiplier

@ Applications Places System & 14:33 @
Detailed Timing REpOrEt

. .. Cose | Encont el
Figure 16: Delay Of Wallace Tree Multiplier ;

nf| = £l

P9 Applications Places System & 13:26 Q)

root@localho:

File Edit View Terminal Tabs Help

949780

Wireload mode: enclosed = FIeha CaBEBIRL z
Area mode: timing library fasaicarryout
Sakartyin
[gsain
Leakage Dynamic Total L onent 2
Instance Cells Power(n) Power (nii) Power (nki) 70
= 7o larzAL i
wim_dyn skip 165 5980.014 47107, 1i6] ut port
a3l 1 95.484 1089,
fa38 1 95.369 547.
fal3 1 95.127 604.
fa3e 1 94.795 1008.
fals 1 94791 1132,
tald 1 94.649 709,
fa27 1 94.607 933.952
fa33 1 94.456 1148.052
falé 1 94.438 970.469
a26 1 94.410 664.487
al9 1 94379 558.592
fa34 1 94377 1012.121
al7 1 94.200 1104.870
faz8 1 94.286 1311.867
ta24 1 94.23 527.076
fal2 1 94215 503.874
e L S g I Figure 20: Delay Of Baugh Wooley Multiplier
Fi 17: P 0 We ll T M l ; l @ Applications Places System &8 1432 @
igure . rower f ailace iree utl}') ler
root@localnost:
Fle Edit View Terminal Taps Help
M Applications Places System @ Generated by: Encounter(R) RTL Compiler v89.18-5186_2
lled Timing Report Generated on: Mar 18 2014 02:31:42 PM
Hodule: baugh_dyn_skip
Technology library: slow normal 1.8
Operating conditions: slow (balanced tree)
Wireload mode: enclosed
Area mode: timing library
t T — = o T T Leakage Dynamic Total
o I ! ! Instance Cells Power(nW) Power(nW) Power (ni)
e —t——1T—Tm———— 71— |
] 00 244 baugh dyn_skip 160 6178.781
gsiico ADoRN | 25 7ad 1785 2729, F fas50 1 95.822
iy | fa20 1 94.766 654.164 748,920
";’jﬂ] I ! s T fasz 1 94.745 1222.083 1316.827
1 - 2 tad6 1 94.707 982.897 1077.604
e poer Ll L L LR ;J fa23 1 94.693 700.582 795.275
fa43 1 94.540 1168.329 1262.870
tad9 1 94.507 423.187 517.695
fads 1 94.584 922.934 10817.438
fas3 1 94.467 1064.791 1159.258
- = E ta33 1 94.458 703.264 797.714
e B a1l 1 94.405 434.235 528.641
fa39 1 94.399 845.679 946.878 =
fada 1 94.398 966.178 1060.576

Figure 21: Power Of Baugh Wooley Multiplier

Figure 18: Delay Of Array Multiplier

141

Journal of Theoretical and Applied Information Technology
10™ August 2014. Vol. 66 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4.3 Results of Multiplier Using Compound
Constant Delay Logic Style

M Applications Paces System 1437
M Applications Places System 1141 Q)
=
LT Rl Fle Edt View Terminal Taps Help
!) s S () Al BT | | Generated by: Encounter (R} ATL Compiler v89.10-5106 2 O
. 49 41
Generated on: Feb 12 2014 11:38:24 AM
Modute: array_dyn
Technology library: slow normal 1.0
Operating conditions: Slow (palanced tree)
! _ S _ — Wireload mode: enclosed
Il " 1] " I L T T) Area mode: timing library
|PBearyout
| I I I l I | |
|2 00 26018 Leakage Dynsste Total
:,ﬁf_ﬂ Jromih . E: 12 1] i1l X8 B Instance Cells Power(nW) POWET(nW) POwer(nw)
0 [0 006 :
zﬁsw WNDGEEL | i 73] TS24 T3 E ‘”"‘21”?" ”‘: 5539'1”
e . | | ! | o8 I ra68 1 9117 veeie23 1038 740
E’;‘l’v &mﬁm ! 4 D GE e rasa 1 95.036 B79.502 974.537
ras? 1 94,772 95B.460 1053,181
fa33 1 94693 678.510 773.203
— i — r— — e) — r—] I G S i = ra3s 1 94667 717.434 @12.100
| L | tea2 1 94638 793146 07782
g alalg s ra69 1 94405 735.727 830.222
e e rase 1 94.466 1032.967 1127.433
| m | rase 1 93434 937.343 1031777
| | rare 1 94.405 434233 526.638
ra26 1 94384 579,759 674.1a3
ras2 1 9438 $21.208 615.590
ra1s 1 94380 46B.446 562.826
| | rasa 1 94365 923.132 1017.498
i | rasa 1 94323 B43.708 938.032 E
| - & | [roou@iocalhest ~/ca. .. [Cadence Encounteri... || @ root@locathost ~/ca... | Cadence Encounter(... | 8

Figure 22: Delay Of Wallace Tree Multiplier Figure 25: Power Of Array Multiplier

M npplicanons Maces System @)

1436 4y appications Faces System Q)

& Eat Mhew Temnindl TalE Help
Synthesis succesded, =
FEL/E POPOFT pEMOr

Generatod by Encounter(R) RTL Compiler v09.10-5106 2
Generated on; Mar 21 2014 02:36:48 PN
Module : wallace skip cd
Teehnalagy Library: =low normal 1.0 = - 3
Operating conditions: slow (balanced_tres) -
Wireload mode wnclosed wEEE 3 iE ¢
Aren mooe; Timing LIBrATY eyt t
nsdeanm
g3aia a0 31880
ge Oynamic Total oL I 2 21 CY 1471 E
Instance Cells Power(nk) Fower(nW) Fo I I

wallace skip cd 214 B480.236 6532.474

fale 1 *1.015 .60 Lt
fall 1 #1.015 0,000 #1.015
fal2 1 51.018 6.000 81.018
fal4 1 91.01% 0.080 91,015
fals 1 #1.013 6.008 21.013
falé 1 a1 015 6.888 a1.818
fal? 1 1,815 & 888 01,815
a1l 1 21,015 0,000 21,015
falg i 1,015 0000 91,005
a2 1 01,018 0.000 01.01%
fa2o 1 91.015 b.000 91,015
Figure 23: Power Of Wallace Tree Multiplier Figure 26: Delay Of Baugh Wooley Multiplier
M sppiications Paces System @ _ 11:08 Q) M Asplications Places & = T
Detalled Timing Report
Cose | Enpont [T Ple Edt Yiew Terminal Tabs Melp
T 1 Generated by: Encounter(R) RTL Compiler vB9.10-5106 2]
80| &8 Generated on: Mar 18 2014 82:52:53 PH
Module: baugh_cd_skip
Technology Library: slow normal 1.9
I - Aran mode; tising Library
osico ¢
o Lesape Dysamic Tam
it T T I Instance Cells Powar(nW) Power(nW) Pogmsis
| pserci | 00 28631 i m ===
goAITo wooR 1 11 w3 1653 3191 F Baugh_cd_sKLp 209 6702.715 7118.14
T T 1 10L.224 ©.060
BFFGAL T T tas2 1 91.546 36.298
et T fal8 1 01.818 @ 0808
fall 1 91.015 9.000
ral1s 1 91,015 .00
fald 1 91.615 & 0od
fals 1 91.815 6.000
1ale i 91,015 9.000
falv 1 91.015 8,000
1519 1 91.815 ©.0800
raze 1 91.015 @.008 I
faz1 1 91.015 @.080
fa22 1 91.015 0,000

Figure 24: Delay Of Array Multiplier Figure 27: Power Of Baugh Wooley Multiplier

142

10™ August 2014. Vol. 66 No.1

Journal of Theoretical and Applied Information Technology <
S\. ?

© 2005 - 2014 JATIT & LLS. All rights reserved- S ATIT
ISSN: 1992-8645 WWww jatit.org E-ISSN: 1817-3195
4.4 Performance analysis 4.5 Comparison table

Table 1: Static Logic Style

Static Logic style

Types of Delay Power PDP EDP
multiplier (ns) (pw)) (fj.ns)
Wallace
EWALLACE tree 2911 45.245 131.1 381.63
TREE multiplier
MULTIPLIER ﬁlfl‘:ly e 2.804 39.050 109.4 306.75
“A Y Ba gﬁ
1}
MULTIPLIER wooley 3.006 41.210 123.87 372.35
multiplier
4BAUGH
WOOLEY) . .
MULTIPLIER Table 2: Dynamic Logic Style
Types of Delay Power PDP EDP
multiplier (ns) (uw) fj) (fj.ns)
Figure 28: Performance Analysis Of Multipliers Using Wallace
Static Logic Style tree 3232 53.087 171.57 554.51
multiplier
f;:ﬁiypner 3.126 47316 14790 | 46233
Dynamic Logic style Baugh
wooley 3.446 47.567 163.91 564.83
multiplier
#WALLACE
TREE
MULTIPLIER Table 3: Compound Constant Delay Logic Style
B ARRAY
MULTIPLIER
Types of Delay Power PDP EDP
multiplier (ns) (pw) i) (fj.ns)
Wallace
tree 3.243 13.112 425 137.89
multiplier
Array 3.204 13.868 44.43 142.35
multiplier
: . : 7 . Baugh
Figure 29: Perﬁ)rmance.Analy‘szs Of Multipliers Using wooley e 5e 47.70 164.66
Dynamic Logic Style multiplier

. 5. CONCLUSION
Compound constant delay logic
style Multipliers are the major portions in
hardware consumption for filters. Carry skip adder
is used to speed up the accumulation. Wallace tree
 Wallace tree multiplier red}lces the delay by taking par?ial
multiplier product reduction method. Wallace tree multiplier,
array multiplier and Baugh wooley multiplier are
implemented using static logic style, dynamic logic
style and Compound constant delay. From the
tabulated results it is clear that the Energy Delay
product for a Wallace Tree Multiplier is 137.89
fj.ns, Array multiplier is 142.35 fj.ns and the Baugh
Wooley Multiplier is 164.66 fj.ns. The simulation
result shows that energy delay product of Wallace
tree multiplier, array multiplier and Baugh wooley
multiplier using compound constant delay logic
style is better than static logic style and dynamic
logic style.

® Array multiplier

M Baugh wooley

Figure 30: Performance Analysis Of Multipliers Using
Compound Constant Delay Logic Style

e
143

Journal of Theoretical and Applied Information Technology

10™ August 2014. Vol. 66 No.1

S

N

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645

WWww jatit.org

E-ISSN: 1817-3195

REFERENCES:

(1]

(2]
3]

(4]

(3]

(6]

(7]

(8]

(9]

M. Aguirre-Hernandez and M. Linares-
Aranda, “CMOS full-adders for energy-
efficient arithmetic applications,” IEEE Trans.
Very Large Scalelntegr. (VLSI) Syst., vol. 19,
no. 99, Apr. 2010 pp. 1-5.

Douglas A.Pucknell and Eshraghian, Basic
VLSI Design, 3" ed. Reading,PHI, 2010
N.Goncalves and H.De Man, “NORA: A
racefree dynamic c¢MOS technique for
pipelined logic structures,” IEEE J.Solid —State
Circuits,vol.18, no.3, Jun.1983, pp261-266.
A.K.Kumar,D.Somasundareswari,T.S.Pradeepa
,”Design of Low Power Multiplier with Energy
Efficient Full adder using DPTAAL,”Hindawi
Publishing Corporation Very Large Scale
Integr.(VLSI) Syst., vol.2013, Feburary 2013
Article ID 157872, pages 9.

C.Lee and E.Szeto, “Zipper CMOS,” IEEE
Circuits Syst.Mag., vol .2, no. 3, May 1986,pp
10 -16.

V.Navarro-Botello, J.A.Monitel-Nelson, and
S.Nooshabadi,”Low Power Arthimetic Circuit
in Feedthroughdynamic CMOS logic,” in
Proc.IEEE Int. 49" Midw. Symp.Circuits
Syst.,Aug.2006, pp. 709-712.

N.Wesye and D.Harris, CMOS VLSI Design: A
Circuits and Systems Perspective, 4" ed.
Reading, MA;Addison Wesley, Mar. 2010.
L.Raja,B.M.Prabhu and K.Thanushkodi
‘Design of Low power digital multiplier using
Dual Threshold wvoltage Adder Module,
“International Conference on Communication
and System Design 2011 .

M.Ravindrakumar, G.ParameswaraRao,
“Design and Implementation of 32 bit High
Level Wallace Tree Multiplier,” International
Journal ~ of Technical Research and
Applications, vol. 1 Issue 4 (sept-oct
2013),pp.86-90.

[10] Rafati, S. Fakhraie and K.Smith, “ A 16 bit

barrel shifter implemented in data driven
dynamic logic(D3L),” [EEE Trans.Circuits
Syst.I,Reg. Papers,vol.53, no.10, Oct 2006, pp.
2194-2202.

[11] M.Sinangil, N.Verma and A. Chandrasekaran,

“ A Reconfigurable 8T Ultra Dynamic Voltage
Scalable(U-DVS) SRAM in 65 nm
cMOS”,IEEE Journal in solid- State Circuits
vol. 44 Nov 2009, pp 3163- 3173.

144

[12]N. Verma and A. Chnadrakasn, * A 65 nm 8T

Sub-vt SRAM Employing Sense —Amplifier
Redundancy,” [EEE International in Solid
State Circuits Conference, 2007. ISSCC
2007.Digest of Technical Papers., 11 -15 2007,
pp 328 606.

[13] Zimmermann and W.Fichtner, “ Low power

logic styles: CMOS versus pass transistor
logic,” IEEE Journal of Solid State Circuits
vol 32 July 1997, pp 1079-1090.

