
Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

738

MULTI-FACTOR APPROACH FOR EFFECTIVE

REGRESSION TESTING USING TEST CASE OPTIMIZATION

1
S RAJU,

2
G V UMA

1Associate Professor, Department of Computer Science & Engg

Sri Venkateswara College of Engineering, Sriperumbudur, India - 602117
2Professor, Department of Information Science & Technology

Guindy College of Engineering, Anna University, Chennai, India - 600025
1Corresponding Author Email: srajuhere@gmail.com , gvuma@annauniv.edu

ABSTRACT

 Regression testing intends to ensure that a software applications works as specified after changes have
been made to it, is an important phase in software development lifecycle. Regression testing is the re-
execution of some subset of test that has already been conducted. In regression testing, number of
regression tests increases and it is impractical and inefficient to re execute every test for every application
or function when change occurs. It is an expensive testing process used to detect regression faults.
Regression testing has been used to support software-testing activities and assure acquiring an appropriate
quality through several versions of a software product during its development and maintenance. Test suites
can be large and conducting regression tests is tedious. Regression testing assures the quality of modified
applications against unintended changes. The test case selection and prioritization is important in regression
testing. Test case prioritization seeks to find an efficient ordering of test case execution for regression
testing. Test case prioritization is used in regression testing, at the test suite level, with the goal of
detecting faults as early as possible in the regression testing process, given a test suite inherited from
previous versions of the system.

Keywords - Regression Test, Test Case Prioritization, Priority Factors, Defect Density, Defect Removal

Efficiency, Average Percentage of Fault Detected (APFD), Genetic Algorithm, Clustering.

1. INTRODUCTION

 Regression testing, which intends to ensure that
a software program works as specified after
changes have been made to it, is an important
phase in software development lifecycle.
Regression testing is the re-execution of some
subset of test that has already been conducted. In
regression testing as integration testing proceeds,
number of regression tests increases and it is
impractical and inefficient to re execute every test
for every program function if once change occurs.
It is an expensive testing process used to detect
regression faults. Regression testing has been used
to support software testing activities and assure
acquiring an appropriate quality through several
versions of a software product during its
development and maintenance. Regression testing
is an important and yet time consuming software
development activity. It executes an existing test
suite on a changed program to assure that the
program is not adversely affected by unintended

amendments. Test suites can be large and
conducting regression tests is tedious. Regression
testing assures the quality of modified service-
oriented business applications against unintended
changes. The test case prioritization is important in
regression testing. It schedules the test cases in a
regression test suite with a view to maximizing
certain objectives which help reduce the time and
cost required to maintain service-oriented business
applications. Existing regression testing techniques
for such applications focus on testing individual
services or workflow programs. Test case
prioritization seeks to find an efficient ordering of
test case execution for regression testing. The most
ideal ordering of test case execution is one that
reveals faults earliest. Since the nature and location
of actual faults are generally not known in
advance, test case prioritization techniques have to
rely on available surrogates for prioritization
criteria. Test suite prioritization is a regression
testing technique where test cases are ordered such
that faults can be detected early in the test

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

739

execution cycle. This is useful because tests
accumulate over multiple revisions and versions of
the system and it is not feasible to execute all the
tests in a limited amount of time. Test case
prioritization is used in regression testing, at the
test suite level, with the goal of detecting faults as
early as possible in the regression testing process,
given a test suite inherited from previous versions
of the system. There are many techniques for
prioritizing test cases based on various forms of
information such as code coverage or modification
history. In test case prioritization techniques two
dimensions are considered. The first is granularity
and the second dimension is the prioritization
strategy. Over the lifetime of a large software
product, the number of test cases could drastically
increase as new versions of software are released.
Because the cost of repeatedly retesting all test
cases may be too high, software testers tend to
remove redundant or trivial test cases to construct
a reduced test suite for regression testing at a
reasonable cost. After development and release,
software undergo regress maintenance phase of ten
to fifteen years. Modifications in software may be
due to change in customer’s requirements or
change in technology or platform. This leads to
release of numerous versions or editions of the
existing software.

 Regression testing is a process of executing the
program to detect defects by retesting the modified
portion or entire program. This can be performed
by running the existing test suites or a new
extended test suite against the modified code to
determine whether the changes affect the entire
program that worked properly prior to the changes.
Adequate coverage will be a primary concern
when conducting regression tests. The process of
regression testing can be stated as follows. Let S
be a program and S' be a modified version of
program S; let T be a set of test cases for P then T'

is selected from T that is subset of T for executing
P', establishing T' correctness with respect to P'.
Regression testing process consisted of steps that
include Regression test selection problem,
Coverage identification problem, Test suite
execution problem and Test suite maintenance
problem. Sometimes, the existing test suit may not
be sufficient to test the modified code. In such
case, an extended test suite is required to cover the
defects created due to modifications. Modifications
to the current version of the software can be an
addition or deletion of new features in terms of
modules or altering the existing features.

2 RELATED WORK

 A handful of researches have been presented in
the literature for the prioritization of regression
testing test cases. Recently, utilizing artificial
intelligence techniques like Greedy Algorithm and
Genetic Algorithm (GA), in Prioritization has
received a great deal of attention among
researchers. A brief review of some recent
researches is presented here.

Yogesh et al. [1], [2] have proposed an approach
that variables were vital source of changes in the
program and test cases should be prioritized
according to the variables of any changed
statement and variables computed from the
variables of changed statements.

 R.Kavitha et al. [3], [4] have proposed a
prioritization technique to improve the rate of fault
detection of severe faults for Regression testing.
Here, two factors rate of fault detection and fault
impact for prioritizing test cases are proposed. The
results prove that the proposed prioritization
technique was effective.

 Ruchika et al. [5] have proposed both
regression test selection and prioritization
technique. They implemented their regression test
selection technique and demonstrated that their
technique was effective regarding selecting and
prioritizing test cases. The proposed technique
increases confidence in the correctness of the
modified program.

 A Kaur et al. [6],[7] proposed an algorithm to
prioritize test cases using Genetic Algorithm. The
genetic algorithm was introduced that will
prioritize regression test suite within a time
constrained environment on the basis of total fault
coverage. The APFD has been calculated to
evaluate the usefulness of the proposed algorithm.

 Sanjukta Mohanty et al.[8] proposed a test case
prioritization technique based on the factors such
as code, requirements and model-based
prioritization techniques and implement in CBSS.
There was good coverage in terms of research in
understanding the concepts of different code based
techniques and behavior of components,
interactions and compatibility of components.

 Jayant et al. [9] have proposed a study on test
case prioritization based on cost, time and process
aspects. Prioritization concept increases the rate of

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

740

fault detection or code in time and cost constraints.
They have concluded that prioritization of test case
or a test suit has different aspects of fault
detection.

 S Raju and G V Uma [10] it was shown that the
test case prioritization involves scheduling test
cases in an order that increases the effectiveness in
achieving some performance goals. One of the
most important performance goals is the rate of
fault detection. Test cases should run in an order
that increases the possibility of fault detection and
also that detects the most severe faults at the
earliest in its testing life cycle. In this paper, we
develop and validate requirement based system
level test case prioritization scheme to reveal more
severe faults at an earlier stage and to improve
customer-perceived software quality using Genetic
Algorithm (GA). For this, we propose a set of
prioritization factors to design the proposed
system. In our proposed technique, we refer to
these factors as Prioritization Factors (PF). These
factors may be concrete, such as test case length,
code coverage, data flow, and fault proneness, or
abstract, such as perceived code complexity and
severity of faults, which prioritizes the system test
cases based on the six factors: customer priority,
changes in requirement, implementation
complexity, completeness, traceability and fault
impact. The goodness of these orderings was
measured using an evaluation metric called APFD
and PTR that will also be calculated.

 S Raju and G V Uma, [11], Test case
prioritization techniques have been shown to be
beneficial for improving regression-testing
activities. With prioritization, the rate of fault
detection is improved, thus allowing testers to
detect faults earlier in the system-testing phase.
Most of the prioritization techniques to date have
been code coverage-based. These techniques may
treat all faults equally. Test case prioritization
techniques schedule test cases for execution so that
those with higher priority, according to some
criterion are executed earlier than those with lower
priority to meet some performance goal. In this
paper, we introduce a cluster-based test case
prioritization technique. By clustering test cases,
based on their dynamic runtime behavior, we can
reduce the required number of pair-wise
comparisons significantly. We present a value-
driven approach to system-level test case
prioritization called the Prioritization of
Requirements for Test. In this approach
prioritization of test cases is based on four factors

Rate of fault Detection, Requirements volatility,
Fault impact and Implementation complexity. Our
results show that this prioritization approach at the
system level improves the rate of detection of
severe faults.

 S Raju and G V Uma, [12], Regression testing
intends to ensure that a software applications
works as specified after changes made to it during
maintenance. It is an important phase in software
development lifecycle. Regression testing is the re-
execution of some subset of test cases that has
already been executed. It is an expensive process
used to detect defects due to regressions.
Regression testing has been used to support
software-testing activities and assure acquiring an
appropriate quality through several versions of a
software product during its development and
maintenance. Regression testing assures the
quality of modified applications. In this proposed
work, a study and analysis of metrics related to test
suite volume was undertaken. It was shown that
the software under test needs more test cases after
changes were made to it. A comparative analysis
was performed for finding the change in test suite
size before and after the regression test.

3 RESEARCH PROBLEM

 The Proposed research work consisted of two
different approaches for test case optimization.
First approach uses genetic algorithm for test case
prioritization. The second approach uses cluster
approach for test case optimization. The first
approach uses 7 factors and the second approach
uses 4 factors that influences the successful
implementation and execution of software projects.
Values for these factors are determined using
Goal-Question-Metrics (GQM) approach. The
research work carried out here addresses the
following research questions.

 RQ1. What is the effect of adding new
 features and modifying existing features of
 the current release over the previous releases
 of software?
 RQ2. Whether the existing Test Suit is good
 enough to test the modified version of the
 program?
 RQ3. What is the effect of modification of
 software projects on the test suite volume
 size?
 RQ4. How do the metrics (i) Defect Density
 (ii) Test Case Efficiency (iii) Average
 Percentage of Fault Detected vary before and

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

741

 after regression testing?

4 TEST CASE SELECTION

 Regression testing involves reusing test suites
which have been created for earlier versions or
releases of the software. By reusing these test
cases, the costs of designing and creating test
cases can be amortized across the lifetime of a
system. The issue of retesting of software systems
can be handled using a good test case prioritization
technique. A prioritization technique schedules the
test cases for execution so that the test cases with
higher priority executed before lower priority. The
objective of test case prioritization is to detect fault
as early as possible.

 An improved rate of fault detection during
regression testing can let software engineers begin
their debugging activities earlier than might
otherwise be possible, speeding the release of the
software. Test case prioritization techniques
improve the cost-effectiveness of regression
testing by ordering test cases such that those that
are more important are run earlier in the testing
process. Prioritization can provide earlier feedback
to testers and management, and allow engineers to
begin debugging earlier. It can also increase the
probability that if testing ends prematurely,
important test cases have been run.

 Here, we will introduce a new regression test
suite prioritization algorithm that uses genetic
approach for prioritizing the test suite with the aim
of maximizing the number of faults to be detected.
We have conducted experiments with different
types of applications and used the genetic
algorithm approach to prioritize test cases The
ordering was identified using test case priority
 The proposed research work, computation of
certain factors such as customer assigned priority
of requirements, implementation complexity,
changes in requirements, fault impact of
requirements, completeness, traceability and
Execution time are essential for prioritizing the test
cases because they are used in the prioritization

algorithm. These factors are derived using GQM
Methodology. Using these factors a weight is
obtained for each test case based on which the test
cases are prioritized. Values for all the seven
factors are obtained for each requirement during
the design, analysis phase and evolve continually
during the software development process as the
project evolves.
 Requirement factor value for each requirement

i , i
Rfv

 is computed as follows:

 7

7

1

∑
=

=

j

j

i

factor

Rfv
 (1)

 Significantly it represents the requirement

factor value for requirement i , which is the mean
of factor value. RFV is a measure of importance of
testing a requirement and it is used in the
computation of test case weight (TCW). With the

total of n requirements, if test case t maps to i
number of requirements then the test case weight

t
Tcw

 is computed as follows.

niRfvRfvTcw
n

b

b

i

a

at
∗








= ∑∑

== 11
 (2)

 The test cases are sorted for execution based on
the descending order of TCW, such that the test
case with the highest TCW runs first. The Test
Case Weights and RFV values are given as input
to the GA for the prioritization of test cases. The
test case with maximum fitness value will be
elected as the high priority test case.

5 PROPOSED SYSTEM ARCHITECTURE

 The proposed system uses Junit 3.8.1 Software
Testing Tool and executed in Net Beans 7.1 IDE,
Java SDK 1.6. The architecture of the proposed
system is shown in figure 5.1 given below.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

742

Figure 5.1 Proposed System Architecture

The proposed research work consider two
categories of application programs. The first kind
contains five programs that are small in size varies
up to 1 KLOC and the second categories contain

larger applications projects taken from Industries,
whose size varies up to 30 KLOC, are shown in the
table 5.1.

Table 5.1 Subject Programs

SL.
NO

Problem /Project
Size (S)

(loc/kloc)

No. of
Modules

(M)

No. of
Defects

Found (D)

Test Suite
Size (N)

1 Triangle Classification 25 5 12 35

2 Square Root Problem 19 4 9 24

3 Electricity Bill Generation 155 13 20 96

4 Simple Calculator Program 250 18 38 126

5 Simple Editor Program 452 29 69 204

LARGER APPLICAIONS

1 Payroll System 15 60 1012 1435

2 Infrastructure Mgt. System 21 64 1290 1524

3 Library System 8 45 629 1096

4 Project Mgt. System 25 75 2638 2926

5 Banking System 31 94 3869 4204

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

743

6 TOOL SUPPORT AND EXPERIMENTS

 These applications are taken to experiment the
effectiveness of Testing after modifications and
new additions. With industry data, we calculated
few metrics - Defect Density per LOC and Test
Case Efficiency, which are shown in the tables 6.1
for small programs and large projects.

 Defect density is obtained by dividing number of
defects covered by the program/project size and
Test Case Efficiency is calculated as percentage of
defect covered divided by the number of test cases.
Since the proposed research work address the issue
of effective regression testing, these projects are
modified in two ways. Either a set of new
features/modules are added or/and the existing
modules are modified.

Table 6.1. Defect Density And Test Case Efficiency

SL.
NO

Problem / Project

Test
Suite
Size
(N)

No. of
Defects
Covered

(D)

Defect
Density

per loc/kloc
(D/S)

TC Efficiency
(D/N)*100

1 Triangle Classification 35 12 0.48 25.71

2 Square Root Problem 24 9 0.47 41.67

3 Electricity Bill Generation 96 20 0.13 20.83

4 Simple Calculator Program 126 38 0.15 30.20

5 Simple Editor Program 204 69 0.15 33.82

LARGER PROJECTS

1 Payroll System 1435 1012 67.47 70.52

2 Infrastructure Mgt. System 1524 1290 61.43 84.65

3 Library System 1096 629 78.63 57.39

4 Project Mgt. System 2926 2638 105.52 90.16

5 Banking System 4204 3869 124.81 92.03

The applications are tested and the results shows
that the new faults are generated. Also to test these
faults, new test cases are required hence the test
suite is updated accordingly. The results after the
modifications for small programs and large projects
are summarized in the table 6.2.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

744

Table 6.2. Effect Of Modifications - Small & Large Application Programs

SL.
NO

Problem /
Project

S
iz

e
 (

S
)

(L
O

C
/

K
L

O
C

)

N
o
.

o
f

M
o
d
u
le

s

(M
)

No. of Defects
Found (D)

Test Suite
Size (N)

O
ld

N
ew

T
o
ta

l

O
ld

N
ew

T
o
ta

l

1 Triangle
Classification

20 5 12 9 17 35 6 41

2 Square Root
Problem

22 4 9 10 19 24 5 29

3 Electricity Bill
Generation

195 15 20 9 29 96 10 106

4 Simple Calculator
Program

290 20 38 7 45 126 9 135

5 Simple Editor
Program

402 30 69 11 80 204 9 213

LARGE PROJECTS

1 Payroll System 15.4 65 1012 57 1069 1435 46 1481

2 Infrastructure Mgt.
System

21.3 67 1290 62 1352 1524 55 1579

3 Library System 8.5 51 629 24 653 1096 40 1136

4 Project Mgt.
System

25.4 73 2638 48 2686 2926 47 2973

5 Banking System 30.6 90 3869 81 3950 4204 52 4256

After the regression testing, we have calculated the
metrics - Defect Density per LOC and Test Case

Efficiency, which are shown in the tables 6.3
respectively for small programs and large projects.

Table 6.3. Defect Density And Test Case Efficiency

Sl.
NO

Problem /
Project

Size
(S)

LOC

Test
Suite
Size
(N)

No. of
Defects
Covered

(D)

Defect
Density
per LOC

(D/S)

TC
Efficiency
(D/N)*100

1 Triangle Classification 20 41 17 0.850 41.463

2 Square Root Problem 22 29 19 0.863 65.517

3 Electricity Bill Generation 195 106 29 0.149 27.358

4 Simple Calculator
Program

290 135 45 0.155 33.333

5 Simple Editor Program 402 213 80 0.199 37.558

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

745

LARGE APPLICATIONS

1 Payroll System 15.4 1481 1069 69.416 72.181

2 Infrastructure Mgt. System 21.3 1579 1352 63.474 85.624

3 Library System 8.5 1136 653 76.824 57.482

4 Project Mgt. System 25.4 2973 2686 105.748 90.346

5 Banking System 30.6 4256 3950 129.085 92.810

Figures 6.1(a) and 6.1 (b) shows the effect of
defect density before and after regression testing
for small and larger applications/programs..

Figure 6.1 (A) Defect Density Before And After
Regression Testing For Small Programs

Figure 6.1 (B) Defect Density Before And After
Regression Testing For Large Applications

Defect Removal Efficiency

Defect Removal Efficiency (DRE) is given by the
formula,

 DRE = (E/ E+D) x 100
where E = No. of Defects (Before Modifications)
and D= No. of Defects Newly Introduced / Created
(After Modifications).

 DRE Metric computations after regression
testing are summarized in Table 6.4 for small
programs and larger applications after Regression
Testing.

Table 6.4 Defect Removal Efficiency After Regression Testing

S.
N
O

Problem /
Project

No. of
Defects

Found (D)

Defect
Removal

Efficiency

Test Suite
Size (N) [(AM-BM)/BM] *

100

BM AM
(BM/AM) *

100
BM AM

TS
Volume
Increase

(%)

1 Triangle Classification 12 17 70.59 35 41 17.1

2 Square Root Problem 9 19 47.37 24 29 20.83

3 Electricity Bill Generation 20 29 68.97 96 106 10.42

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

746

4 Simple Calculator Program 38 45 84.44 126 135 7.14

5 Simple Editor Program 69 80 86.25 204 213 4.41

6 Payroll System 1012 1069 94.67 1435 1481 3.21

7 Infrastructure Mgt. System 1290 1352 95.41 1524 1579 3.61

8 Library System 629 653 96.32 1096 1136 3.65

9 Project Mgt. System 2638 2686 98.21 2926 2973 1.61

10 Banking System 3869 3950 97.95 4204 4256 1.24

7 TEST CASE PRIORITIZATION USING

GENETIC ALGORITHM

7.1. Genetic Algorithm

 We know that each chromosome consists of
genes in GA, a population P= (c1….cm) is formed
from a set of chromosomes. The GA increases the
population of chromosomes by continuously
replacing one with another population and it based
on fitness function assigned to each chromosome.
The strong one go further and the weak
chromosome eliminated generation by generation.
Crossover and mutation these are two main
concepts in genetic algorithm.

7.1.1. Selection
 There is a selection pattern to find which are
chosen for mating and it is based on fitness and
capability of an individual to survive and
reproduce in an environment. Selection generates
the new one from the old one, thus starting a new
generation. Each chromosome is examines in
present generation to determine its fitness value.
From all that we can say that fitness value of
chromosome used to select for the next generation.

7.1.2. Crossover or Recombination
 In crossover process, exchange of segments
occurs between a pair of chromosomes and
crossover is applied on a particular by switching
one of its allele with another from another
individual in the population. The resultant is very
different from its parents. The code below
suggests an implementation of individual using
crossover:

 () 2111 parentcparentcChild ∗−+∗=

 () 2112 parentcparentcChild ∗+∗−=
7.1.3 Mutation
 Mutation is a process wherein one allele of
gene is randomly replaced by another to yield new
structure. It alters an individual in the population.
It can regenerate all or a single allele in the
selected individual. To maintain integrity,
operations must be secure or the type of

information an allele holds should be taken into
consideration. Mutation must be aware of binary
operations, or it must be able to deal with missing
values. A simple piece of code is mentioned
below.

 ();wChildgenerateNechild =
7.1.4 Algorithm
 The optimization problems are solved by GA’s
recombination and replacement operators, where
recombination is key operator and frequently used,
whereas, replacement is optional and applied for
solving optimization of problem. Here, the initial
population is automatically generated and the
evaluation of the set of candidate solution has
been done with the help of genetic algorithm.
Here, test case weight (TCW) is used as the
stopping criteria. The steps in the algorithm are
given below. The optimal solution is searched in
GA on the basis of desired population which
further can be replaced with the new set of
population. Depend upon the problem, the
generation and initialization of test cases
(population) is done. Requirement factor value
(RFV) and test case weight (TCW) are chosen as
the fitness criterion. Henceforth, this fitness
function will help in selecting suitable population
for problem. Further, the genetic operations are
performed. In the beginning, crossover
recombines the two individual. Then mutation
randomly swaps the individuals. Thirdly, the
redundant individuals are removed. Finally, the
solution is checked for optimization. If solution is
not optimized, then, the new population is
reproduced and genetic operators are applied.

7.1.5 Performance of the Prioritization

algorithm
 To analyze the performance of the
prioritization technique used in this research, the
optimized test suit is considered for assessing the
effectiveness of the sequence of the test cases.
Effectiveness will be measured by the rate of
faults detected. Consider a sample set of data for a

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

747

problem with 'n=8' number of requirements, size is
19 LOC and number of defects found is 9 using 11
test cases. RFV values are calculated using Goal-
Question-Metrics (GQM) approach for the sample

program and given in table 7.1. The method of
calculating Test Case Weights (TCW) are shown
in the table 7.2.

Table 7.1 Requirement Factor Values

Req. CP IC RC FI CT ET RFV

1 1 0 1 1 6 2 1.571

2 3 0 1 1 7 3 2.143

3 2 0 1 1 5 1 1.429

4 4 1 2 2 8 4 3.000

5 8 1 2 2 9 2 3.429

6 3 0 1 1 5 2 1.714

7 2 0 0 1 6 2 1.571

8 6 1 1 2 9 2 3.000

Table 7.2 Test Case Weight (Tcw)

TC Req.
Mapped

RFV i i/n NU TCW Priority

1 1 1.571 1 0.125 1.571 0.234 10

2 1, 2, 3 1.571, 2.143, 1.429 3 0.375 5.143 0.731 1

3 1, 2 1.571, 2.143 2 0.250 3.714 0.507 4

4 3, 4 1.429, 3.000 2 0.250 4.429 0.557 3

5 1, 4 1.571, 3.000 2 0.250 4.571 0.567 2

6 1, 3 1.571, 1.429 2 0.250 3.000 0.458 6

7 2 2.143 1 0.125 2.143 0.274 9

8 1, 7 1.571, 1.571 2 0.250 3.142 0.468 5

9 3 1.429 1 0.125 1.429 0.224 11

10 4 3.000 1 0.125 3.000 0.333 8

11 5 3.429 1 0.125 3.429 0.363 7

TCW = (sum/NU)+(i/n)

∑
=

=

i

a

aRfvNU

1

∑
=

=

n

b

RFVbSum

1

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

748

7.1.6 Average Percentage of Fault Detected

(APFD) Metric

Calculation of APFD Metric is shown in the table
7.3 and the performance is shown in the figure 7.1
as graph, proves that there is an improvement after
regression testing.

Table 7.3 Test Case Execution Sequence

TC
Defect

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11

F1

X X

X

F2

X X

F3

X

X

F4

X X

F5

X X X

F6

X

F7

X

X

F8

X

X

F9

X

 To quantify the goal of increasing a subset of
the test suite's rate of fault detection, we use a
metric called APFD that measures the rate of fault
detection per percentage of test suite execution.

 The APFD is calculated by taking the weighted
average of the number of faults detected during
the run of the test suite. APFD can be calculated
as follows:

()
nnm

TfTfTf
Apfd m

2

1....
1

21
+

+++

−=

Where,
n is the no. of test cases, Tf1, Tf2, Tf3,... are the
position of first test that exposes the fault.
m is the no. of faults.

 APFD Metric Value Before Regression Testing
is given by

 APFD Metric Value after Regression Testing
is given by

0

0.2

0.4

0.6

0.8

BP AP

% of fault Detected

APFD %

Figure 7.1 APFD Metric

7.2 Results and Discussion

 Test Case Efficiency after optimization has
shown to improved and Test Suite size also
reduced after the optimization. These results are
shown in the table 7.4. The proposed Multi factor

5606.0

0454.05152.0

11*2

1

9*11

)1154554482(
-1),(

=

+=

+
++++++++

=PTApfd

7727.0

0454.07273.0
11*2

1

9*11

)722223351(
-1),(

=

+=

+
++++++++

=PTApfd

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

749

Approach for Effective Regression Testing using
Test Case Optimization system shows an
improvement over the existing approaches. Figure
7.2 shows the Test Case Efficiency before and

after regression and after optimization of test
cases. The TC efficiency improves after
optimization and modifications.

Table 7.4 Test Case Efficiency After Optimization For Small & Large Projects

Sl.
NO

Problem / Project

TC Efficiency (D/N)*100

Before
Regression

After
Regression

After
Optimization

1 Triangle Classification 25.71 41.46 68.00

2 Square Root Problem 41.67 65.52 86.36

3 Electricity Bill Generation 20.83 27.36 60.42

4 Simple Calculator Program 30.16 33.33 46.88

5 Simple Editor Program 33.82 37.56 48.19

6 Payroll System 70.52 72.18 87.27

7 Infrastructure Mgt. System 84.65 85.62 91.47

8 Library System 57.39 57.48 76.29

9 Project Mgt. System 90.16 90.35 96.07

10 Banking System 92.03 92.81 95.18

Figure 7.2 Test Case Efficiency

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

750

8 CLUSTER BASED APPROACH

8.1 Priority Factors

 In the second part of research work, only four
factors such as rate of fault detection,
requirements volatility, fault impact, and
implementation complexity for Prioritization of
Test Cases.

The average number of faults per time unit
detected by a test case is called rate of fault
detection. The rate of fault detection of test case i
have been calculated using the number of faults
detected and the time taken to find out those faults
for each test case in a test suite.

10
.

∗=

time

faultsofNo
RFTi

 This factor is converted into 1 to 10 point
scale. The test case that have higher rate of fault
detection will be given priority over the other test
cases.

 Requirements volatility (RV) is based on the
number of times a requirement has been changed
during the development cycle. If a requirement has
changed more than certain number of times, the
volatility values for all requirements are quantified
on a 10-point scale. Changing requirements result
in re-design, the addition or deletion of existing
functions, and often an increase in the fault
density in the program. Both fault impact and
implementation complexity are calculated as
described in part 1 of this research work.

8.2 Methodology

 The diagram shown in the Figure 8.2 describe
this Proposed Work. We use clustering concept
for combining test cases. Instead of prioritizing
individual test cases, clusters of test cases are
prioritized using techniques such as Prioritization
of Requirements for Test algorithm. Within each
prioritized cluster, an optimal test case ordering
can be achieved. The fault detection capability of
each test case is used for creating the clusters of
test cases.

Figure 8.2 Clustering Process

8.3 Test Case Clustering

 When considering test case prioritization, the
ideal clustering criterion would be the similarity
between the faults detected by each test case.
However, this information is inherently
unavailable before the testing task is finished.
Therefore, it is necessary to find a surrogate for
this, in the same way as existing coverage based
prioritization techniques turn to surrogates for
fault-detection capabilities. Here, we use a simple
hierarchical clustering technique [16]. Its pseudo-
code is shown in the figure 8.3.

For Each Cluster, Ck

For every Test Case, t

(i) Calculate PFVi using

()∑
=

∗=

4

1j

jiji
htFactorWeigeFactorValuPFV

(ii) Calculate Weighted Priority

 (WP) of test cases.









∗



















=

∑

∑

=

=

n

i

PFV

PFV

WP
n

y

y

i

x

x

j

1

1

Order the test cases based on WP
values in each cluster.

Figure 8.3 Pseudo-code for Cluster

Formation

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

751

8.4 Test Case Prioritization

 The resulting dendrogram is a tree structure
that represents the arrangement of clusters. The
rate of fault detection of each test case is used for
forming clusters of test cases. These clusters are
then considered for prioritization using PORT
algorithm. The high level algorithm shown in the
figure 8.4 describes the process of prioritization of
test cases.

8.5 Experiments and Results

 The same set of sample programs are
considered here and the results shows that the
results obtained based on applying genetic
approach is better than that of applying cluster
approach. The results shows that the proposed
research technique described in this thesis are
better than the work carried out by others. Results
summarized in the table 8.5 shows that the genetic
approach is better than cluster approach of test
case optimization.

Table 8.5 Test Case Efficiency After Prioritization Using Cluster Approach

S.
No

Problem /
Project

No. of
Defects (D)

Test Suite
Size (N)

No.
of

clust
ers

Optimized
Test Suite
Size (N)

TC Efficiency
(D/N)*100

(AP)

BM AM BM AM AM AP

1 Triangle Classification 12 17 35 41 4 38 41.463 44.73

2 Square Root Problem 9 19 24 29 5 26 65.517 73.08

3

Electricity Bill
Generation

20 29 96 106 7 99 27.358 30.21

4 Simple Calculator
Program

38 45 126 135 11 130 33.333 34.62

5 Simple Editor
Program

69 80 204 213 14 186 37.558 43.01

9. Performance Analysis

9.1 The APFD Metrics

 The APFD metric calculation is shown below
in the Table 9.1 below for different projects before
and after prioritization.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

752

Table 8.1 Apfd Metric

Figure 9.1 given below shows the APFD metric
our projects.

Fig. 9.1 The Apfd Metric

 The APFD metric values of our project are
compared with others work and shown to be better
in most of the cases. It is shown Table 9.2.

Table 9.2. APFD Metric Comparison

APFD Metric

Approaches
Before

Prioritization
After

Prioritization

Arvindar
Gaur et all

40 % 84 %

Our
Proposed

GA
Approach

56% 86%

9. CONCLUSION AND FUTURE WORK

 In this research work, the regression testing
based test suite prioritization technique was
illustrated with industry projects. New
optimization techniques has been proposed for
optimizing test cases to improve the rate of fault
detection. The research work reported here
recognizes and assesses the challenges coupled
with regression testing test case prioritization. The
proposed methods uses multiple and most
efficient factors to prioritize the test cases. These
factors identifies the important test cases in the
project. The APFD metric was used to evaluate
the effectiveness of the proposed prioritization
technique. Also it is shown experimentally that the
numbers of test cases run to reveal the defects is
less in case of proposed prioritized execution of
test cases. Based on the various performance
measures and metrics obtained, it is proved that
the proposed Multi Factor Approach for Effective
Regression Testing using Test Case Optimization
system is effectively prioritizing the regression
test cases.

REFERENCES

[1] Yogesh Singh, Arvinder Kaur and Bharti
Suri, "Empirical Validation of Variable based
Test Case Prioritization/Selection Technique,"
International Journal of Digital Content
Technology and its Applications, Vol.3, No.
3, pp.116-123, Sep 2009.

[2] Yogesh Singh, Arvinder Kaur and Bharti
Suri, "A Hybrid Approach for Regression
Testing in Interprocedural Program," Journal
of Information Processing Systems, Vol.6,
No.1, pp.21-32, Mar 2010.

[3] R. Kavitha and N. Sureshkumar, "Test Case
Prioritization for Regression Testing based on
Severity of Fault," International Journal on

Problem /
Project

APFD Metric (%)

Before
Prioritization

After
Prioritization

Triangle

Classification

42 74

Square Root

Problem

40 77

Electricity Bill 56 82

Simple

Calculator

54 86

Simple Editor 43 80

Payroll System 56 86

Infrastructure

Mgt. System
55 87

Library System 54 88

Project Mgt.

System
53 82

Banking System 52 86

Journal of Theoretical and Applied Information Technology
 31

st
 July 2014. Vol. 65 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

753

Computer Science and Engineering, Vol. 2,
No. 5, pp.1462-1466, 2010.

[4] R. Kavitha and N. Suresh Kumar, "Model
Based Test Case Prioritization for Testing
Component Dependency in CBSD Using
UML Sequence Diagram," International
Journal of Advanced Computer Science and
Applications, Vol. 1, No. 6, pp.108-113, Dec
2010.

[5] Ruchika Malhotra, Arvinder Kaur and
Yogesh Singh, "A Regression Test Selection
and Prioritization Technique," Journal of
Information Processing Systems, Vol.6, No.2,
pp.235-252, Jun 2010.

[6] Arvinder Kaur and Shivangi Goyal, "A Bee
Colony Optimization Algorithm For Code
Coverage Test Suite Prioritization,"
International Journal of Engineering Science
and Technology (IJEST),Vol. 3, No. 4 ,
pp.2786-2795,Apr 2011.

[7] Arvinder Kaur and Shubhra Goyal, "A
Genetic Algorithm for Fault based Regression
Test Case Prioritization," International
Journal of Computer Applications, Vol. 32,
No.8, pp.975-8887, Oct 2011.

[8] Sanjukta Mohanty, Arup Abhinna Acharya
and Durga Prasad Mohapatra, "A Survey On
Model Based Test Case Prioritization,"
International Journal of Computer Science
and Information Technologies, Vol.
2,No.3,pp.1042-1047, 2011.

[9] K.P. Jayant and Ajay Rana, "Prioritization
Based Test Case Generation In Regression
Testing," International Journal of Advances in
Engineering Research (IJAER), Vol.1, No.5,
May 2011.

[10] Raju, S. and Uma G V, “Factors Oriented
Test Case Prioritization Technique in
Regression Testing using Genetic Algorithm”,
European Journal of Scientific Research
(EJSR), ISSN 1450-216X Vol.74 No.3
(2012), pp. 389-402, © EuroJournals
Publishing, Inc. 2012.

[11] Raju, S. and Uma G V, “An Efficient method
to Achieve Effective Test Case Prioritization
in Regression testing using Prioritization
Factors", Asian Journal of Information
technology (AJIT), ISSN: 1682-3915, Vol. 11
No.5 (2012), pp. 169-180, © Medwell
Journals 2012.

[12] Raju S and G V Uma, "Measurement and
Analysis of Test Suite Volume Metrics for
Regression Testing", International National
Journal of Engineering Research and
Applications (IJERA), ISSN: 2248-9622, Vol.
4, Issue 1 (2014), pp. 11-20.

