
Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

RELIABILITY ANALYSIS OF WEB SERVICES BASED ON

RUNTIME FAULT DETECTION

1
K.JAYASHREE,

2
DR. SHEILA ANAND,

3
R. CHITHAMBARAMANI

Rajalakshmi Engineering College, Chennai
1k.jayashri@gmail.com , 2sheila.anand@gmail.com , 3r.chithambaramani@gmail.com

ABSTRACT

Web service technology is being increasingly used for commercial business applications. Reliability of the
web services provided is an important criterion to enable the wide spread deployment of such services. This
paper proposes analyzing the reliability of web services based on runtime fault information. Monitoring of
web service interactions enable runtime faults to be detected and recorded. A sample application was
developed and logs were designed for recording the service usage and faults information. Faults were
injected in the sample application and faults during publishing, discovery, binding, execution and
composition were recorded. Reliability estimation and prediction was carried out using Jelinski-Moranda
Binomial model and Goel-Okumoto Non-Homogenous Poisson model.

Keywords: Reliability for web services, Monitoring Component, Fault Diagnoser, Fault Log, Service

Usage Log, Reliability analysis.

1. INTRODUCTION

Web services are loosely-coupled, platform-
independent, self-describing software
components that can be published, located and
invoked using the standards, such as, Simple
Object Access Protocol (SOAP), Web Services
Description Language (WSDL) and Universal
Description Discovery Integration (UDDI) [1].

Web services can be either simple or composite.
Web service that work on a stand-alone basis and
do not invoke other web services are called
simple or atomic web services. A composite web
service combines the functionality of two or
more simple web services by invoking them
dynamically at runtime. Web services can be
composed by using three methods namely static
composition, semi static and dynamic
composition. Web services composed at design
time is called as static composition. When web
services are composed during runtime it is
termed as dynamic composition.

Reliability, security, cost, and performance are
criteria that are identified as relevant non-
functional QoS requirements when selecting
different web services [2]. Reliability is a
specific aspect of the broader concept of
dependability. Dependability is defined [3] as the
trustworthiness of a computer system such that

reliance can justifiably be placed on the service it
delivers. Reliability can be defined as the
probability, that the system will correctly deliver
services as expected by the user over a given
period of time. “Reliability on demand” is
defined as the probability that the system will
successfully complete its tasks when invoked
[4].There is essentially two types of software
reliability models. The first model attempts to
predict software reliability from design
parameters such as lines of code, nesting of
loops etc. The second model also known as
"software reliability growth" attempts to predict
software reliability from test or real data [5].

As web services are heterogeneous, distributed
and dynamic in nature, faults can occur in
different places, for example faults can occur in
the software application or in the network
connection. For atomic services, faults can occur
during publishing, binding, discovery and
execution. In composite services, failure in any
one service can decrease the overall reliability of
composite service. Also, since operations of a
composite service often span multiple individual
web services, web service composition itself also
brings unreliability with the presence of the
failures [6].

This paper focuses on the reliability analysis for
single and composite web services. Reliability of

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

web services is analyzed based on runtime
monitoring and fault occurrence information.
The rest of the paper is organized as follows.
Section 2 presents the related work. In Section 3,
presents the Reliability Analysis based on
Runtime Fault Information. In Section 4,
Implementation details are explained. Section 5
concludes the paper.

2. RELATED WORK

Software reliability prediction is a task to
determine future reliability of software systems
based on the past failure data [7]. Musa et al [8]
defines software reliability as the probability of
failure-free operation of a computer program for
a specified time in a specified environment.
Compared with traditional software reliability
[8], reliability of a web service contains unique
requirements of timeliness (availability and
performance) [9]. Since web services are remote
web applications that can only be invoked
remotely, timeliness is of paramount importance:
if a web service cannot be delivered to a service
requester within a predefined time threshold with
promised performance, the service will become
useless.

Tsai et al [10] have proposed Service-Oriented
software Reliability Model (SORM) to evaluate
the reliability of atomic services and composite
services. They have proposed group testing and
majority voting for software testing of atomic
web services. The voting system detects faults by
comparing the output of each service with the
weighted majority output. They have also
suggested the use of a remote test agent to
perform distributed testing on data collected at
runtime. The reliability of the composite services
is estimated based on the reliabilities of the
individual atomic services. Senol Arikan [11]
has argued the basic assumptions for computing
reliability in SORM model. His contention is that
assignment operation never generates new
failures; a condition fails when any data
associated with it fails and there is no cyclic
dependency on the parameters or entities used
for reliability analysis. The author has defined
the research challenges in this area and given an
approach to solve the reliability problem of
Service Oriented Architecture (SOA). The author
has suggested the use of a monitoring module to
monitor the system components and inputs to
identify failed components; a reliability validator
module to calculate and analyze the reliability of

the components and a redundancy module to
deploy redundancy. Implementation and results
of the proposed approach has not been given.

Sasikaladevi et al [12] have presented the design
of reliability evaluation framework for composite
web services. This paper gives the simple
framework model for the selection of reliable
web service among the available equivalent
services. Reliability evaluation would be carried
out by a broker or agent on behalf of the service
consumer. Data collection unit uses service
registry and feedback data obtained from prior
consumers to evaluate availability and
accessibility. The focus of the paper is on design
of the framework and implementation of the
proposed approach has not been given.

Chunli et al [13] have proposed a reliability
prediction model for composite services
combining control-structure such as sequence,
if/switch, while and for composition condition.
They presented an Extended Reliability Block
Diagram (ERBD) in which composition
conditions are regarded as atomic services and
the reliability of composite services are
evaluated according to their structures. The
testing has been done using simulation and not
real data.

Zibin Zheng et al [14] have proposed a
collaborative reliability prediction approach for
service-oriented systems. They have used past
failure data of other similar users for predicting
web service failure probabilities for the current
user. Pearson correlation coefficient is employed
for similarity computation. However, if there is
insufficient number of similar users then
dissimilar users are also considered.

Earlier work has primarily focused on testing or
reliability prediction. Real or simulated data has
been used for reliability analysis. This paper
proposed reliability computation and prediction
using real fault data obtained by runtime
monitoring of web services. Reliability analysis
of atomic and composite services has been
proposed.

3. RELIABILITY ANALYSIS BASED ON

RUNTIME FAULT INFORMATION

Web services runtime monitoring is an important
component of web service management. To
ensure availability and reliability of these web

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

services, it is necessary to monitor the runtime
behavior of web services and ascertain whether
their behavior is correct, that is, as per their
intended behavior. Monitoring the web service
interactions at runtime would enable faults to be
detected and recorded for reliability analysis.

We extend our earlier work on runtime
monitoring to perform the reliability analysis
[15]. We had proposed WISDOM (Web Service
Diagnoser Model), which describes a generic
architecture for runtime monitoring of web
service interactions and handling fault detection.
Independent Monitoring Components (MC)
located in service registries and service providers
are used to intercept the web service interactions
at these entities. The request and response
messages between the web service components
would be first intercepted by these monitoring

components and analyzed to detect faulty
behavior.

The Fault Diagnoser is designed to be an
independent external entity that would co-
ordinate the individual

monitoring components. Policies were used to
describe the intended behavior of web services
and
faults are recorded as deviations from the
intended behavior. Policies support standard
assertions and provide a simple method to
express the capabilities, requirements and
characteristics of web services. The extended
model with the Reliability Analysis Component
is shown in Figure 1.

Figure 1: Runtime Fault Detection And Reliability Analysis Architecture

Service providers publish services in service
registries to make their services available for use
by service consumers. Users would then be able
to discover the services by searching the service
registry. The service details obtained are used to
invoke (bind) and execute the service offered by
the service provider.

Faults can occur during publishing if the service
description given by the service provider is

incorrect. Service discovery faults can occur
during the search process if the service name is
not listed or the search criteria is incorrect. Error
can also occur if the service description does not
match the service specifications given in WSDL.
Fault can occur during binding if

there are authentication failures or if the service
invocation details, like port number, are
incorrect. Faults can occur during execution
because the input parameters given by the

Service Provider

Service Registry

Service Consumer

Service
Usage Log

Fault Diagnoser (FD)

Data Collector

Reliability Analyzer

Monitoring Component

Monitoring Component

Bind

Results

Service

enquiry

Service

URL

Policy

database

Faults
Logs

Reliability
data

Publish

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

service user are incorrect. Faults can also occur if
the execution has errors or if the output returned
to the user is incorrect as it does not match the
service specifications. Network failure would
cause any of the above operations to be timed
out. Faults recorded during publishing,
discovery, binding, execution and composition
has been used for reliability analysis.

Reliability analysis is concerned with failure rate
and the time between failures. These parameters
are calculated from the real fault data obtained
using the above model. Reliability prediction
considers the history of failures to predict the
probability that the web services will work
without failure for a given time period under the
prevailing operational conditions. Reliability
Analyzer component located in the Fault
Diagnoser performs the reliability analysis:
computing the failure rates and also predicating
reliability using standard models. The Data
Collector sorts and aggregates the data from the
fault log and service usage log. The Reliability
Analyzer performs the reliability analyses and
reliability estimation.

3.1 Runtime Log Data details

Two logs were designed to maintain service
usage and fault data in the Fault Diagnoser. The
format of the logs and details of data maintained
are now described in detail.

 3.1.1 Service Usage Log

Service Usage log was designed to store details
of usage of all the web services. The data gets
updated when a web service is invoked and
executed. Details of Atomic (Single) and
Composite web services are updated in this table.
The details of data stored in the Service Usage
Log are given in Table 1.

Table 1: Service Usage Log

Data Field Description

Service_ID Web Service Identifier

Service_Provider_Na
me

Service Provider name

Service_name Name of the specific web
service

Service_status Executed successfully or
Failed

Date_Time_Stamp Date and time of
invocation of web service

Execution_Time Total time taken for
execution

Flag Atomic service or

Composite service

Previous_Service_ID ID of Previous Service
invoked, for Composite
service

Next_Service_ID ID of Next Service
invoked, for Composite
service

3.1.2 Fault Log

Fault logs were used to keep a record of all faults
that have happened during the runtime execution
of web services. Faults which occurred during
publishing, discovery, binding, execution and
composition of web services were recorded in
this log.

Faults were classified under the major heads,
Publishing, Discovery, Binding, Execution and
Composition. Each fault class was given a
unique numeric code which was recorded as
Fault_Code. Each fault in the class was given a
unique fault identifier which is recorded in the
field Fault_ID. The description of the fault is
stored in Fault_String. For example, for
Publishing Fault, Fault_Class was given as
“Publishing”, Fault_code was given the code
100, Fault_String was given as “Format Fault”
and Fault_ID was given as 101.

The data gets updated whenever a web service
fault occurs during runtime. Fault details of
Atomic (Single) and Composite web services are
updated in this table. The details of data stored in
the Runtime Fault Log are given in Table 2.

Table 2: Runtime Fault Log

Data Field Description

Service_ID Web Service Identifier

Service_Provider_
Name

Service Provider name

Service_name Name of the specific
web service

Fault_Class Fault Classification
description

Fault_Code Fault Class ID

Fault_ID Fault ID

Fault_String Fault Description

Date_Time_Stamp Date and time of
invocation of web
service

3.2 Reliability Analysis

Reliability is quantified using Mean Time
Between Failures (MTBF). The formula for

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

calculating the MTBF is given in Equation 1
[Musa et al [16] .

Θ = T/R (1)

Where Θ represents MTBF, T is the time slot for
which reliability is calculated and R gives the
number of failures within the time slot T.

Then Failure Rate is calculated as the inverse of

the MTBF. The formula for Failure Rate (λ) is
given by Equation 2.

λ = 1/Θ (2)

Reliability (R) is calculated as Exponential of
Failure Rate and is given by Equation 3.

R = e –λT (3)

4. IMPLEMENTATION

IBM Rational Application Developer IDE has
been used for the implementation of runtime
Fault Detection system. jUDDI (Java Universal
Description Discovery and Integration) has been
used to configure the web service registry. The
web services are published in the jUDDI registry
which is implemented using MySQL database.
SOAP handlers have been configured using
JAX-RPC to detect faults in the execution of
web services.

The policies which define the intended behavior
of web services have been generated using WS-
Policy standard. Web services have been
composed using BPEL for static composition
and semi dynamic composition and OWL-S has
been used for dynamic composition.

A sample web service application for Railway
Reservation was developed to record fault
behavior. The list of services used and their
description is given in Table 3.

Table 3: List of Web Services for Railway Ticketing

Application

S.No Web Services Description

1. Train Enquiry Allows the users to determine
the list of trains to the intended
destination

2. Ticket
Availability

Allows users to find out
whether seats or berths are
available in the train of their
choice. They can also obtain
information about the number
of seats available in the
required class.

3.

Ticket
Reservation

Ticket
Booking

Ticket
Payment

Ticket Reservation service is a
composite web service,
comprising of the Ticket
Booking and Ticket Payment
services. The user is returned a
PNR(Passenger Name Record)
number, that is used to uniquely
identify the reserved tickets

The user first provides details
for booking the tickets which
includes Date of Travel, Train
Number, Train Name,
Departing station, Destination
station, Class, Name, Age,
Payment details etc.

Ticket Payment service is used
to process the payment amount.
The user is required to give the
credit card details for
processing the payment through
an authorized payment gateway

4.

Reservation
Status Enquiry

Requires the passenger to key-
in the PNR number and the
reservation status is displayed.

5. Ticket
Cancellation

Allows the users to cancel their
seats of their choice by giving
the PNR number

Faults were injected in the application and faults
during publishing, discovery, binding,
composition and execution were recorded in the
proposed log formats. For example, Figure 2
shows the faults injected in services offered by a
particular service provider.

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

0

1

2

3

4

5

6

7

8

9

Publishing Faults Binding Faults Execution Faults

No.of.Faults

Figure 2. Faults occurrence in specific service

provider

Figure 3 shows the fault injected in a particular
service; PNR service which is used for Ticket
Reservation Enquiry.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

Time(minutes)

N
o
.o

f.
F
a
u
lt
s

No of faults

Figure 3: Fault occurrence in Execution of PNR

Service

Ticket Reservation Service is a composite web
service which comprises of two atomic services;
Ticket Booking and Ticket Payment. Figure 4
shows the fault injected in the two component
services.

Figure 4. Faults in Composite Ticket Reservation

Service

Multiple instances of the web services were
created for reliability analysis and the service
details are given in Table 4.

Table 4: Web Services Details Used For Reliability

Analysis

Log Data 200

Number of Web services 20

Number of service providers 10

Number of service clients 10

Number of web service execution
instances

200

Publishing faults injected 20

Discovery faults injected 13

Binding faults injected 9

Execution faults injected 35

Composition faults injected 45

4.1 Reliability Estimation and Prediction

Metrics-based Software Reliability Assessment
Tool (M-SRAT) has been used for software
reliability assessment. M-SRAT is a JAVA
application that offers multiple models for
software reliability. Reliability estimation and
prediction was carried out using Jelinski-
Moranda (J-M) and Goel-Okumoto (G-O)
models.

4.1.1. Jelinski-Moranda model (J-M)

This is one of the earliest and the most
commonly used model for assessing software
reliability. In this model the failure time is
calculated as proportional to the remaining
faults. This is taken as an exponential
distribution. Reliability estimation is given by
Equation 4.

(MTBF) t = 1 / (N – (I – 1)) (4)

where, N is the total number of faults, I is the
number of fault occurrences, MTBF is the Mean
Time between failures and T is the time between
the occurrence of the (i-1).

The sample data obtained in the fault log is given
as input in.csv format and the graph obtained
using the estimation procedure of the model is
shown in the Figure 5.

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

Figure 5: Reliability Estimation of Jelinski-Moranda

model

Red dots show the observed errors in the graph.
It can be observed that the number of defects
observed map closely with the curve obtained
with the model.

4.1.2 Goel-Okumoto Model (G-O)

Goel-Okumoto’s model assumes that the
cumulative number of failures follows a Poisson
process [15]. The data required by Goel-
Okumoto’s model consists of :

1. (n1,n2,….,nk), the number of faults
detected for each time interval

2. (t1,t2,…..tk), the time intervals for
which the.(n1,n2,….,nk) are observed.

The graph obtained using the sample data and
the estimation procedure in the tool is shown in
the Figure 6. The cumulative number of faults
detected in the web services is shown in the
graph as red dots.

Figure 6: Reliability Estimation of Goel-Okumoto’s

model.

It can once again be observed that the number of
defects observed map closely with the curve
obtained with the model.

Figure 7 shows the comparison of the reliability
prediction curves of both the models.

Figure 7: Comparison of Reliability Prediction by
Jelinski-Moranda and Goel-Okumoto models.

Reliability prediction helps the service providers
to understand the performance of their web
services offered by them. The service providers
can correct their faulty service and improve the
reliability of their web services.

Journal of Theoretical and Applied Information Technology
 20

th
 July 2014. Vol. 65 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

5. CONCLUSION

This paper presents a reliability analysis of web
services based on runtime faults. Runtime
monitoring of web services has been carried out
for a sample application which was injected with
faults. Log formats were designed to store the
service usage and fault occurrences in the
services. Reliability estimation was performed
on the fault data using Jelinski Morando model
and Goel-Okumoto models and the results
obtained have been presented. It was observed
that the number of defects observed was found to
map closely with the reliability curve obtained
with the model. This helps to establish the
validity of the fault detection process.
Reliability prediction was carried out for the two
models and compared. This analysis helps the
service providers to understand and improve the
reliability of the web services offered by them.

REFERENCES

[1] Papazoglou, M. P., Georgakopoulos, D.:

Service-oriented computing,
Communications of the ACM, Vol. 46, No.
10, 2003, pp. 25–28.

[2] L. Arockiam and N. Sasikaladevi Simulated
Annealing Versus Genetic Based Service
Selection Algorithms International Journal
of u- and e- Service, Science and
Technology Vol. 5, No. 1, March, 2012.

[3] Laprie 1992 J-C Laprie editor Dependability:
Basic concepts and Terminology, Springer-
verlog 1992.

[4] Alan Wood, software reliability Growth
Model, Technical Report 96.1,September
1996, Part Number: 130056.

[5] Karanta, Ilkka Methods and problems of
software reliability estimation VTT
Technical Research Centre of Finland
1459-7683 (URL:
http://www.vtt.fi/publications/index.jsp)

[6] Y.Pan Will Reliability Kill the Web Service
Composition? citeseerx.ist.psu.edu/
viewdoc /download? doi=10.1.1.136.5893

[7] M. R. Lyu. Handbook of Software Reliability
Eng. McGraw-Hill, New York, 1996.

[8] J.D. Musa, A. Iannino, and K. Okumoto,
Software Reliability Measurement
Prediction Application, 1987: McGraw-
Hill.

[9] Criteria Analysis and Validation of the
Reliability of Web Services-oriented

Systems JiaZhang, Liang-Jie Zhang
Proceedings of the IEEE International
Conference on Web Services (ICWS’05)

[10] W. T. Tsai, D. Zhang, Y. Chen, H. Huang,
R. Paul, N. Lia A Software Reliability
model for web services

[11] Senol Arikan Automatic Reliability
Management in SOA-based critical
systems

 [12] N.Sasikaladevi, Dr.L.Arockiam Reliability
evaluation model for composite services
International Journal of Web & Semantic
Technology Vol 1 No. 2 April 2000.

[13] XIE Chunli LI Bixin, LIAO Li WANG
Xifeng Combining Control Structure and
Composition Condition for Web Services
Reliability Prediction Chinese Journal of
Electronics Vol.21, No.3, July 2012.

[14] Zibin Zheng, Zheng, Z, Michael, R Lyu
‘Collaborative Reliability Prediction of
Service-Oriented systems 2010 ,
proceedings of the 32nd ACM/IEEE
International conference on software
Engineering, pp 35-44.

[15] K.Jayashree, Sheila Anand, Policy Based
Distributed Runtime Fault Diagnoser
Model for Web Services, LNICST 2012 pp
9-16.

[16] Software Reliability Engineering:
Techniques and Tools CS130 Winter,
2002.

