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ABSTRACT

As latest trend in designing processors and system-on-chips (SoCs), they require more RAMs than logics. 
These embedded RAMs contribute to the high percentage of yields for these processors and SoCs. To 
ensure high percentage of yield is achieved, a built-in self-test (BIST) is utilized to test these RAMs. The 
memory BIST applies various test algorithms such as MARCH tests to detect various RAM faults. 
Numerous design objectives such as programmability, low area overhead, at-speed/full-speed test and 
multiple RAMs target are proposed in the BIST designs. These objectives must be achieved to provide best 
fault detection in these embedded RAMs. A technique called clustering which is applied to other 
architectures such as VLIW processor and FPGA architecture is utilized in this study to achieve low area 
programmable memory BIST (P-MBIST). The synthesis results justify that the cluster technique provides 
low area overhead for the programmable memory BIST controller at optimum performance. 
Keywords:- P-MBIST,  MARCH Test, Cluster,  Low Area, FPGA 

 

1. INTRODUCTION 

 
 The future trends in the processors and systems 
on chip (SoCs) are moving from logic and memory 
balanced chips to memory dominated chips in order 
to deal with the increasing application requirements. 
According to International Technology Roadmap 
for Semiconductor (ITRS) that is provided by 
Semiconductor Industry Association (SIA) in 2001, 
the embedded memories are expected to utilize 
more than 83% of the chip area after 2008. 
Typically, embedded memories account 
approximately half the area of the microprocessor 
[1] and their density is continuously raising.  They 
are scattered around the device (SoCs) rather than 
concentrated in one location [2].  As a result, the 

overall SoC yield is dominated by the memory 
yield. In order to achieve high memory yield, a 
thorough understanding of memory design, faults 
models and adequate tests strategies is a must.   
 
SRAM can be organized as BO-RAM(Bit-Oriented) 
and WO-RAM(Word-Oriented RAM). Bit-oriented 
memories (BO-RAM) are the memories where the 
read/write operations are performed on the RAM 
cell arrays by bit. Word-oriented memories (WO-
RAM) where the read/write operations are 
performed on the RAM cell arrays by word. Both 
BO-RAM and WO-RAM have two types of fault 
models: static and dynamic. There are various types 
of faults can occur in both types of RAMs. The 
static, dynamic 

and intra-word coupling faults are the faults that are 
evaluated on these RAM. These faults can be 
detected using the MBIST controller. The MBIST 
controllers can be classified as FSM-based or 
microcode-based. Both MBIST controllers are 
designed to be programmable to allow multiple 
MARCH test patterns to be added without requiring 
changes on the controller’s architecture. The 
architectures of the available programmable 
MBIST (P-MBIST) controllers are studied to 
analyze their area-efficiency, full-speed capability 
and ability to be shared to test multiple RAM cores. 

To achieve these factors, a technique called 
clustering is studied. This technique was applied 
widely to the datapath of the VLIW architecture [3] 
and FPGA architecture [4]. The area, power and 
speed of these two architectures are improved with 
the application of clustering technique on both of 
them.  
 
 Based on these results, the clustering technique is 
applied to the proposed P-MBIST controllers to 
achieve better area-efficiency than the available P-
MBIST controllers. This paper is organized by 
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introducing some literatures regarding RAM’s fault 
models and test algorithms, P-MBIST designs and 
clustering technique. Section III and IV describe 
the development of clustering technique on the 
MARCH test algorithms. The P-MBIST 
architectures for the application of this clustering 
technique are described in Section V. The area and 
performance result are presented in Section III. 
Finally, the Section VI concludes this paper. 

2. BACKGROUND AND MOTIVATION 

 More RAMs are embedded in today’s processors 
and SoCs to accommodate wide range of computer 
applications such as gaming and Internet. These 
embedded RAMs use fault models to classify types 
of faults that may affect them during test. The 
RAM fault models are classified according to how 
the read/write operation is performed on the RAM 
cell arrays..  
 
 Static fault models are faults sensitized by 
performing at most one operation. It is divided into 
two: simple fault and linked fault. In [5], Van de 
Goor divided static faults into single-cell faults and 
faults between memory cells.  Single cell faults are 
further classified into state faults (SF) and transition 
faults (TF).  The faults between memory cells are 
further classified as coupling faults (CF). The 
dynamic faults are the faults requiring more than 
one operation occur sequentially in order to be 
sensitized. There are two types of dynamic faults: 
single-cell dynamic and two-cell dynamic [6]. 
Single cell dynamic faults are the faults that occur 
during read operation. Two-cell dynamic faults are 
basically the CF in dynamic condition. 
 

 Both static and dynamic faults that occur in the 
embedded RAM are detected using test algorithms. 
The MARCH test algorithm is the common test 
utilized to detect these faults. This test algorithm 
comprises of a sequence of MARCH elements. The 
MARCH element is defined as a sequence of 
MARCH operations applied to each cell in the 
memory before proceeding to next cell [7]. There 
are four types of MARCH operations that can be 
performed in each cell in MARCH test. These 
operations are writing 0 (w0), writing 1(w1), reading 
0(r0) and reading 1(r1). The address of the next cell 
to be tested is determined by the ascending 
addressing order, ↑ or descending addressing order, 
↓ or irrelevant addressing order, ↕. Examples of 
earlier MARCH tests which are developed to detect 
static faults are MATS+, MARCH X, and MARCH 
C-[8]. However, these MARCH algorithms provide 
low fault coverage because they can only detect 
certain types of static faults. Nowadays, new 
MARCH algorithms are widely used to detect the 

new faults such as dynamic faults and to improve 
the earlier MARCH algorithms by providing high 
fault coverage. Examples of these MARCH 
algorithm are MARCH SS, MARCH SAM-opt and 
MARCH RAW [9, 10]. 

 The MARCH tests cannot be applied to the 
embedded RAM through the chip's I/O pins, 
because the address, data, and control signals are not 
directly available through these I/O pins. Hence, the 
best test solution for the embedded RAM is by using 
built-in self-test (BIST). Typically, the BIST is 
designed based on the deterministic patterns such as 
MARCH test. This MARCH test is generally 
programmed inside the BIST engine. This BIST 
engine is basically divided into two types: state-
machine and micro-code [11]. A state-machine (also 
known as finite state-machine (FSM)) memory 
BIST (MBIST) is generally used in the industry to 
generate a single MARCH test. However, a better 
memory test solution requires a set of multiple 
MARCH tests. This certainly increases the 
complexity of the MBIST design. A state-machine 
BIST, as the name implies, uses a number of states, 
to decode the MARCH test [12]. However, the state-
machine MBIST is less flexible as modifying the 
patterns requires major changes in the MBIST 
design. As for the micro-code BIST, the test patterns 
are inserted into the controller in the form of 
instruction sets. This type of MBIST is highly 
flexible because different MARCH tests can be 
utilized. It can also be used in both manufacturing 
and in a system environment. Both FSM-based and 
microcode-based MBIST controllers must be able to 
generate different types of MARCH tests [12]. This 
can be accomplished by using a programmable 
architecture. Both types of MBIST: state-machines 
and micro-code can be designed to be a 
programmable memory built-in self-test (P-
MBIST). 

   CLUSTERING MARCH OPERATIONS OF 

MARCH ELEMENTS IN MARCH TESTS 

 
 As described in Section II., a MARCH algorithm 
comprises of MARCH element. This element 
comprises of a sequence of read/write operations 
and test data. This sequence is called MARCH 
operation. Clustering the MARCH operation of 
MARCH elements in a MARCH test is the 
operation where one or two read/write operations 
and test data in a MARCH element are clustered 
into one major operation. To understand more of 
how this cluster is created, the MARCH tests is 
segregated by their elements and operations as 
shown in Table 1.  
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Table 1: MARCH Operations in their Clusters 
Elements R/W Operation in the Element 

Original 

(before 

clustering) 

New 

(after clustering) 

No Cluster C 1 C 2 C 3 

e0 w0 w0   

e1 r0,w1 r0,w1   

e2 r1,w0 r1,w0   

e3 r0 r0   

e4 r0,w0,r0,r0,w

1,r1 

r0,w0, r0,r0, w1,r1 

e5 r1,w1,r1,r1,w

0,r0 

r1,w1, r1,r1, w0,r0 

e6 r0,w1,w0,w1 r0,w1, w0,w1  

e7 r1,w0,w1,w0 r1,w0, w1,w0  

e8 r0,w1,w0 r0,w1, w0  

e9 r1,w0,w1 r1,w0, w1  

e10 r0,w1,r1,w0,r

0,w1 

r0,w1,  r1,w0, r0,w1 

e11 r0,w1,r1,w0 r0,w1, r1,w0  

e12 r1,w0,r0,w1 r1,w0, r0,w1  

e13 r0,r0,w0,r0,w

1 

r0,  r0,w0, r0,w1 

e14 r1,r1,w1,r1,w

0 

r1, r1,w1, r1,w0 

 

 It can be seen that there are 15 distinct MARCH 
elements which are used repetitively in the MARCH 
tests. The read/write operations and test data of the 
MARCH elements are divided in two sub-columns; 
original and new. The original column represents 
the original read/write operations before the cluster 
method is applied while the new column embodies 
the read/write operation after the cluster method is 
applied. The new column is further split into 
numbers of sub-columns depend on the numbers of 
clusters generated. From the original read/write 
MARCH operations, it can be seen that the e4, e5 
and e10 have the maximum numbers of MARCH 
operations which are six. The e13 and e14 have five 
MARCH operations while the e6, e7, e11 and e12 
have four MARCH operations. Both e8 and e9 
consist of three MARCH operations. For e1 and e2, 
they both share two MARCH operations. The e0 
and e3 has the minimum number of MARCH 
operation which is only one operation.  

 

 The numbers of clusters for all fifteen MARCH 
elements are determined by the numbers of 
MARCH operations in an element. For example, six 
MARCH operations in e10 generate three clusters 
where each cluster comprises of two MARCH 
operation.  After every two MARCH operations in a 
MARCH element were grouped, any single 
MARCH operation left can be grouped as one 
cluster. Let’s take e8 and e9 as examples. Both 
elements have three MARCH operations. The first 
two MARCH operations in these elements are 
clustered in one cluster and the last single operation 

is also clustered as one cluster. The read/write 
operation in a cluster is then translated into the 
microcode as shown in Table 2. 

 
Table 2: MARCH Operation and their Microcodes 

 

The 4-bit microcode represents two read/write 
operations in an element (e.g. 1001 and 1100 in e1 
and e2 respectively). The odd bits of microcode 
represent the read/write operation where ‘1’ 
indicates read and ‘0’ signifies write. The even bits 
represent the test data where ‘0’ indicates data of 
value zeros and ‘1’ signifies data of value ones. The 
e6, e7, e8, e9, e11 and e12 generate two clusters of 
4-bits microcode because these elements have three 
or four read/write operations. For e4, e5, e10, e13 
and e14, they produce three clusters of 4-bits 
microcode as they have five or six read/write 
operations.   

 

 The e0 and e3 have only a single operation and 
are supposed to be assigned as 2-bit microcode. 
However, these single operations are repeated right 
after the 2-bit microcode of the original single 
operations because the clustering technique requires 
two MARCH operation to be clustered in a cluster. 
The redundancy causes the single operations in the 
e0 and e3 to be assigned as 4-bit microcode. The 
single operations in the last cluster of the MARCH 
elements with three or five operations such as e8, 
e9, e13 and e14 are also subjected to this 
redundancy. However, this redundancy resulted in 
longer test time. Furthermore, the microcode in the 
clusters only applicable for only two kinds of DBS: 
zeros and ones. Thus, it is not suitable for complex 
MARCH test algorithm such MARCH SAM-opt 
which has multiple DBS. To overcome these 
limitations, these micro-codes in the clusters must 
be deep-encoded. 

Elements 

R/W Operation in the Element 

Cluster 1 Cluster 2 Cluster 3 

e0 0000 - - 

e1 1001 - - 

e2 1100 - - 

e3 1010 - - 

e4 1000 1010 0111 

e5 1101 1111 0010 

e6 1001 0001 - 

e7 1100 0100 - 

e8 1001 0000 - 

e9 1100 0101 - 

e10 1001 1100 1001 

e11 1001 1100 - 

e12 1100 1001 - 

e13 1010 1000 1001 

e14 1111 1101 1100 
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3. DEEP-ENCODING THE CLUSTERS FOR 

MARCH TEST  WITH MULTIPLE DBS  

 
 Originally, the maximum number of clusters in a 
MARCH element is three. Each cluster can support 
up to two MARCH operations. Thus, the maximum 
numbers of MARCH operations supported by these 
clusters are six. However, the MARCH SAM-opt 
algorithm has more than six MARCH operation in 
an MARCH element. It also has four different test 
data. These test data are tabulated in Table 3. 
 

Table 3:Test Data for MARCH SAM-opt Test Algorithm 
Notation Test data in two bit form 

d0 2’b01 

d1 2’b11 

d2 2’b10 

d3 2’b00 

 
 To accommodate the MARCH SAM-opt 
algorithm into these clusters, the MARCH element 
for MARCH SAM-opt must be reorganized into 
few sub-elements. These sub-elements are arranged 
according to types of the test data. The MARCH 
operations that share the same test data are grouped 
into one sub-element. For example, the first 
element, ↕ (wd0, rd0, wd0, rd0, rd0, wd1, rd1, wd1, 

rd1, rd1) is divided into two sub-elements: wd0, 
rd0, wd0, rd0, rd0 and wd1, rd1, wd1, rd1, rd1. 
There should be eight sub-elements derived from 
all the MARCH elements for MARCH SAM-opt 
algorithm.  
These numbers of sub-elements can be further 
reduced by applying concept of true-complement 
data. From Table 4, it is known that d1 is the 
complement of the d3 and d2 is the complement of 
the d0. Now, the numbers of test data in a MARCH 
SAM-opt algorithm can be made generic by 
assigning the test data as true data, d and 
complement data, d’. By applying this concept, the 
numbers of sub-elements in MARCH SAM-opt 
algorithm are reduced to only four sub-elements. 
The test data of value d0 and d3 in Table 3 are now 
assigned as the true data, d whilst the test data of 
value d1 and d2 are assigned as the complement 
data, d’. Table 4 shows the application of this true-
complement data concept to the original 15 
MARCH elements in Table 1. The extra four 
MARCH elements: e15, e16, e17 and e18 are 
originated from the MARCH SAM-opt algorithm. 
 
These read/write operations and test data are deep-
encoded to avoid redundancy and to accommodate 
the MARCH test with multiple test data. The new 4-
bit microcode for these read/write operations and 
test data is named as deep-code. Table 5 tabulates 

the deep-codes for all the MARCH operations in the 
clusters. It can be seen for the table that the double 
true operations are symbolized as D3, D2, D1 and 
D0. The single true operations are symbolized by 
the S3, S2, S1 and S0. The single operations are 
divided into the repeated single operation (S3 and 
S2) and non-repeated single operation (S1 and S0). 
All the double and single operations have their 
complements. These complements are symbolized 
as same as the true operations except that a bar is 
added at the top of the symbols. 

 

Table 4: MARCH  Operations using True-Complement 

Test Data Concept 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

True Cluster  Complement Cluster 

 Op Deep-

codes[3:0] 

 Op Deep-

codes[3:0] 

3 2 1 0 3 2 1 0 

�3 wdr

d 

1 0 0 0 �3���� wd’rd’ 1 1 1 0 

�2 rdw

d 

1 0 0 1 �2����   rd’wd’ 1 1 1 1 

�1 wdw

d’ 

1 0 1 0 �1���� wd’wd 1 1 0 0 

�0 rdw

d’ 

1 0 1 1 �0���� rd’wd 1 1 0 1 

�3 wdw

d 

0 0 0 0 �3��� wd’wd’ 0 1 1 0 

�2 rdrd 0 0 0 1 S2���   rd’rd’ 0 1 1 1 

�1 wd 0 0 1 0 �1���   wd’ 0 1 0 0 

�0 rd 0 0 1 1 S0��� rd’ 0 1 0 1 
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Table 5:  MARCH Operations and Their Deep-Codes 

 

 The bit 3 of the deep-codes is high to signify a 
double operation or low to signify a single 
operation. The read/write enable is activated by the 
bit 0 of the deep-codes. The read operation takes 
place if the bit 0 is high and if otherwise, the write 
operation is performed. The bit 2 and bit 1 of deep-
codes represent the operation class. This operation 
class is mainly used to determine the test data for 
the operations in the clusters. It is also utilized to 
classify the repeated and non-repeated single 
operations and decode the correct read/write 
operations. Table 6 shows the operations in the 
clusters in the form the symbols that are introduced 
in Table 5. These symbols are used to simplify the 
process of determining what types of operations in 
a cluster.  
 
 
 
 

Table 6:  MARCH Operations using Symbols for Deep-
Codes 

Elements R/W Operation in the Element 

 Original 

(before 

clustering) 

New 

(after clustering) 

  C1 C 2 C 3 

e0 wd S1      - - 

e1 rd,wd’ D0      - - 

e2 rd’,wd D0����     - - 

e3 Rd S0      - - 

e4 rd,wd,rd,rd,wd’,

rd’ 

D2     S2   D3����    

e5 rd’,wd’,rd’,rd’,

wd,rd 

D2����     S2���    D3    

e6 rd,wd’,wd,wd’ D0      D1    - 

e7 rd’,wd,wd’,wd �0����    �1����  - 

e8 rd,wd’,wd D0      S1     - 

e9 rd’,wd,wd’ �0����       �1���   - 

e10 rd,wd’,rd’,wd,rd

,wd’ 

D0      �0����      D0    

e11 rd,wd’,rd’,wd D0      �0����     - 

e12 rd’,wd,rd,wd’ �0����      D0    - 

e13 rd,rd,wd,rd,wd’ S0      D2     D0    

e14 rd’,rd’,wd’,rd’,

wd 

S0���     �2����   �0����     

e15 wd,rd,wd,rd,rd D3     D3    S0     

e16 wd’,rd’,wd’,rd’,

rd’ 

�3����   �3����   S0���        

e17 wd,rd D3    - - 

e18 wd’,rd’ �3����   - - 

 

The deep-codes of the read/write operation and test 
data for the MARCH test with multiple test data are 
now complete. In the following section, the P-
MBIST architectures that apply these deep-codes 
are designed. 

4. PROPOSED P-MBIST ARCHITECTURES 

FOR THE UTILIZATION OF THE DEEP-

CODES 

 
 The FSM-based and microcode-based P-MBIST 
controllers are proposed for the utilization of the 
deep-codes. The proposed deep-encoded FSM-
based P-MBIST also utilizes the same macro-
commands [13,14] for selecting the test algorithm as 
the ones used in the clustered FSM-based P-MBIST 
controller. As for the deep-encoded microcode-
based P-MBIST, the numbers of instruction bits for 
the read/write operations and test data are still set to 
be fixed regardless of how many the MARCH 
operations are in a MARCH element. This is 
different from the microcode-based P-MBIST 
controller in [15,16] where their length of micro-
codes are varied with the numbers of MARCH 
operation in a MARCH element. 

Elements R/W Operation in the Element 

 Original 

(before 

clustering) 

New 

(after clustering) 

 No Cluster C 1 C 2 C 3 

e0 Wd wd   

e1 rd,wd’ rd,wd’   

e2 rd’,wd rd’,wd   

e3 Rd rd   

e4 rd,wd,rd,rd,

wd’,rd’ 

rd,wd, rd,rd, wd’,rd

’ 

e5 rd’,wd’,rd’,r

d’,wd,rd 

rd’,wd

’, 

rd’,rd’, wd,rd 

e6 rd,wd’,wd,

wd’ 

rd,wd’

, 

wd,wd

’ 

 

e7 rd’,wd,wd’,

wd 

rd’,wd

, 

wd’,w

d 

 

e8 rd,wd’,wd rd,wd’

, 

wd  

e9 rd’,wd,wd’ rd’,wd

, 

wd’  

e10 rd,wd’,rd’,

wd,rd,wd’ 

rd,wd’

,  

rd’,wd

, 

rd,wd’ 

e11 rd,wd’,rd’,

wd 

rd,wd’

, 

rd’,wd  

e12 rd’,wd,rd,w

d’ 

rd’,wd

, 

rd,wd’  

e13 rd,rd,wd,rd,

wd’ 

rd,  rd,wd, rd,wd’ 

e14 rd’,rd’,wd’,r

d’,wd 

rd’, rd’,wd

’, 

rd’,wd 

e15 wd,rd,wd,rd

,rd 

wd,rd wd,rd rd 

e16 wd’,rd’,wd’

,rd’,rd’ 

wd’,rd

’ 

wd’,rd

’ 

rd’ 

e17 wd,rd wd,rd   

e18 wd’,rd’ wd’rd’   
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4.1. Deep-Encoded FSM-based P-MBIST 

Architecture 

The deep-encoded FSM-based P-MBIST controller 
has five component blocks: def_algel, def_addec, 
def_elecl, def_opsdt and rtb. Figure 1 portrays the 
block diagram of the controller. The def-algel block 
encodes the MARCH element into 12-bit deep-
codes. The def_addec block generates the address 
for the RAM under test (RUT) based on the 
addressing order provided by def_algel block. The 
def_elecl block is utilized to segregate the 12-bit 
deep-codes into three clusters of 4-bit deep-codes.  
The def_opsdt block is employed to decode the 
read/write operation and test data according to the 
deep-codes. The rtb block is used to compare the 
injected data and the acquired data from the RAM 
under test RUT. 
 

rtb

def_addec

def_elecl

RUT

def_opsdt

clk

endcl

ado

admax

address

endrw

dpcd

opcls

endcl

clk

opcls

we

data_i

endrw

q16

q16

clk

clk

psfl

ah

clk

code

endel

dpcd

clk

endrw

optyp

optyp

def_algel
rc

dt

endcl

endrw

admax

ado

dt

ah

rc

admax

endel

data

_o16

data

_o16

address

we

rst

rst

rst

rst

 
 

Figure 1:. Block diagram of the proposed deep-encoded 

FSM-based P-MBIST. 
 
 
 The def_algel block comprises of clk, rst, code, 
endel, endcl, endrw and admax as the input signals 
and ado, dt, ah, rc and dpcd as the output signals. 
This block starts to receive the 3-bit code if the 
endel, endcl and endrw signals are high at positive 
edge clk. The state machines in this block decode 
the MARCH elements according to the code.  The 
numbers of states in the def_algel block depend on 
the data types used in the MARCH SAM-opt 
algorithm. There are four different data types 
repeated twice in the MARCH SAM-opt algorithm 
as shown in Table 3. Thus, maximum of nine states 

are used for encoding all nineteen MARCH 
elements.  
 
Figure 2 shows that the states for the def_algel 
block. The code 0 represents the MARCH SAM-
opt. All nine states; S0, S1, S2, S3, S4, S5, S6, S7 
and S8 are triggered if code 0 is sent by the ATE. 
There are four MARCH elements: e16, e17, e17 
and e18 (refer Table 4.2) associated to the code 0. 
Each state encodes the MARCH element and 
addressing order as a 12-bit deep-code, dpcd and 1-
bit signal, ado. Unlike the cf_algel block, there are 
three new signals are decoded in these states. These 
signals are the test data type, dt, address hold, ah 
and repeat cluster, rc. The dt signal determines the 
types of the test data. The ah signal is utilized to 
hold the address for the sub-elements in the main 
MARCH elements of the MARCH SAM-opt test 
algorithm. The rc signal distinguishes between the 
MARCH algorithms with only one data type or 
multiple data types. 

S0 S4S1 S5S2 S3

code=0 & 

admax=0

code=3|code=4|code=5

code=0

S7 S8S6

code=0 & 

admax=0
code=1|

code=2|

code=6|

code=7

code=2|code=6|code=7

code=0 & 

admax=0

ah

clk

code

endel

dpcd
def_algel

rc

endcl

endrw

admax

ado

dtrst

code=0 code=0

 
Figure 2:  Nine states for encoding MARCH elements 

 

The address decoder is triggered by the clk, rst, 
endcl, endrw, ah and ado signals. The output signals 
for this block are admax and address. The address 
signal signifies the generated address. The addresses 
are generated when the ah signal is low and the 
endcl and endrw are high at the positive edge of clk. 
The sequences of generated addresses depend on 
ascending or descending addressing order of the 
MARCH element under test. The active admax 
signal means the MARCH element under test 
reaches the last address. However, in a case of the 
MARCH SAM-opt test algorithm,  the admax signal 
works together with the rc signal to generate new 
starting address for all the MARCH elements. 

 
 The def_elecl block consists of four input signals; 
clk, rst, endrw and dpcd and three output signals; 
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opcls, optyp and endcl. This block receives the 12-
bit deep-codes, dpcd from the def_algel block once 
the endrw signal is high at positive edge of clk. The 
def_elecl block plays the key role in the deep-
encoding method because the state-machine in this 
block is used to segregate the 12-bit deep-codes 
into three clusters of 2-bit opcls and 2-bit optyp 
signals. This block produces the endcl signal if the 
2-bit opcls and 2-bit optyp signals are the last 
operations for the MARCH element under test. 
Figure 3 shows the state-machines of the def_elecl 
block. Three states are used to segregate the 12-bit 
deep-encoded microcode into three 2-bit opcls and 
2-bit optyp signals. 

 

RWD 

Enc0

RWD 

Enc1

RWD 

Enc2

dpcd[7:4]=0
not 

dpcd[7:4]=0

dpcd[3:0]=0

not 

dpcd[3:0]=0

def_eleclendrw

dpcd

opcls

endcl

clk

optyprst

 
Figure 3: States for assigning deep-codes to clusters 

 
The def_opsdt block shares the same clock as the 

RUT. Figure 4 shows the state diagram of the 
def_opsdt block. It has clk, rst, dt, rc, admax, opcls 
and optyp signals as the input signals and we, 
data_i, endrw and endel as the output signals. The 
rc and admax signals play important roles in 
generating the endel signal which signifies the next 
MARCH element in a test algorithm to be tested.  
The opcls signal and the MSB of the optyp signal 
activates the states in the def_opsdt block. The 
actual read/write operations for the MARCH 
operations in the clusters are mainly decoded by the 
optyp signal with the help of the opcls signal. The 
opcls signal also works with the dt signal to 
determine the test data type for the MARCH 
operations in the clusters. The we and data_i signals 
represent the actual read/write operations and test 
data that are decoded from the opcls and optyp 
signals. This block produces the endrw signal to 
signify last decoding of the read/write operation and 
test data for the MARCH operations in the clusters. 

RWD 

Dec 0

RWD 

Dec 1

(opcls[0]=

optyp[1] 

&&  not 

opcls[1])

def_opsdt

clk

opcls

we

data_i

endrw

optyp

dt

rc

admax

endel

(opcls[0]

!=optyp[1] 

&& 

opcls[1])

rst

 
Figure 4: States for decoding operation according to 

deep-codes 

 

In the rtb block, the 2-bit test data, data_i signal is 
replicated according the number of bits of input data 
of the RUT.  The replicated data_i signal is fed to 
RUT as the data_o16 signal. This feature allows the 
BIST controller to test different RUTs that share 
same address width but different data width 
simultaneously. This replicated data_i signal is also 
registered internally in the rtb block to be compared 
to the output from the RUT, q16. The psfl signal is 
high if the q16 is not equal to the registered data_i 
signal. 

 

4.2. Deep-Encoded FSM-based P-MBIST 

Architecture 

 
The complete microcode for one MARCH element 
can be rearranged as following 17-bit microcode as 
shown in Figure 5. The bit 16 and bit 15 of the 
instruction represent the ado signal. The bit 14, bit 
13 and bit 12 of the instruction signify the ah, rc and 
dt signals .The remaining 12-bit wide are further 
divided into three 4-bit wide: bit 11 to bit 8, bit 7 to 
bit 4 and bit 3 to bit 0. The 4-bit microcode is 
divided into three parts. The first part is the 
operation class, opcls which is represented by bit 2 
and bit 1. The second part is the operation type, 
optyp which is characterized by bit 3 and bit 0.This 
4-bit microcode is assigned to each cluster. 
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Figure 5: The instruction’s microcode for deep-encoded 

method 
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 The controller comprises of three component 
blocks; deu_addec block to decode the address, 
deu_elecl block to encode the instruction, deu_opsdt 
block to decode the read/write operation and test 
data. The rtb block has the same function as the rtb 
block in the deep-encoded FSM-based P-MBIST 
controller. Figure 6 portrays the block diagram of 
the controller. 

 

 It can be seen from the figure that the input and 
output signals for deu_addec and deu_opsdt blocks 
are as same as the input and output signals for 
def_addec and def_opsdt blocks respectively. This is 
because both deu_addec and deu_opsdt blocks 
function exactly as the def_addec and def_opsdt 
blocks. The rtb block is the same one that is used in 
the proposed deep-encoded FSM-based P-MBIST. 
As for the deu_elecl block, it has the same input 
signals as the def_elecl block except the dpcd signal 
is now replaced with the inst signal. Its output 
signals are as same as the def_elecl block. The deep-
codes are received by this block through the inst 
signal. 
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rc endel

rst
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Figure 6: Block diagram of the proposed deep-encoded 

microcode-based P-MBIST 

 
 The bit [11:0] of this inst signal is then 
segregated into three cluster. The bit 11 of the inst 
signal determines whether the operation in the first 
cluster is a single or double. The bit 10 and bit 9 of 
the inst are the operation class and they are also 
used to determine the test data for the first cluster. 
The bit 8 of the inst signal determines the 
read/write operations for the first cluster. The bit 7 
of the inst signal decides whether the operation in 
the second cluster is a single or double. The bit 6 
and bit 5 of the inst signal are the operation class 

and they are also used to decide the test data for the 
second cluster. The bit 4 of the inst signal decides 
the read/write operations for the second cluster. The 
bit 3 of the inst signal determines whether the 
operation in the third cluster is a single or double. 
The bit 2 and bit 1 of the inst signal are the 
operation class and they are also used to determine 
the test data for the third cluster. The bit 0 of the 
inst signal determines the read/write operations for 
the third cluster. This 4-bit microcode in each 
cluster is represented by the opcls and optyp 
signals.   
 

5. EXPERIMENTAL RESULTS  

 
The synthesis of the proposed deep-encoded FSM-
based and microcode-based P-MBIST controller is 
performed using Synopsis DesignCompiler tool. 
The synthesis library used is the 0.18 um Silterra 
library. The previously designed FSM-based [13,14] 
and microcode-based [15] P-MBISTs are also 
synthesized for comparison purpose. Three factors 
such as area overhead, timing closure and power 
consumption are analyzed from the synthesis result 
of the P-MBIST controller. In this research, the 
main factor to be analyzed is the area overhead of 
the P-MBIST. However, the timing closure and the 
power consumption of the BIST controller are also 
examined to ensure that the low area overhead is 
achieved without compensating the speed and power 
of the controller. 

 

5.1. Area Result 

 
The FSM-based P-MBIST controller in [13] has 
three component blocks: BIST controller, access 
unit and memory interface unit. The BIST controller 
block is comparable to the algel block of the 
proposed clustered FSM-based P-MBIST controller. 
This block is used to encode the MARCH elements 
according to the test algorithms. The access unit 
block is comparable to the elecl, opsdt and addec 
blocks because this block decodes the read/write 
operation and test data according to the MARCH 
elements and also generates the addresses for the 
MARCH elements. The memory interface unit block 
is comparable to the rtb block that is utilized as the 
response analyzer to compare the memory output 
and the test data. 

 

 As for the FSM-based P-MBIST controller in 
[14], it has four component blocks: algorithm 
generator, read/write signal generator, address 
generator and comparator. The algorithm generator 
block is analogous to the algel block as it is used to 
encode the MARCH elements according to the test 
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algorithms. The read/write signal generator block is 
analogous to the elecl and opsdt blocks because this 
block decodes the read/write operation and test data 
according to the MARCH elements. The address 
generator block is analogous to the addec block 
where it is intended to generate the addresses for the 
MARCH elements. The comparator block is 
analogous to the comp block that is used as the 
response analyzer to compare the memory output 
and the test data. 
 
 Figure 7 shows the area comparison of the 
component blocks for the FSM-based controllers. 
The area for the elecl, opsdt and addec are 
combined because the FSM-based P-MBIST 
controller in [13] merged these blocks in its access 
unit block. It can be seen from the graph that the 
proposed deep-encoded FSM-based P-MBIST 
controller has the lowest area overhead in the top 
and elecl+opsdt+addec blocks compared to the 
other two FSM-based P-MBISTs in [13,14]. The 
area for the algel block for the deep-encoded P-
MBIST controller is the highest among all. This is 
resulted from the complex nature of the newly-
added MARCH SAM-opt algorithm. New control 
signals are also added in the algel block to 
accommodate the complexity of the MARCH SAM-
opt algorithm. The area of rtb block for the 
proposed deep-encoded FSM-based P-MBIST is 
now significantly lower than FSM-based P-MBIST 
controller in [13]. However, its area is still higher 
than the area for the rtb block of the FSM-based P-
MBIST controller in [14]. 
 

 
Figure 7: Area Comparison Between FSM-Based P-

MBIST Controllers Under Deep-Encoded Method 

 

 The microcode-based P-MBIST controller in [15] 
comprises of cycle controller, instruction logic, 
operation control logic, data generation logic, 
address generation logic and comparator. The cycle 
controller comprises of the cntmux, cyclecnt, 
cyclecmp, dff1 and orgate3. The instruction logic 
comprises of the insreg, addrdclg and lg82. The 
operation control logic comprises of the opcntreg. 

The data generation logic comprises of dtreg, 
xorgt1, xorgt2, xorgt3 and xorgt4. The address 
generation logic comprises of addrcount, lg75, 
orgt2, notgt3, dff0 and xorgt0 and the comparator 
comprises of the psflcomp. For comparison purpose, 
the cycle controller, instruction logic, operation 
control logic and data generation logic are 
analogous to the elecl and opsdt blocks in the 
proposed microcode-based P-MBIST controller. 
The address generation logic is analogous to the 
addec block and the comparator is analogous to the 
comp block. 

 

 Figure 8 shows the area comparison of the 
component blocks for the microcode-based P-
MBIST controllers. It can be seen from the graph 
that the proposed deep-encoded microcode-based P-
MBIST controller has lowest area overhead in all 
the component blocks except for the comp block. 
The area of the rtb block is higher than the area of 
the rtb block for the microcode-based P-MBIST in 
[15]. The area of the rtb block for the microcode-
based P-MBIST in [15] is very low because it only 
contains combinational logics. However, the rtb 
block for the deep-encoded microcode-based P-
MBIST contains both non-combinational and 
combinational logics.  

 

 
Figure 8: Area Comparison between FSM-based P-
MBIST Controllers under Deep-Encoded Method 

 

5.2. Timing Result 

    The timing analysis is performed by obtaining 
the time slacks for all three FSM-based P-MBIST 
controllers at different clock periods. It can be seen 
from Figure 9 that the time slack for the deep-
encoded P-MBIST controller is almost similar to 
time slack for the FSM-based P-MBIST controller 
in [13]. The time slacks for the both FSM-based P-
MBIST controllers are 12.6 to 4.6 ns from clock 
periods of 20 ns to 12 ns. As for the FSM-based P-
MBIST controller in [14], its slack value is still 
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almost 2ns higher than the deep-encoded P-MBIST 
controller. 
 

    However, when the clock periods go below 10ns, 
the time slacks for the FSM-based P-MBIST 
controller in [9] are slightly higher than the deep-
encoded FSM-based P-MBIST controller until both 
of them reach a slack value of 0ns at clock period of 
7ns. The slack values for the FSM-based P-MBIST 
controller in [14] are still significantly higher than 
the other two controllers when the clock periods go 
below 10ns. This indicates that the deep-encoded 
FSM-based P-MBIST controller operates at slower 
clock period compared to the FSM-based P-MBIST 
controller in [14]. 

 
Figure 9: Timing Slack Comparison between FSM-

based P-MBIST Controllers under Deep-Encoded Method 

 

 As for deep-encoded microcode-based P-MBIST, 
its timing slack is compared to microcode-based P-
MBIST in [15]. Figure 9 shows the time slacks for 
the proposed deep-encoded microcode-based P-
MBIST controller and the microcode-based P-
MBIST controller in [15]. From clock periods of 20 
ns to 10ns, the time slacks for the proposed deep-
encoded microcode-based P-MBIST controller are 
lower than the time slack for microcode-based P-
MBIST controller in [15]. At the clock period of 7 
ns, the deep-encoded microcode-based P-MBIST 
controller settles at much lower slack value than the 
microcode-based P-MBIST controller in [15]. It is 
obvious that the slack value for the clustered P-
MBIST controller is significantly lower than the 
microcode-based P-MBIST controller in [15]. This 
indicates that the deep-encoded microcode-based P-
MBIST controller operates at slower clock period 
compared to the microcode-based P-MBIST 
controller in [15]. 

 

Figure 9: Timing Slack Comparison between microcode-

based P-MBIST Controllers under Deep-Encoded Method 
 

5.3. Power Consumption Result 

 
 Dynamic power and static power consumption are 
two types of power that can be evaluated from the 
Synopsys Design Compiler tool. Dynamic power is 
the power consumed when the circuit in operating 
mode. The dynamic power comprises of cell internal 
power and the net switching power. The cell internal 
power is the power when only the inputs of the 
circuit change whilst the net switching power is the 
power when the both inputs and outputs of the 
circuit change. Static power is the power consumed 
when the circuit in idle mode. This power is resulted 
from the transistors used to built the circuit and is 
also known as the cell leakage power. 

 

 Figure 10 portrays the power consumption for all 
three FSM-based P-MBIST controllers. It can be 
seen from the figure that the dynamic power of the 
proposed deep-encoded FSM-based P-MBIST is 
lower than the dynamic power for both FSM-based 
P-MBIST controllers in [13,14]. This indicates that 
the deep-encoding method is able to reduce the 
dynamic power of the FSM-based P-MBIST 
controller compared to the cluster method. In term 
of static power, the proposed deep-encoded FSM-
based P-MBIST controller has the lowest cell 
leakage power because it has the lowest area 
overhead. 
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Figure 10:  Power Comparison between FSM-based P-

MBIST Controllers under Deep-Encoded Method 

 
 Figure 11 depicts the power consumption 
analysis between the proposed deep-encoded 
microcode-based P-MBIST controller and the 
microcode-based P-MBIST controller in [15]. It can 
be seen from the figure that the dynamic and 
leakage power of the proposed deep-encoded 
microcode-based P-MBIST are lower than 
microcode-based P-MBIST in [15]. 
 

 
Figure 11: Power Comparison between microcode-based 

P-MBIST Controllers under Deep-Encoded Method 

 
 From these area, slack and power results, it can be 
concluded that the proposed deep-encoded FSM-
based-based P-MBIST controller achieves the 
lowest area overhead compared to the FSM-based 
P-MBIST controllers in [13,14]. However, it 
compensates the speed in order to achieve the 
lowest area overhead. In term of power 
consumption, the dynamic and leakage power of the 
proposed deep-encoded FSM-based P-MBIST 
controller are improved than the FSM-based P-
MBIST controllers in [13,14]. As for the deep-
encoded microcode-based P-MBIST controller, it 

also achieves the lowest area overhead compared to 
the microcode-based P-MBIST controllers in [15]. 
But it still compensates the speed in order to achieve 
lowest area overhead. However, both dynamic and 
leakage power of the proposed deep-encoded 
microcode-based P-MBIST controller are improved 
than microcode-based P-MBIST controller in [15]. 
 

6. CONCLUSION AND FUTURE WORKS 

 
 The deep-encoding of the read/write operation 
and test data is developed to distinguish between 
the single and double operation in the cluster 
method. Deep-encoding method maintains the 
division of the MARCH operation of a MARCH 
element into three clusters but a specific 4-bit deep-
code is developed to replace the simple microcode 
of the read/write operations and test data of a 
MARCH element. This technique is able to handle 
the complexity of MARCH SAM-opt algorithm. 
The application of the deep-encoding method is 
able to produce low area and robust FSM-based and 
microcode-based P-MBIST controllers. The 
synthesis results of these controllers justify that by 
utilizing the deep-encoding method, the low area 
overhead are still achieved at optimum performance 
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