
Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

55

DEEP ENCODING WITH CLUSTERING TECHNIQUE FOR

PROGRAMMABLE MBIST

1
NURQAMARINA BINTI MOHD NOOR,

2
AZILAH SAPARON

Faculty of Electrical Engineering

UniversitiTeknologi MARA
Shah Alam, Selangor

Email: 1nurqamarina@isiswa.uitm.edu.my , 2azilah574@salam.uitm.edu.my

ABSTRACT

As latest trend in designing processors and system-on-chips (SoCs), they require more RAMs than logics.
These embedded RAMs contribute to the high percentage of yields for these processors and SoCs. To
ensure high percentage of yield is achieved, a built-in self-test (BIST) is utilized to test these RAMs. The
memory BIST applies various test algorithms such as MARCH tests to detect various RAM faults.
Numerous design objectives such as programmability, low area overhead, at-speed/full-speed test and
multiple RAMs target are proposed in the BIST designs. These objectives must be achieved to provide best
fault detection in these embedded RAMs. A technique called clustering which is applied to other
architectures such as VLIW processor and FPGA architecture is utilized in this study to achieve low area
programmable memory BIST (P-MBIST). The synthesis results justify that the cluster technique provides
low area overhead for the programmable memory BIST controller at optimum performance.
Keywords:- P-MBIST, MARCH Test, Cluster, Low Area, FPGA

1. INTRODUCTION

 The future trends in the processors and systems
on chip (SoCs) are moving from logic and memory
balanced chips to memory dominated chips in order
to deal with the increasing application requirements.
According to International Technology Roadmap
for Semiconductor (ITRS) that is provided by
Semiconductor Industry Association (SIA) in 2001,
the embedded memories are expected to utilize
more than 83% of the chip area after 2008.
Typically, embedded memories account
approximately half the area of the microprocessor
[1] and their density is continuously raising. They
are scattered around the device (SoCs) rather than
concentrated in one location [2]. As a result, the

overall SoC yield is dominated by the memory
yield. In order to achieve high memory yield, a
thorough understanding of memory design, faults
models and adequate tests strategies is a must.

SRAM can be organized as BO-RAM(Bit-Oriented)
and WO-RAM(Word-Oriented RAM). Bit-oriented
memories (BO-RAM) are the memories where the
read/write operations are performed on the RAM
cell arrays by bit. Word-oriented memories (WO-
RAM) where the read/write operations are
performed on the RAM cell arrays by word. Both
BO-RAM and WO-RAM have two types of fault
models: static and dynamic. There are various types
of faults can occur in both types of RAMs. The
static, dynamic

and intra-word coupling faults are the faults that are
evaluated on these RAM. These faults can be
detected using the MBIST controller. The MBIST
controllers can be classified as FSM-based or
microcode-based. Both MBIST controllers are
designed to be programmable to allow multiple
MARCH test patterns to be added without requiring
changes on the controller’s architecture. The
architectures of the available programmable
MBIST (P-MBIST) controllers are studied to
analyze their area-efficiency, full-speed capability
and ability to be shared to test multiple RAM cores.

To achieve these factors, a technique called
clustering is studied. This technique was applied
widely to the datapath of the VLIW architecture [3]
and FPGA architecture [4]. The area, power and
speed of these two architectures are improved with
the application of clustering technique on both of
them.

 Based on these results, the clustering technique is
applied to the proposed P-MBIST controllers to
achieve better area-efficiency than the available P-
MBIST controllers. This paper is organized by

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

56

introducing some literatures regarding RAM’s fault
models and test algorithms, P-MBIST designs and
clustering technique. Section III and IV describe
the development of clustering technique on the
MARCH test algorithms. The P-MBIST
architectures for the application of this clustering
technique are described in Section V. The area and
performance result are presented in Section III.
Finally, the Section VI concludes this paper.

2. BACKGROUND AND MOTIVATION

 More RAMs are embedded in today’s processors
and SoCs to accommodate wide range of computer
applications such as gaming and Internet. These
embedded RAMs use fault models to classify types
of faults that may affect them during test. The
RAM fault models are classified according to how
the read/write operation is performed on the RAM
cell arrays..

 Static fault models are faults sensitized by
performing at most one operation. It is divided into
two: simple fault and linked fault. In [5], Van de
Goor divided static faults into single-cell faults and
faults between memory cells. Single cell faults are
further classified into state faults (SF) and transition
faults (TF). The faults between memory cells are
further classified as coupling faults (CF). The
dynamic faults are the faults requiring more than
one operation occur sequentially in order to be
sensitized. There are two types of dynamic faults:
single-cell dynamic and two-cell dynamic [6].
Single cell dynamic faults are the faults that occur
during read operation. Two-cell dynamic faults are
basically the CF in dynamic condition.

 Both static and dynamic faults that occur in the
embedded RAM are detected using test algorithms.
The MARCH test algorithm is the common test
utilized to detect these faults. This test algorithm
comprises of a sequence of MARCH elements. The
MARCH element is defined as a sequence of
MARCH operations applied to each cell in the
memory before proceeding to next cell [7]. There
are four types of MARCH operations that can be
performed in each cell in MARCH test. These
operations are writing 0 (w0), writing 1(w1), reading
0(r0) and reading 1(r1). The address of the next cell
to be tested is determined by the ascending
addressing order, ↑ or descending addressing order,
↓ or irrelevant addressing order, ↕. Examples of
earlier MARCH tests which are developed to detect
static faults are MATS+, MARCH X, and MARCH
C-[8]. However, these MARCH algorithms provide
low fault coverage because they can only detect
certain types of static faults. Nowadays, new
MARCH algorithms are widely used to detect the

new faults such as dynamic faults and to improve
the earlier MARCH algorithms by providing high
fault coverage. Examples of these MARCH
algorithm are MARCH SS, MARCH SAM-opt and
MARCH RAW [9, 10].

 The MARCH tests cannot be applied to the
embedded RAM through the chip's I/O pins,
because the address, data, and control signals are not
directly available through these I/O pins. Hence, the
best test solution for the embedded RAM is by using
built-in self-test (BIST). Typically, the BIST is
designed based on the deterministic patterns such as
MARCH test. This MARCH test is generally
programmed inside the BIST engine. This BIST
engine is basically divided into two types: state-
machine and micro-code [11]. A state-machine (also
known as finite state-machine (FSM)) memory
BIST (MBIST) is generally used in the industry to
generate a single MARCH test. However, a better
memory test solution requires a set of multiple
MARCH tests. This certainly increases the
complexity of the MBIST design. A state-machine
BIST, as the name implies, uses a number of states,
to decode the MARCH test [12]. However, the state-
machine MBIST is less flexible as modifying the
patterns requires major changes in the MBIST
design. As for the micro-code BIST, the test patterns
are inserted into the controller in the form of
instruction sets. This type of MBIST is highly
flexible because different MARCH tests can be
utilized. It can also be used in both manufacturing
and in a system environment. Both FSM-based and
microcode-based MBIST controllers must be able to
generate different types of MARCH tests [12]. This
can be accomplished by using a programmable
architecture. Both types of MBIST: state-machines
and micro-code can be designed to be a
programmable memory built-in self-test (P-
MBIST).

 CLUSTERING MARCH OPERATIONS OF

MARCH ELEMENTS IN MARCH TESTS

 As described in Section II., a MARCH algorithm
comprises of MARCH element. This element
comprises of a sequence of read/write operations
and test data. This sequence is called MARCH
operation. Clustering the MARCH operation of
MARCH elements in a MARCH test is the
operation where one or two read/write operations
and test data in a MARCH element are clustered
into one major operation. To understand more of
how this cluster is created, the MARCH tests is
segregated by their elements and operations as
shown in Table 1.

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

57

Table 1: MARCH Operations in their Clusters
Elements R/W Operation in the Element

Original

(before

clustering)

New

(after clustering)

No Cluster C 1 C 2 C 3

e0 w0 w0

e1 r0,w1 r0,w1

e2 r1,w0 r1,w0

e3 r0 r0

e4 r0,w0,r0,r0,w

1,r1

r0,w0, r0,r0, w1,r1

e5 r1,w1,r1,r1,w

0,r0

r1,w1, r1,r1, w0,r0

e6 r0,w1,w0,w1 r0,w1, w0,w1

e7 r1,w0,w1,w0 r1,w0, w1,w0

e8 r0,w1,w0 r0,w1, w0

e9 r1,w0,w1 r1,w0, w1

e10 r0,w1,r1,w0,r

0,w1

r0,w1, r1,w0, r0,w1

e11 r0,w1,r1,w0 r0,w1, r1,w0

e12 r1,w0,r0,w1 r1,w0, r0,w1

e13 r0,r0,w0,r0,w

1

r0, r0,w0, r0,w1

e14 r1,r1,w1,r1,w

0

r1, r1,w1, r1,w0

 It can be seen that there are 15 distinct MARCH
elements which are used repetitively in the MARCH
tests. The read/write operations and test data of the
MARCH elements are divided in two sub-columns;
original and new. The original column represents
the original read/write operations before the cluster
method is applied while the new column embodies
the read/write operation after the cluster method is
applied. The new column is further split into
numbers of sub-columns depend on the numbers of
clusters generated. From the original read/write
MARCH operations, it can be seen that the e4, e5
and e10 have the maximum numbers of MARCH
operations which are six. The e13 and e14 have five
MARCH operations while the e6, e7, e11 and e12
have four MARCH operations. Both e8 and e9
consist of three MARCH operations. For e1 and e2,
they both share two MARCH operations. The e0
and e3 has the minimum number of MARCH
operation which is only one operation.

 The numbers of clusters for all fifteen MARCH
elements are determined by the numbers of
MARCH operations in an element. For example, six
MARCH operations in e10 generate three clusters
where each cluster comprises of two MARCH
operation. After every two MARCH operations in a
MARCH element were grouped, any single
MARCH operation left can be grouped as one
cluster. Let’s take e8 and e9 as examples. Both
elements have three MARCH operations. The first
two MARCH operations in these elements are
clustered in one cluster and the last single operation

is also clustered as one cluster. The read/write
operation in a cluster is then translated into the
microcode as shown in Table 2.

Table 2: MARCH Operation and their Microcodes

The 4-bit microcode represents two read/write
operations in an element (e.g. 1001 and 1100 in e1
and e2 respectively). The odd bits of microcode
represent the read/write operation where ‘1’
indicates read and ‘0’ signifies write. The even bits
represent the test data where ‘0’ indicates data of
value zeros and ‘1’ signifies data of value ones. The
e6, e7, e8, e9, e11 and e12 generate two clusters of
4-bits microcode because these elements have three
or four read/write operations. For e4, e5, e10, e13
and e14, they produce three clusters of 4-bits
microcode as they have five or six read/write
operations.

 The e0 and e3 have only a single operation and
are supposed to be assigned as 2-bit microcode.
However, these single operations are repeated right
after the 2-bit microcode of the original single
operations because the clustering technique requires
two MARCH operation to be clustered in a cluster.
The redundancy causes the single operations in the
e0 and e3 to be assigned as 4-bit microcode. The
single operations in the last cluster of the MARCH
elements with three or five operations such as e8,
e9, e13 and e14 are also subjected to this
redundancy. However, this redundancy resulted in
longer test time. Furthermore, the microcode in the
clusters only applicable for only two kinds of DBS:
zeros and ones. Thus, it is not suitable for complex
MARCH test algorithm such MARCH SAM-opt
which has multiple DBS. To overcome these
limitations, these micro-codes in the clusters must
be deep-encoded.

Elements

R/W Operation in the Element

Cluster 1 Cluster 2 Cluster 3

e0 0000 - -

e1 1001 - -

e2 1100 - -

e3 1010 - -

e4 1000 1010 0111

e5 1101 1111 0010

e6 1001 0001 -

e7 1100 0100 -

e8 1001 0000 -

e9 1100 0101 -

e10 1001 1100 1001

e11 1001 1100 -

e12 1100 1001 -

e13 1010 1000 1001

e14 1111 1101 1100

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

58

3. DEEP-ENCODING THE CLUSTERS FOR

MARCH TEST WITH MULTIPLE DBS

 Originally, the maximum number of clusters in a
MARCH element is three. Each cluster can support
up to two MARCH operations. Thus, the maximum
numbers of MARCH operations supported by these
clusters are six. However, the MARCH SAM-opt
algorithm has more than six MARCH operation in
an MARCH element. It also has four different test
data. These test data are tabulated in Table 3.

Table 3:Test Data for MARCH SAM-opt Test Algorithm
Notation Test data in two bit form

d0 2’b01

d1 2’b11

d2 2’b10

d3 2’b00

 To accommodate the MARCH SAM-opt
algorithm into these clusters, the MARCH element
for MARCH SAM-opt must be reorganized into
few sub-elements. These sub-elements are arranged
according to types of the test data. The MARCH
operations that share the same test data are grouped
into one sub-element. For example, the first
element, ↕ (wd0, rd0, wd0, rd0, rd0, wd1, rd1, wd1,

rd1, rd1) is divided into two sub-elements: wd0,
rd0, wd0, rd0, rd0 and wd1, rd1, wd1, rd1, rd1.
There should be eight sub-elements derived from
all the MARCH elements for MARCH SAM-opt
algorithm.
These numbers of sub-elements can be further
reduced by applying concept of true-complement
data. From Table 4, it is known that d1 is the
complement of the d3 and d2 is the complement of
the d0. Now, the numbers of test data in a MARCH
SAM-opt algorithm can be made generic by
assigning the test data as true data, d and
complement data, d’. By applying this concept, the
numbers of sub-elements in MARCH SAM-opt
algorithm are reduced to only four sub-elements.
The test data of value d0 and d3 in Table 3 are now
assigned as the true data, d whilst the test data of
value d1 and d2 are assigned as the complement
data, d’. Table 4 shows the application of this true-
complement data concept to the original 15
MARCH elements in Table 1. The extra four
MARCH elements: e15, e16, e17 and e18 are
originated from the MARCH SAM-opt algorithm.

These read/write operations and test data are deep-
encoded to avoid redundancy and to accommodate
the MARCH test with multiple test data. The new 4-
bit microcode for these read/write operations and
test data is named as deep-code. Table 5 tabulates

the deep-codes for all the MARCH operations in the
clusters. It can be seen for the table that the double
true operations are symbolized as D3, D2, D1 and
D0. The single true operations are symbolized by
the S3, S2, S1 and S0. The single operations are
divided into the repeated single operation (S3 and
S2) and non-repeated single operation (S1 and S0).
All the double and single operations have their
complements. These complements are symbolized
as same as the true operations except that a bar is
added at the top of the symbols.

Table 4: MARCH Operations using True-Complement

Test Data Concept

True Cluster Complement Cluster

 Op Deep-

codes[3:0]

 Op Deep-

codes[3:0]

3 2 1 0 3 2 1 0

�3 wdr

d

1 0 0 0 �3���� wd’rd’ 1 1 1 0

�2 rdw

d

1 0 0 1 �2���� rd’wd’ 1 1 1 1

�1 wdw

d’

1 0 1 0 �1���� wd’wd 1 1 0 0

�0 rdw

d’

1 0 1 1 �0���� rd’wd 1 1 0 1

�3 wdw

d

0 0 0 0 �3��� wd’wd’ 0 1 1 0

�2 rdrd 0 0 0 1 S2��� rd’rd’ 0 1 1 1

�1 wd 0 0 1 0 �1��� wd’ 0 1 0 0

�0 rd 0 0 1 1 S0��� rd’ 0 1 0 1

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

59

Table 5: MARCH Operations and Their Deep-Codes

 The bit 3 of the deep-codes is high to signify a
double operation or low to signify a single
operation. The read/write enable is activated by the
bit 0 of the deep-codes. The read operation takes
place if the bit 0 is high and if otherwise, the write
operation is performed. The bit 2 and bit 1 of deep-
codes represent the operation class. This operation
class is mainly used to determine the test data for
the operations in the clusters. It is also utilized to
classify the repeated and non-repeated single
operations and decode the correct read/write
operations. Table 6 shows the operations in the
clusters in the form the symbols that are introduced
in Table 5. These symbols are used to simplify the
process of determining what types of operations in
a cluster.

Table 6: MARCH Operations using Symbols for Deep-
Codes

Elements R/W Operation in the Element

 Original

(before

clustering)

New

(after clustering)

 C1 C 2 C 3

e0 wd S1 - -

e1 rd,wd’ D0 - -

e2 rd’,wd D0���� - -

e3 Rd S0 - -

e4 rd,wd,rd,rd,wd’,

rd’

D2 S2 D3����

e5 rd’,wd’,rd’,rd’,

wd,rd

D2���� S2��� D3

e6 rd,wd’,wd,wd’ D0 D1 -

e7 rd’,wd,wd’,wd �0���� �1���� -

e8 rd,wd’,wd D0 S1 -

e9 rd’,wd,wd’ �0���� �1��� -

e10 rd,wd’,rd’,wd,rd

,wd’

D0 �0���� D0

e11 rd,wd’,rd’,wd D0 �0���� -

e12 rd’,wd,rd,wd’ �0���� D0 -

e13 rd,rd,wd,rd,wd’ S0 D2 D0

e14 rd’,rd’,wd’,rd’,

wd

S0��� �2���� �0����

e15 wd,rd,wd,rd,rd D3 D3 S0

e16 wd’,rd’,wd’,rd’,

rd’

�3���� �3���� S0���

e17 wd,rd D3 - -

e18 wd’,rd’ �3���� - -

The deep-codes of the read/write operation and test
data for the MARCH test with multiple test data are
now complete. In the following section, the P-
MBIST architectures that apply these deep-codes
are designed.

4. PROPOSED P-MBIST ARCHITECTURES

FOR THE UTILIZATION OF THE DEEP-

CODES

 The FSM-based and microcode-based P-MBIST
controllers are proposed for the utilization of the
deep-codes. The proposed deep-encoded FSM-
based P-MBIST also utilizes the same macro-
commands [13,14] for selecting the test algorithm as
the ones used in the clustered FSM-based P-MBIST
controller. As for the deep-encoded microcode-
based P-MBIST, the numbers of instruction bits for
the read/write operations and test data are still set to
be fixed regardless of how many the MARCH
operations are in a MARCH element. This is
different from the microcode-based P-MBIST
controller in [15,16] where their length of micro-
codes are varied with the numbers of MARCH
operation in a MARCH element.

Elements R/W Operation in the Element

 Original

(before

clustering)

New

(after clustering)

 No Cluster C 1 C 2 C 3

e0 Wd wd

e1 rd,wd’ rd,wd’

e2 rd’,wd rd’,wd

e3 Rd rd

e4 rd,wd,rd,rd,

wd’,rd’

rd,wd, rd,rd, wd’,rd

’

e5 rd’,wd’,rd’,r

d’,wd,rd

rd’,wd

’,

rd’,rd’, wd,rd

e6 rd,wd’,wd,

wd’

rd,wd’

,

wd,wd

’

e7 rd’,wd,wd’,

wd

rd’,wd

,

wd’,w

d

e8 rd,wd’,wd rd,wd’

,

wd

e9 rd’,wd,wd’ rd’,wd

,

wd’

e10 rd,wd’,rd’,

wd,rd,wd’

rd,wd’

,

rd’,wd

,

rd,wd’

e11 rd,wd’,rd’,

wd

rd,wd’

,

rd’,wd

e12 rd’,wd,rd,w

d’

rd’,wd

,

rd,wd’

e13 rd,rd,wd,rd,

wd’

rd, rd,wd, rd,wd’

e14 rd’,rd’,wd’,r

d’,wd

rd’, rd’,wd

’,

rd’,wd

e15 wd,rd,wd,rd

,rd

wd,rd wd,rd rd

e16 wd’,rd’,wd’

,rd’,rd’

wd’,rd

’

wd’,rd

’

rd’

e17 wd,rd wd,rd

e18 wd’,rd’ wd’rd’

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

4.1. Deep-Encoded FSM-based P-MBIST

Architecture

The deep-encoded FSM-based P-MBIST controller
has five component blocks: def_algel, def_addec,
def_elecl, def_opsdt and rtb. Figure 1 portrays the
block diagram of the controller. The def-algel block
encodes the MARCH element into 12-bit deep-
codes. The def_addec block generates the address
for the RAM under test (RUT) based on the
addressing order provided by def_algel block. The
def_elecl block is utilized to segregate the 12-bit
deep-codes into three clusters of 4-bit deep-codes.
The def_opsdt block is employed to decode the
read/write operation and test data according to the
deep-codes. The rtb block is used to compare the
injected data and the acquired data from the RAM
under test RUT.

rtb

def_addec

def_elecl

RUT

def_opsdt

clk

endcl

ado

admax

address

endrw

dpcd

opcls

endcl

clk

opcls

we

data_i

endrw

q16

q16

clk

clk

psfl

ah

clk

code

endel

dpcd

clk

endrw

optyp

optyp

def_algel
rc

dt

endcl

endrw

admax

ado

dt

ah

rc

admax

endel

data

_o16

data

_o16

address

we

rst

rst

rst

rst

Figure 1:. Block diagram of the proposed deep-encoded

FSM-based P-MBIST.

 The def_algel block comprises of clk, rst, code,
endel, endcl, endrw and admax as the input signals
and ado, dt, ah, rc and dpcd as the output signals.
This block starts to receive the 3-bit code if the
endel, endcl and endrw signals are high at positive
edge clk. The state machines in this block decode
the MARCH elements according to the code. The
numbers of states in the def_algel block depend on
the data types used in the MARCH SAM-opt
algorithm. There are four different data types
repeated twice in the MARCH SAM-opt algorithm
as shown in Table 3. Thus, maximum of nine states

are used for encoding all nineteen MARCH
elements.

Figure 2 shows that the states for the def_algel
block. The code 0 represents the MARCH SAM-
opt. All nine states; S0, S1, S2, S3, S4, S5, S6, S7
and S8 are triggered if code 0 is sent by the ATE.
There are four MARCH elements: e16, e17, e17
and e18 (refer Table 4.2) associated to the code 0.
Each state encodes the MARCH element and
addressing order as a 12-bit deep-code, dpcd and 1-
bit signal, ado. Unlike the cf_algel block, there are
three new signals are decoded in these states. These
signals are the test data type, dt, address hold, ah
and repeat cluster, rc. The dt signal determines the
types of the test data. The ah signal is utilized to
hold the address for the sub-elements in the main
MARCH elements of the MARCH SAM-opt test
algorithm. The rc signal distinguishes between the
MARCH algorithms with only one data type or
multiple data types.

S0 S4S1 S5S2 S3

code=0 &

admax=0

code=3|code=4|code=5

code=0

S7 S8S6

code=0 &

admax=0
code=1|

code=2|

code=6|

code=7

code=2|code=6|code=7

code=0 &

admax=0

ah

clk

code

endel

dpcd
def_algel

rc

endcl

endrw

admax

ado

dtrst

code=0 code=0

Figure 2: Nine states for encoding MARCH elements

The address decoder is triggered by the clk, rst,
endcl, endrw, ah and ado signals. The output signals
for this block are admax and address. The address
signal signifies the generated address. The addresses
are generated when the ah signal is low and the
endcl and endrw are high at the positive edge of clk.
The sequences of generated addresses depend on
ascending or descending addressing order of the
MARCH element under test. The active admax
signal means the MARCH element under test
reaches the last address. However, in a case of the
MARCH SAM-opt test algorithm, the admax signal
works together with the rc signal to generate new
starting address for all the MARCH elements.

 The def_elecl block consists of four input signals;
clk, rst, endrw and dpcd and three output signals;

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

opcls, optyp and endcl. This block receives the 12-
bit deep-codes, dpcd from the def_algel block once
the endrw signal is high at positive edge of clk. The
def_elecl block plays the key role in the deep-
encoding method because the state-machine in this
block is used to segregate the 12-bit deep-codes
into three clusters of 2-bit opcls and 2-bit optyp
signals. This block produces the endcl signal if the
2-bit opcls and 2-bit optyp signals are the last
operations for the MARCH element under test.
Figure 3 shows the state-machines of the def_elecl
block. Three states are used to segregate the 12-bit
deep-encoded microcode into three 2-bit opcls and
2-bit optyp signals.

RWD

Enc0

RWD

Enc1

RWD

Enc2

dpcd[7:4]=0
not

dpcd[7:4]=0

dpcd[3:0]=0

not

dpcd[3:0]=0

def_eleclendrw

dpcd

opcls

endcl

clk

optyprst

Figure 3: States for assigning deep-codes to clusters

The def_opsdt block shares the same clock as the

RUT. Figure 4 shows the state diagram of the
def_opsdt block. It has clk, rst, dt, rc, admax, opcls
and optyp signals as the input signals and we,
data_i, endrw and endel as the output signals. The
rc and admax signals play important roles in
generating the endel signal which signifies the next
MARCH element in a test algorithm to be tested.
The opcls signal and the MSB of the optyp signal
activates the states in the def_opsdt block. The
actual read/write operations for the MARCH
operations in the clusters are mainly decoded by the
optyp signal with the help of the opcls signal. The
opcls signal also works with the dt signal to
determine the test data type for the MARCH
operations in the clusters. The we and data_i signals
represent the actual read/write operations and test
data that are decoded from the opcls and optyp
signals. This block produces the endrw signal to
signify last decoding of the read/write operation and
test data for the MARCH operations in the clusters.

RWD

Dec 0

RWD

Dec 1

(opcls[0]=

optyp[1]

&& not

opcls[1])

def_opsdt

clk

opcls

we

data_i

endrw

optyp

dt

rc

admax

endel

(opcls[0]

!=optyp[1]

&&

opcls[1])

rst

Figure 4: States for decoding operation according to

deep-codes

In the rtb block, the 2-bit test data, data_i signal is
replicated according the number of bits of input data
of the RUT. The replicated data_i signal is fed to
RUT as the data_o16 signal. This feature allows the
BIST controller to test different RUTs that share
same address width but different data width
simultaneously. This replicated data_i signal is also
registered internally in the rtb block to be compared
to the output from the RUT, q16. The psfl signal is
high if the q16 is not equal to the registered data_i
signal.

4.2. Deep-Encoded FSM-based P-MBIST

Architecture

The complete microcode for one MARCH element
can be rearranged as following 17-bit microcode as
shown in Figure 5. The bit 16 and bit 15 of the
instruction represent the ado signal. The bit 14, bit
13 and bit 12 of the instruction signify the ah, rc and
dt signals .The remaining 12-bit wide are further
divided into three 4-bit wide: bit 11 to bit 8, bit 7 to
bit 4 and bit 3 to bit 0. The 4-bit microcode is
divided into three parts. The first part is the
operation class, opcls which is represented by bit 2
and bit 1. The second part is the operation type,
optyp which is characterized by bit 3 and bit 0.This
4-bit microcode is assigned to each cluster.

Cluster 1 Cluster 2 Cluster 3

opcls
op

typ opcls opcls

Bit

15

Bit

14

Bit

13

Bit

12

Bit

11

Bit

10

Bit

9

Bit

8

Bit

5

Bit

4

Bit

6

Bit

7

Bit

1

Bit

2

Bit

0

Bit

3

ado

Bit

16

ah rc dt
op

typ

op

typ

op

typ

op

typ

op

typ

Figure 5: The instruction’s microcode for deep-encoded

method

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

 The controller comprises of three component
blocks; deu_addec block to decode the address,
deu_elecl block to encode the instruction, deu_opsdt
block to decode the read/write operation and test
data. The rtb block has the same function as the rtb
block in the deep-encoded FSM-based P-MBIST
controller. Figure 6 portrays the block diagram of
the controller.

 It can be seen from the figure that the input and
output signals for deu_addec and deu_opsdt blocks
are as same as the input and output signals for
def_addec and def_opsdt blocks respectively. This is
because both deu_addec and deu_opsdt blocks
function exactly as the def_addec and def_opsdt
blocks. The rtb block is the same one that is used in
the proposed deep-encoded FSM-based P-MBIST.
As for the deu_elecl block, it has the same input
signals as the def_elecl block except the dpcd signal
is now replaced with the inst signal. Its output
signals are as same as the def_elecl block. The deep-
codes are received by this block through the inst
signal.

RUT

q16

address

clk
rtb

we

data_i

psfl

data_o16

clk

q16

Inst. Storage

inst

deu_addec

deu_elecl

deu_opsdt

clk

endcl

ado

admax

address

endrw

inst

opcls

endcl

clk

opcls

we

data_i

endrw

clk

endrw

optyp

optyp

dt

ah

rc endel

rst

rst

endel

rst

admax

Figure 6: Block diagram of the proposed deep-encoded

microcode-based P-MBIST

 The bit [11:0] of this inst signal is then
segregated into three cluster. The bit 11 of the inst
signal determines whether the operation in the first
cluster is a single or double. The bit 10 and bit 9 of
the inst are the operation class and they are also
used to determine the test data for the first cluster.
The bit 8 of the inst signal determines the
read/write operations for the first cluster. The bit 7
of the inst signal decides whether the operation in
the second cluster is a single or double. The bit 6
and bit 5 of the inst signal are the operation class

and they are also used to decide the test data for the
second cluster. The bit 4 of the inst signal decides
the read/write operations for the second cluster. The
bit 3 of the inst signal determines whether the
operation in the third cluster is a single or double.
The bit 2 and bit 1 of the inst signal are the
operation class and they are also used to determine
the test data for the third cluster. The bit 0 of the
inst signal determines the read/write operations for
the third cluster. This 4-bit microcode in each
cluster is represented by the opcls and optyp
signals.

5. EXPERIMENTAL RESULTS

The synthesis of the proposed deep-encoded FSM-
based and microcode-based P-MBIST controller is
performed using Synopsis DesignCompiler tool.
The synthesis library used is the 0.18 um Silterra
library. The previously designed FSM-based [13,14]
and microcode-based [15] P-MBISTs are also
synthesized for comparison purpose. Three factors
such as area overhead, timing closure and power
consumption are analyzed from the synthesis result
of the P-MBIST controller. In this research, the
main factor to be analyzed is the area overhead of
the P-MBIST. However, the timing closure and the
power consumption of the BIST controller are also
examined to ensure that the low area overhead is
achieved without compensating the speed and power
of the controller.

5.1. Area Result

The FSM-based P-MBIST controller in [13] has
three component blocks: BIST controller, access
unit and memory interface unit. The BIST controller
block is comparable to the algel block of the
proposed clustered FSM-based P-MBIST controller.
This block is used to encode the MARCH elements
according to the test algorithms. The access unit
block is comparable to the elecl, opsdt and addec
blocks because this block decodes the read/write
operation and test data according to the MARCH
elements and also generates the addresses for the
MARCH elements. The memory interface unit block
is comparable to the rtb block that is utilized as the
response analyzer to compare the memory output
and the test data.

 As for the FSM-based P-MBIST controller in
[14], it has four component blocks: algorithm
generator, read/write signal generator, address
generator and comparator. The algorithm generator
block is analogous to the algel block as it is used to
encode the MARCH elements according to the test

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

algorithms. The read/write signal generator block is
analogous to the elecl and opsdt blocks because this
block decodes the read/write operation and test data
according to the MARCH elements. The address
generator block is analogous to the addec block
where it is intended to generate the addresses for the
MARCH elements. The comparator block is
analogous to the comp block that is used as the
response analyzer to compare the memory output
and the test data.

 Figure 7 shows the area comparison of the
component blocks for the FSM-based controllers.
The area for the elecl, opsdt and addec are
combined because the FSM-based P-MBIST
controller in [13] merged these blocks in its access
unit block. It can be seen from the graph that the
proposed deep-encoded FSM-based P-MBIST
controller has the lowest area overhead in the top
and elecl+opsdt+addec blocks compared to the
other two FSM-based P-MBISTs in [13,14]. The
area for the algel block for the deep-encoded P-
MBIST controller is the highest among all. This is
resulted from the complex nature of the newly-
added MARCH SAM-opt algorithm. New control
signals are also added in the algel block to
accommodate the complexity of the MARCH SAM-
opt algorithm. The area of rtb block for the
proposed deep-encoded FSM-based P-MBIST is
now significantly lower than FSM-based P-MBIST
controller in [13]. However, its area is still higher
than the area for the rtb block of the FSM-based P-
MBIST controller in [14].

Figure 7: Area Comparison Between FSM-Based P-

MBIST Controllers Under Deep-Encoded Method

 The microcode-based P-MBIST controller in [15]
comprises of cycle controller, instruction logic,
operation control logic, data generation logic,
address generation logic and comparator. The cycle
controller comprises of the cntmux, cyclecnt,
cyclecmp, dff1 and orgate3. The instruction logic
comprises of the insreg, addrdclg and lg82. The
operation control logic comprises of the opcntreg.

The data generation logic comprises of dtreg,
xorgt1, xorgt2, xorgt3 and xorgt4. The address
generation logic comprises of addrcount, lg75,
orgt2, notgt3, dff0 and xorgt0 and the comparator
comprises of the psflcomp. For comparison purpose,
the cycle controller, instruction logic, operation
control logic and data generation logic are
analogous to the elecl and opsdt blocks in the
proposed microcode-based P-MBIST controller.
The address generation logic is analogous to the
addec block and the comparator is analogous to the
comp block.

 Figure 8 shows the area comparison of the
component blocks for the microcode-based P-
MBIST controllers. It can be seen from the graph
that the proposed deep-encoded microcode-based P-
MBIST controller has lowest area overhead in all
the component blocks except for the comp block.
The area of the rtb block is higher than the area of
the rtb block for the microcode-based P-MBIST in
[15]. The area of the rtb block for the microcode-
based P-MBIST in [15] is very low because it only
contains combinational logics. However, the rtb
block for the deep-encoded microcode-based P-
MBIST contains both non-combinational and
combinational logics.

Figure 8: Area Comparison between FSM-based P-
MBIST Controllers under Deep-Encoded Method

5.2. Timing Result

 The timing analysis is performed by obtaining
the time slacks for all three FSM-based P-MBIST
controllers at different clock periods. It can be seen
from Figure 9 that the time slack for the deep-
encoded P-MBIST controller is almost similar to
time slack for the FSM-based P-MBIST controller
in [13]. The time slacks for the both FSM-based P-
MBIST controllers are 12.6 to 4.6 ns from clock
periods of 20 ns to 12 ns. As for the FSM-based P-
MBIST controller in [14], its slack value is still

0
1000
2000
3000
4000
5000
6000
7000

top algel elecl +

opsdt +

addec

rtb

N
o

 o
f

G
a

te
s

Component Blocks

Deep-Encoded FSM-based P-MBIST

FSM-based P-MBIST [9]

FSM-based P-MBIST [10]

0
1000
2000
3000
4000
5000
6000
7000

top algel elecl +

opsdt +

addec

rtb

N
o

 o
f

G
a

te
s

Component Blocks

Deep-Encoded FSM-based P-MBIST

FSM-based P-MBIST [9]

FSM-based P-MBIST [10]

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

almost 2ns higher than the deep-encoded P-MBIST
controller.

 However, when the clock periods go below 10ns,
the time slacks for the FSM-based P-MBIST
controller in [9] are slightly higher than the deep-
encoded FSM-based P-MBIST controller until both
of them reach a slack value of 0ns at clock period of
7ns. The slack values for the FSM-based P-MBIST
controller in [14] are still significantly higher than
the other two controllers when the clock periods go
below 10ns. This indicates that the deep-encoded
FSM-based P-MBIST controller operates at slower
clock period compared to the FSM-based P-MBIST
controller in [14].

Figure 9: Timing Slack Comparison between FSM-

based P-MBIST Controllers under Deep-Encoded Method

 As for deep-encoded microcode-based P-MBIST,
its timing slack is compared to microcode-based P-
MBIST in [15]. Figure 9 shows the time slacks for
the proposed deep-encoded microcode-based P-
MBIST controller and the microcode-based P-
MBIST controller in [15]. From clock periods of 20
ns to 10ns, the time slacks for the proposed deep-
encoded microcode-based P-MBIST controller are
lower than the time slack for microcode-based P-
MBIST controller in [15]. At the clock period of 7
ns, the deep-encoded microcode-based P-MBIST
controller settles at much lower slack value than the
microcode-based P-MBIST controller in [15]. It is
obvious that the slack value for the clustered P-
MBIST controller is significantly lower than the
microcode-based P-MBIST controller in [15]. This
indicates that the deep-encoded microcode-based P-
MBIST controller operates at slower clock period
compared to the microcode-based P-MBIST
controller in [15].

Figure 9: Timing Slack Comparison between microcode-

based P-MBIST Controllers under Deep-Encoded Method

5.3. Power Consumption Result

 Dynamic power and static power consumption are
two types of power that can be evaluated from the
Synopsys Design Compiler tool. Dynamic power is
the power consumed when the circuit in operating
mode. The dynamic power comprises of cell internal
power and the net switching power. The cell internal
power is the power when only the inputs of the
circuit change whilst the net switching power is the
power when the both inputs and outputs of the
circuit change. Static power is the power consumed
when the circuit in idle mode. This power is resulted
from the transistors used to built the circuit and is
also known as the cell leakage power.

 Figure 10 portrays the power consumption for all
three FSM-based P-MBIST controllers. It can be
seen from the figure that the dynamic power of the
proposed deep-encoded FSM-based P-MBIST is
lower than the dynamic power for both FSM-based
P-MBIST controllers in [13,14]. This indicates that
the deep-encoding method is able to reduce the
dynamic power of the FSM-based P-MBIST
controller compared to the cluster method. In term
of static power, the proposed deep-encoded FSM-
based P-MBIST controller has the lowest cell
leakage power because it has the lowest area
overhead.

0

2

4

6

8

10

12

14

16

20ns 18ns 16ns 14ns 12ns 10ns 9ns 8ns 7ns

S
la

ck
(n

s)

Clock Period

Deep-Encoded FSM-based P-

MBIST
FSM-based P-MBIST[9]

FSM-based P-MBIST[10]

0

2

4

6

8

10

12

14

16

20ns18ns16ns14ns12ns10ns 9ns 8ns 7ns

S
la

ck
(n

s)

Clock Period

Deep-Encoded Microcode-based P-

MBIST
Microcode-based P-MBIST [11]

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

Figure 10: Power Comparison between FSM-based P-

MBIST Controllers under Deep-Encoded Method

 Figure 11 depicts the power consumption
analysis between the proposed deep-encoded
microcode-based P-MBIST controller and the
microcode-based P-MBIST controller in [15]. It can
be seen from the figure that the dynamic and
leakage power of the proposed deep-encoded
microcode-based P-MBIST are lower than
microcode-based P-MBIST in [15].

Figure 11: Power Comparison between microcode-based

P-MBIST Controllers under Deep-Encoded Method

 From these area, slack and power results, it can be
concluded that the proposed deep-encoded FSM-
based-based P-MBIST controller achieves the
lowest area overhead compared to the FSM-based
P-MBIST controllers in [13,14]. However, it
compensates the speed in order to achieve the
lowest area overhead. In term of power
consumption, the dynamic and leakage power of the
proposed deep-encoded FSM-based P-MBIST
controller are improved than the FSM-based P-
MBIST controllers in [13,14]. As for the deep-
encoded microcode-based P-MBIST controller, it

also achieves the lowest area overhead compared to
the microcode-based P-MBIST controllers in [15].
But it still compensates the speed in order to achieve
lowest area overhead. However, both dynamic and
leakage power of the proposed deep-encoded
microcode-based P-MBIST controller are improved
than microcode-based P-MBIST controller in [15].

6. CONCLUSION AND FUTURE WORKS

 The deep-encoding of the read/write operation
and test data is developed to distinguish between
the single and double operation in the cluster
method. Deep-encoding method maintains the
division of the MARCH operation of a MARCH
element into three clusters but a specific 4-bit deep-
code is developed to replace the simple microcode
of the read/write operations and test data of a
MARCH element. This technique is able to handle
the complexity of MARCH SAM-opt algorithm.
The application of the deep-encoding method is
able to produce low area and robust FSM-based and
microcode-based P-MBIST controllers. The
synthesis results of these controllers justify that by
utilizing the deep-encoding method, the low area
overhead are still achieved at optimum performance

REFERENCES

[1] S. Hamdioui, G. Gaydadjiev and A.J. van de

Goor, "The state-of art and future trends in
testing embedded memories," in Proceedings
of 2004 IEEE International Workshop on

Memory Technology, Design and Testing,
2004, pp. 54-59.

[2] J. Bhadra, M. S. Abadir, D. Burgess and E.
Trofimova, "Bottom-up approach in automated
embedded memory model generation for high-
performance microprocessors," IEEE

Proceedings-Computer and Digital
Techniques, vol. 153, pp. 302-312, 2006

[3] A. Terechko, M. Garg, and H. Corporaal,
"Evaluation of speed and area of clustered
VLIW processors," in Proceedings of 18th

IEEE International Conference on VLSI
Design, 2005,pp. 557-563.

[4] A. Singh and M. Marek-Sadowska, "Efficient
circuit clustering for area and power reduction
in FPGAs," in Proceedings of the 2002
ACM/SIGDA Tenth International Symposium

on Field Programmable Gate Array (FPGA
2002), 2002, pp. 59-66.

[5] A. J. van de Goor and Z. Al-Ars, "Functional
Memory Faults: a formal notation and a

0

50

100

150

200

250

Dynamic Power(uW) Leakage Power (nW)

P
o

w
e

r

Power Consumption

Deep-Encoded FSM-based P-MBIST

FSM-based P-MBIST [9]

FSM-based P-MBIST [10]

0

50

100

150

200

Dynamic

Power

(uW)

Leakage

Power

(nW)

P
o

w
e

r

Power Consumption

Deep-Encoded

Microcode-based

P-MBIST

Microcode-based

P-MBIST [11]

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

taxonomy," in Proceedings of the 18th IEEE
VLSI Test Symposium (VTEST), 2000, pp.
281-289.

[6] S. Hamdioui, R. Wadsworth, J. Delos Reyes
and A.J van de Goor, "Importance of
Dynamics Faults for New SRAM
Technologies," in Proceedings of the Eighth
IEEE European Test Workshop, 2003, pp. 29-
34.

[7] Laung-Terng Wang, Cheng-Wen Wu and
Xiaoging Wen, VLSI Test Principles and
Architecture. Morgan Kaufmann , Elsevier,
2006.

[8] A. J. van de Goor, Testing Semiconductor
Memories: Theory and Practice. John Wiley &
Sons, 1998.

[9] S. Hamdioui, Z. Al Ars, A.J. van de Goor and
M. Rodgers, "Dynamic Fault in Random-
Access-Memories: Concept, Fault Models and
Test," JOURNAL OF ELECTRONIC
TESTING: Theory and Application, vol. 19, pp.
195-205, 2003.

[10] S. Hamdioui and J.E.Q.D. Reyes, "New data-
background sequences and their industrial
evaluation for word-oriented random-access
memories," IEEE Transaction on Computer-
Aided Design of Integrated Circuits and
Systems, vol. 24, pp. 892-904, 2005.

[11] R. Dean Adams, High Performance Memory
Testing. Kluwer Academic Publisher, 2003.

[12] Laung-Terng Wang, Cheng-Wen Wu and
Xiaoging Wen, VLSI Test Principles and
Architecture. Morgan Kaufmann , Elsevier,
2006.

[13] Po-Chang Tsai, Sying-Jyan Wang and Feng-
Ming Chang, "FSM-based programmable
memory BIST with macro-command," in
Proceedings of 2005 IEEE International
Workshop on Memory Technology, Design and

Testing, 2005, pp. 72-77.
[14] WonGi Hong, JungDai Choi and Hoon Chang,

"A programmable memory BIST for embedded
memory," in Proceedings of IEEE
International SoC Design Conference (ISOCC

08), 2008, pp. 195-198.
[15] S. Boutobza, M. Nicolaidis, K. M. Lamara and

A. Costa, "Programmable Memory Bist" in
Proceedings of IEEE International Test

Conference (ITC 2005), 2005, pp 1155-1164.
[16] Chung-Fu Lin, Jen-Chieh Ou, Meng-Hsueh

Wang, Yu-Sen Ou and Ming-Hsin Ku, "An
area-efficient design for Programmable
memory Built-In Self-Test," in Proceedings of
IEEE International Symposium on VLSI
Design, Automation and Test, 2008, pp. 17-20.

