
Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

ZIGBEE BASED REALTIME PLANT MONITORING SYSTEM

USING µC/OSII
 1

M.SUJITHA,
 2
Dr. V.KANNAN

1Research Scholar, Department of Electronics and Communication Engineering, Dr. M.G.R. Educational
and Research Institute University, Chennai.

2 Principal, Jeppiaar Institute of Technology, Kanchipuram.
E-mail: 1 msujidhas@yahoo.co.in , 2drvkannan123@gmail.com

ABSTRACT

This paper describes a realtime transformation for an existing non realtime process control system. The
proposed system combines realtime scheduling with ZigBee wireless communication and Monitoring. This
paper implements the effective handling of multiple tasks using RTOS concepts to suit critical applications
and concurrent task handling in realtime environment. Priority based preemptive task scheduling algorithm
is used to protect shared data and to achieve task synchronization. Thus the reliability and processing ability
of the system are improved greatly by adding the µC/OS-II operating system.

Keywords: ZigBee, µC/OS-II, Task, Nonlinear Process, Real-Time Transformation, Priority Scheduling

1. INTRODUCTION

 Embedded targets for Nonlinear Real Time
Applications cannot handle multiple inputs and
multiple outputs, time constraints but perform
sequentially. The algorithm needs to be redesigned
for concurrency. A real-time operating system
(RTOS) is developed for real-time applications.
(Example: mobile phones, industrial robots, or
scientific research equipment). It is a priority-based
pre-emptive real-time multitasking operating
system kernel for microprocessors, written mainly
in the C programming language. It is intended for
use in embedded systems. RTOS services basic
include OS functions, priority allocation, memory
management, memory allocation, task management,
task predictability, scheduling and interrupt latency
control, timer and IPC synchronization
functions[1]. To increase the realtime performance
and control Pre-emptive Scheduling Algorithm is
implemented efficiently in µC/OS-II RTOS
manages critical tasks.

RTOS provides following features [14]:

• Synchronization: Synchronization is
necessary for realtime tasks to share mutually
exclusive resources. For multiple threads to
communicate among themselves in a timely
fashion, predictable inter-task communication and
synchronization mechanisms are required.

• Interrupt Handling: Interrupt Service
Routine (ISR) is used for interrupt handling.
Interrupt latency is defined as the time delay

between the occurrence of an interrupt and the
running of the corresponding Interrupt Service
Routine (ISR).

• Timer and clock: Clock and timer services
with adequate resolution are vital part of every real-
time operating system.

• Real-Time Priority Levels: A real-time
operating system must support real-time priority
levels so that when once the programmer assigns a
priority value to a task, the operating system does
not change it by itself.

• Fast Task Preemption: For successful
operation of a real-time application, whenever a
high priority critical task arrives, an executing low
priority task should be made to instantly yield the
CPU to it.

• Memory Management : Real-time
operating system for large and medium sized
application are expected to provide virtual memory
support, not only to meet the memory demands of
the heavyweight real-time tasks of an application,
but to let the memory demanding non-real-time
applications such as text editors, e-mail etc. An
RTOS uses small memory size by including only
the necessary functionality for an application while
discarding the rest.

In Process Control Wireless applications offer
benefits for monitoring purposes, however issues
and challenges are well known and agreed upon in
this area. The system studied comprise of ZigBee
Module and has several advantages such as low
cost, low power consumption, data Integrity and

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

good throughput, etc. In process control, precise
liquid level control of storage tanks and reaction
vessels is essential in many industrial operations
and mainly in chemical engineering systems where
the liquids are pumped to the tanks, stored and
delivered through discharge valve. It is most
commonly used in the area of water purification,
chemical and biochemical processing, automatic
liquid dispensing, food and beverage processing
and pharmaceutical industries.

 This paper describes algorithms for

transforming a nonlinear control system to realtime.

The proposed system consists of a plant, processor

with embedded µC/OS-II operating system, sensors

and ZigBee based data transmission technologies.

1.1. Network Control System

A networked control system is a control system

wherein the control loops are closed through a real-

time network. The feature of an NCS is that control

and feedback signals are exchanged among the

system's components in the form of information

packages through a network.

The functionality of a typical NCS is

established using four basic elements:
1. Sensors to acquire information.
2. controllers to provide decision and commands
3. Actuators to perform the control commands
4. Communication network to enable exchange of

information.
The most important feature of a NCS is that

long distance communication, eliminate the wiring,
reducing the complexity and the overall cost in
designing and implementing the control systems.
They can also be easily modified or upgraded by
adding sensors, actuators and controllers to them
with relatively low cost and no major changes in
their structure.

A task can obtain information about itself or
other tasks. This information can be used to know
what the task is doing at a particular time. The
system in which process of scheduling and
switching the CPU between several tasks takes
place is referred to as a multitasking system. There
are 2 types of multi-tasking are there that is given
bellow

• Pre-emptive

• Non Pre-emptive
Pre-emptive multitasking is a multitasking

operating system, which permits pre-emption of
tasks, from a cooperative multitasking system
wherein processes or tasks must be explicitly
programmed to yield when they do not need system
resources. Non-preemptive multitasking is a style

of computer multitasking in which the operating
system never initiates a context switch from a
running process to another process. Each task
requires its own stack, µC/OS-II allows each task to
have a different stack size. This allows us to reduce
the amount of RAM needed in our application.
With µC/OS-II's stack-checking feature, we can
determine exactly how much stack space each task
actually requires. Task Scheduling Algorithms in
RTOS are

• Priority-based scheduling algorithm

• Priority-based round-robin scheduling
algorithm

• EDF(Earliest-Deadline-First)scheduling
Algorithm

• RM (Rate-Monotonic) scheduling
algorithm.

Task Information is useful for debugging and
monitoring parameters. Task is an active entity
which could do some computations. Tasks become
"ready" after they are created. Each task is assigned
a priority. The lower the priority number, the
higher the priority of the task. Always the highest
priority task that is ready to run should be executed
for realtime.

1.2. Task states

Task state is a state of a task that changes on
scheduler directions. A task at an instance can be in
one of the states, waiting, ready to run and running
that are controlled by the scheduler. The task states
are such as

• Dormant

• Ready

• Running

• Waiting

• ISR
 The dormant state corresponds to a task

that resides in memory but has not been made
available to the multitasking kernel. A task is ready
when it can execute but its priority is less than the
currently running task. A task is running when it
has control of the CPU. A task is waiting when it
requires the occurrence of an event (for example,
waiting for an I/O operation to complete, a shared
resource to be available, a Timing pulse to occur, or
time to expire). A task is in the ISR state when an
interrupt has occurred and the CPU is in the process
of servicing the interrupt. State transient diagram is
shown in Figure 1

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

Figure 1 – Process State Diagram

This article is structured in following
manner. Section 2 describes about related work,
section 3 describes about research motivation,
section 4 describes about proposed environment
used for this work, section 5 describes about
performance metrics, section 6 describes about
system architecture and section 6 describes about
implementation methodology.

2. RELATED WORK

A. M. Franklin Richard and S. Sudheer
Sukumaran Implemented an embedded platform for
industrial automated system designed with multiple
tasks. In order to manage the various tasks
evaluated Priority based Preemptive Task
Scheduling algorithm in µC/OS-II Real Time
Operating System is used. In his paper Motor task
is controlled by PI algorithm. When an interrupt is
created, the corresponding task is executed and thus
response is obtained in few microseconds the
corresponding task output are displayed on the
LCD. Consequently, with the sensor value,
processing speed and timing constraints of the task
scheduled, the automated system is functioning
with rapid task execution context under
multitasking environment [4].

B. Ishwarya Singh, Rajput and Deepa Guptha
implemented priority based round robin CPU
scheduling Algorithm for realtime systems where
there is more than one task with same priority to
share CPU time, so the burden is on the user to
proxy out the time slicing code to a high level
mechanism of their own design. Allowing multiple
tasks to have the same priority by adding a level of
integration implies a fundamental redesign of the
ready list and scheduling Algorithms and probably
the adoption of queue based Scheduler. In its state
µC/OS-II is an optimal solution of embedded
realtime software engineering problems[13].

C. Zengyapeng and Yandong zhao attempted
Realtime monitoring systems for some applications.
The system consists of an µC/OS-II operating
system and RS232 bus based data transmission

technologies. Due to some limitation in system
performances, speed and system stability, the
realtime scheduling with wireless data transmission
technologies is an solution for an embedded
realtime systems [6].

3. RESEARCH MOTIVATION

 Event based and time based
planning, scheduling can be implemented by
RTOS stack and timer management, for the
efficient functioning of the automated system.
Industrial and vehicle automation can be
effectively implemented based on these
techniques. Performance of time sharing systems
can be improved with the priority based round
robin algorithm and can also be modified to
enhance the performance of realtime system. Due
to the µC/OS-II operating system, task
scheduling is available, and the system's
reliability, real-time capability and stability are
greatly improved. However, µC/OS-II has some
defects such as. different from time sharing
operating systems, such as Linux, µC/OS-II
doesn't support time slice scheduling, thus it is
called multitask rather than multi-process. That
makes it difficult to run multiple tasks with
frequent switching. So it's hard to determine the
priority of each task and efficiently schedule
them in the program.

4. IDENTIFIED ENVIRONMENT

DESCRIPTION

A realtime process control application
approach is the host-server Approach. A server uses
general purpose OS/RTOS. Algorithm is running
on host using µc/osII Operating system. In this
work for realtime implementation ARM processor
is chosen, it has multi parameter Acquisition and
multi-level monitoring and supports Networking.
STM32 is ARM cortex M3 based Microcontroller
Application. The ARM Cortex M3 is a next
generation core data system enhancement such as
enhanced debug features and high level support
block integration. Software coding for the
functionality is written in embedded C language
using keil software.

4.1. Merits Of Research Work

Merits of research work include

(i) Very Small realtime kernel. (ii) Memory

footprint of about 20kB for a fully functional

kernel.(iii) Highly Portable, scalable, preemptive

realtime, deterministic kernel (iv) Connectivity

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

with µC/GUI Platform and µC/file system. (v)

Supports all types of processor from 8 bit to 16 bit.

(vi) An embedded TC/IP stack.

4.2. Novel Realtime Control Using Zigbee

Modules

ZigBee modules are embedded solutions

providing wireless end point connectivity to

devices. These modules use the IEEE802.15.4

networking protocol for fast point to multipoint or

Peer to Peer networking.

The new knowledge created include:

(i) Algorithms design for high throughput

applications requiring low latency and predictable

communication timing. (ii) Low cost, low power

wireless sensor Networks. (iii) Modules require

minimum power and ensure reliable delivery of

data between devices. (iv) Operating frequency

ISM 2.4GHZ. (v) Long Range data Integrity,

Advanced Networking and Security. (vi) ADC and

I/O line support easy to use. (vii) Power ratings are

(Tx current 45mA, Rx current 50mA@3.3v). (viii)

Distance for communication for indoor up to 30m,

outdoor line of sight up to 100m. (ix) ZigBee RF

Modules are designed to operates in five different

modes. (a) Idle Mode (b) Transmit/Receive Mode

(c) Sleep Mode (d) Cyclic Sleep Modes (e)

Command Mode. IEEE and ZigBee Alliance have

been working closely to specify the entire protocol

stack. IEEE802.15.4 focuses on the specification of

the lower two layers of the protocol (physical and

data link layer. On the other hand, ZigBee Alliance

aims to provide the upper layers of the protocol

stack (from network to the application layer) for

data networking, security services and arrange of

wireless home and building control solutions.

ZigBee Protocol Layer diagram is given in Figure

2. Functionality of the two lower layers defined by

IEEE 802.15.4 are:

4.2.1. The Physical Layer (PHY)

The PHY layer provides the basic
communication capabilities of the radio and is
responsible for the wireless transmission and
reception of MAC frames. It performs such
functions as radio control, energy detection, clear
channel assessment, channel selection, data
modulation, signal spreading, and the transmission
and reception of bits onto the physical medium. The

unit of transmission at this layer is the PHY frame.
PHY–MAC Data frame format is given in Figure 3.

• Data Frame Provides up to 104 byte data
payload capacity.

• Data sequence numbering to ensure that all
packets are tracked.

• Robust frame structure improves reception
in difficult conditions

• Frame Check Sequence (FCS) ensures that
packets received are without error.

Figure 2 : ZigBee Protocol Layer

Figure 3 : ZigBee PHY-MAC Data Frame Format

Comparative Analysis of different technologies
providing similar services and their tradeoffs is
shown in Table 1. ZigBee will increasingly play an
important role in the future of computer and
communication technology. In terms of protocol
stack size, ZigBee's 32 KB is about one-third of the
stack size necessary in other wireless technologies
(for limited capability end devices, the stack size is
as low as 4 KB).

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

Table 1 : Wireless Technology Comparison Chart

Feature(s) Wi-Fi Bluetoot
h

ZigBee

Power
Profile

Hours Days Years

Complexity Very
Complex

Comple
x

Simple

Nodes/Mast
er

32 7 64000

Linking
time

 upto3
seconds

10secon
ds

 30ms

Range 100 m

10m 70m-
300m

Extension Dependig
on existing
work

None Automati
c

Transmissi
on speed

11Mbps 1Mbps 250Kbps

Security Authenticati
on Service
Set
ID (SSID)

64 bit,
128 bit

128 bit
AES and
Applicati
on
Layer
user
defined

4.2.2. The Medium Access Control Layer

The MAC layer establishes reliable and secure
single-hop communication links between devices. It
provides the basic functions of monitoring and
accessing the wireless communications medium to
coordinate the transmission of data from the higher
layers. The MAC layer handles network association
and dissociation functions and uses unique 64-bit
MAC hardware addresses assigned by the
manufacturer.

5. PERFORMANCE METRICS

5.1. Cpu Utilization Time

Increasing CPU utilization, i.e., keeping CPU
as busy as possible that increases the
responsiveness of the system. CPU utilization time
related with number of tasks. As a rule of thumb,
designing a system to use 60 to 70 of CPU time is
always desirable to meet all hard realtime
deadlines.

5.2. Interrupt Latency

The most important specification of a realtime
kernel is the amount of time interrupts are disabled.
All realtime systems disable interrupts to
manipulate critical section of code and reenable

interrupts when the critical sections have been
executed. The longer interrupt are disabled, higher
the interrupt latency. It is given by ,

Maximum amount of time interrupts are
disabled + Time to start executing first instruction
of ISR

5.3. Task Execution Time

Non RTOS systems usually do not allow user
programs to mask interrupts as the user program
could control the CPU for as long as it wishes.
RTOSs allow application itself to run in the kernel
mode and permit the application to have greater
control of the OS environment without requiring
OS intervention.

5.4. Waiting Time

Waiting time is the total time a process has
been waiting in ready queue. The CPU scheduling
algorithm does not affect the amount of time during
which a process executes or does input-output; it
affects only the amount of time that a process
spends waiting in ready queue.

6. SYSTEM ARCHITECTURE

In this paper liquid level process is used as an
example. The proposed system consists of two
different sections, Client and Server Sections.
Liquid level process setup is given in Figure 4.

6.1. Client Section

Client section has the following modules
(i) Host (ii) Controller (iii) Sampling device (iv)
Control element.

In client section the sensor node gathers the
information such as water level, motor status, in
flow, out flow etc. The change in level is measured
through a Resistive probe. Outputs of the plant are
sampled at periodic intervals by the controller, a
control algorithm applied to the samples, and the
result of the control is produced at the output of the
controller generally as a zero order hold signal. The
host system has three main functional aspects:
Controller Configuration, Monitor and
Communication. The experimental set up
consisting of liquid level process is shown in Figure
5. The laboratory setup consists of a conical tank,
water reservoir pump, an interfacing module etc.
Figure 6 shows the board set up of client side liquid
level process and it consists of separate modules for
zigBee, UART and STM 32 hardware.

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

298

6.2. Server Section

The server side consists of a status display and
ZigBee module. It can display the parameters such
as level, inflow, outflow, motor status etc. The set
point is entered in server side. RTOS system is used
in the server.

6.3. Client Server Communication

ZigBee RF modules interface to the host/ server
device through a logic-level asynchronous serial
port. Through its serial port, the module can
communicate with any logic and voltage
compatible UART. Devices that have a UART
interface can connect directly to the pins of the RF
module as shown in the Figure 7. ZigBee
communication setup between server & host is
shown in Figure 8.

Figure 4 - Liquid Level Process

1. Conical tank 2. ZigBee Remote end

Figure 5 – Real Time Experimental Setup

3. Controller 4. ZigBee Server
 Figure 6 - Client Section Board Setup

Figure 7 - Host/Server ZigBee Communication

The system setup details are described below. The
connection details include

1. Connection between RS232 and STM32 board.
a. Connect Tx pin of RS232 to PA2 of

microcontroller. Connect Rx pin of RS232 to
PA3 of microcontroller.

b. Connect VCC pin and GND pin of RS232 to
5V and to GND.

2. Connect RS232 TTL Converter to XBEE
module using UART cable (male to male).

3. Connect USB cable of the ZigBee module to
the computer's USB port.

4. Connect the JTAG port of the board to the
computer's USB port using ULINK2/JLINK.

6.4. Host Software Design

The µC/OS-II operating system is embedded host
system to improve system reliability and stability.
µC/OS-II operating systems are designed for
embedded application. Most of the program is
developed with C language. Because of the simple
and well-knit structure, the µC/OS-II operating
system becomes one of the most important

DI

CTS

DO

RTS

Server-

STM32

ZigBee

Modul

e

DI

CTS

DO

RTS

ZigBee

Module

Host-

STM32

2

1

4

3

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

299

embedded operating system. Table 2 list the details
commands used to configure the ZigBee module.

Figure 8 – Host/Server Setup using STM32

Table 2 - ZigBee Commands

Command Description

‘+++’ Enter into command mode.

ATID The ATID command is used to set
and read the PAN (Personal Area
Network) ID of the RF.

ATMY The ATMY command is used to set
and read the 16-bit source address of
the RF module

ATDL he ATDL command is used to set
and read the lower 32 bits of the RF
module's 64-bit destination address

ATBD The ATBD command is used to set
and read the serial interface data rate
used between the RF module and
host.

ATCN The ATCN command is used to
explicitly exit the RF module from
AT Command Mode

6.4.1. Steps to initialize ZigBee module

#defines the following Global variables:
a) MYID 10 (change to 11 for the second board)
b) DSTID 11 (change to 10 for the second board)

BAUD9600 3
c) NETWORKID 1111

Initialize the ZigBee module using AT command
set.

a) +++
b) ATID = NETWORKID (network Id)
c) ATMY = MYID (Id of the this module)
d) ATDL = DSTID (Id of destination module)
e) ATBD = BAUD9600 (9600 baud rate)

f) ATCN (Exit Command Mode)

Figure 9 - ZigBee Initialization Flowchart

END

ZigBee Initialisation

No

No

Send command “ATCN\r\n”

If response =
“OK\r”

If response =
“OK\r”

Send command “+++”

Send command “ATMY = 10\r\n”

If response =
“OK\r”

No

If response =
“OK\r”

If response =
“OK\r”

Send command “ATID = 1111\r\n”

Send command “ATDL = 11\r\n”

Send command “ATBD = 3\r\n”

If response =
“OK\r”

No

No

No

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

300

Response is “OK\r” for all the above commands.
Check the response for each command before
continuing with the next command. ZigBee
Initialization Flow chart is shown in Figure 9.

6.4.2. Steps to transmit data

1) Send start of file, data and end of file using
ZigBee module through USART peripheral.

2) Wait for USART flag USART_FLAG_TC
(Transmission Complete flag) to set.

The flowchart fort transmitting zigBee data is given
in Figure 10.

Figure 10 – ZigBee Data Transmission Flowchart

6.4.3. Steps to receive the data

1) Wait for USART flag USART_FLAG_RXNE
(Receive data register not empty flag) to set.

Figure 11 – ZigBee Receive Data Flowchart

Print “failed to

receive data

If start flag = 1?

Load data to

reception buffer

If data = end of

file?

END

Read received data from USART
TX_DR register

Receive data

If
USART_FLG_R

XNE = SET ?

If ch = Start of

file?

No

No

END

Send end of file

No

No

Send Data

No

Send start of file

Transmit data

If
USART_FLG_T

C = SET ?

If
USART_FLG_T

C = SET ?

If
UASRT_FLG_T

C = SET ?

Start flag = 1

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

301

2) Read the most recent received data by USART
peripheral i.e., from USAR Tx DR register
using ZigBee module.

3) Check for start of file.
4) If start of file is received, set the start flag else

print failed to receive data.
5) If startflag is set, load the data in USARTx DR

register to reception buffer till the end of file.
6) Wait for USART flag USART_FLAG_RXNE

(Receive data register not empty flag) to set.
7) Read the most recent received data by USART

peripheral i.e., from USAR Tx DR register
using ZigBee module.

8) Check for start of file.
9) If start of file is received, set the start flag else

print failed to receive data.
10) If startflag is set, load the data in USARTx DR

register to reception buffer till the end of file.
The flowchart for receiving zigBee data is given in
Figure 11.

6.4.4. Steps to Send Command

1) Send AT commands to ZigBee module through
USART peripheral which is connected to this
module with baud rate 9600.

2) Wait for USART flag USART_FLAG_TC
(Transmission Complete flag) to set.

Figure 12 a– ZigBee Sending command Flowchart

6.4.5. Steps to Check Response

1) Wait for USART flag USART_FLAG_RXNE
(Receive data register not empty flag) to set.

2) Receive the response from ZigBee module by
USART peripheral.

3) Check the received response with "OK\r".

The flowchart for ZigBee commands for sending
and checking response is given in Figure 12a and
12 b respectively.

Figure 12 b– ZigBee Sending Response Flowchart

7. IMPLEMENTATION METHODOLOGY

 At startup, the system runs initialization
functions by itself by using restore system state and
set the initial value of each parameter. Initialization
task include (i) initializing all data structure (ii)
allocating memory space for stack (iii) establishing
semaphore message queue of inter-task
communication (iv) create tasks and set different
priority. The resources are allocated for the tasks
defined in the application the scheduler is started
then it schedules the tasks in pre-emptive manner.

Transmit AT command to USART
TX –DR register

Send command

If
USART_FLAG_

TC = SET ?

END

No

If

USART_FLAG_NE

= ?

Compare response with “OK\r”

Receive data from USART DR

register to variable ch

END

If ch = ‘\r’ ?

Check response

No

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

302

The system turns fully operational when the
initialization is done by using specified OS
function.

7.1. Host System Task

 In the Host system following tasks are
introduced (i) Read Status (Task1) (ii) Display
process status in host (Task2) (iii) (v) Transmit data
status (task3) (iv) write set point(task4). All the
tasks are in pre-emptive round robin scheduling
algorithm. Tasks from task1 to task3 are running
round robin. So when task1 is running all other
tasks are in waiting state. The tasks become active
when the scheduler schedule it. Tasks such as
writing set point and transmit status data to server
are based on the interrupt received from the
ZigBee. Write set point message gives the values
liquid level and outflow. When host system
receives set point through ZigBee, it initiate write
liquid level and outflow values to the controller.
When host receives status read message from
server, it response to server through ZigBee with
values of liquid level, outflow and motor ON/OFF
status.

8. RESULTS AND DISCUSION

The scheduling time for different tasks such as non-
critical tasks Read Status (task1), Display process
status in host (task2), Ttransmit status (task3) and
Interrupt tasks (writing set points) are shown in
Figure 13.

Figure 13 – Tasks scheduling time

From Figure 13 & Figure 14, it is observed that task
execution time is reduced for realtime based system
comparing to Non realtime based system
considerably and improves system performance.

Task execution time, average waiting time, interrupt
latency and CPU utilization time are greatly
improved in realtime system. The snap shot of the
resulst is given in Appendix-I.

Figure 14 – Performance metrics

9. CONCLUSION

All the non-realtime activities have been
effectively transformed into realtime using task
based implementation to enhance the speed. From
the obtained results it is inferred that realtime
approach has shown significant benefits on process
control applications that need fast execution time
and optimal interrupt response time. The reliability
and processing ability of the system are greatly
improved. In future the system performance is to be
improved further by integrating the proposed
system with multitasking, task scheduling and inter
task communication.

REFRENCES:

 [1] Rajkamal, “Embedded Systems-Architecture,
programming and Design 2nd Ed”, McGraw-

Hill Education (India) Pvt. Ltd., ISBN-

13: 0070667640, 2008, pp. 296-423.

 [2] Jean J.Labrosse, “MicroOS II- The real time
kernel.2nd Ed”, CMP books, San Fransisco.

ISBN-13: 978-1.57820.103-7, 2007, pp. 44-295.

 [3] Alen rajan Abt and K.Thomas, “ARM based
Embedded web servers for industrial
applications”, International conference on

computing and control Engineering,
Coimbatore Inst. ISBN:978-1-4675-2248-9,

April 12-13

 [4] M. Franklin Richard, S. Sudheer Sukumaran, “A
Real Time Industrial Automation System with
Task Scheduling”, International Journal of

Computer Sci ence And Technology, ISSN

(Print) : 2320–3765, February 2014.

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

303

[5] Pradibaa.S, Srimathi.R, Suganya.S,
Sivaranjani.T and Aravind.P, “A Modelling and
Analysis of Level Process Using Different
Control Techniques”, International Journal of

Advanced Research in Electrical, Electronics

and Instrumentation Engineering, ISSN (Print):

2229-4333, Vol. 3, Iss ue 2, April - June 2012.

[6] Zengyu Peng and Yandong Zhao, “Real-time
Monitoring System for Soil Moisture Content
Based on µC/OS- II Operating System”,
Computer Science and Information Technology

(ICCSIT), 3rd IEEE International Conference,
vol. 1, pp. 418 – 421, 2010.

[7] Debashreet Das, Sibarama Panigrahi and Ashok
Bhoi, “Real-time Industrial Automation Process
Control using Network – Enabled RFID”,
International journal of Computer Applications,

vol. 61-No.10, pp. 42 – 46, 2013.

[8] Ajit Sing, Priyanka Goyal, Sahil batra, “An
optimized Round robin algorithm”,
International journal of Computer Science and

Engineering(IJCSE),vol. 2-No. 7, 2010.

[9] QingLi and Caroline Yao, “Real-Time Concepts
for Embedded Systems”, CMP Books, ISBN:

157820124-1, 2003.

[10] D.P.Bovet and M.Cesati, “Understanding the
Linux Kernel”, O'Reilly & Associates, 2002.

[11] C.Naga srikanth, M.Veda chary and
M.Sudhakar, “Development of microkernel for
multitasking with ARM11”, International
journal of Engineering Science and innovation
technology, vol. 2, Issue-2, January, 2012.

[12] Nirmala R, Kolhari and Nithin I.Bhopale,
“Porting & implementation of features of
µC/OS II RTOS on ARM7 Controller LPC
2148 with different IPC mechanisms”,
International journal of Engineering research

& technology (IJERT), vol. 1, Issue-6, August,
2012.

[13] Ishwarya Singh Rajput and Deepa Gupta, “A
priority based round robin CPU scheduling
algorithm for realtime system”, International

journal of innovation in Engineering &

technology, vol. 1, Issue-3, October, 2012.

[14] Jane W. S. Liu, “Real-time System”, Person

Education, ISBN: 9788177585759, September,

2010.

Journal of Theoretical and Applied Information Technology
 10

th
 July 2014. Vol. 65 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

304

APPENDIX I

Figure 1 – Real Time System Task Execution

Figure 2 – Non -Real Time System Task execution

