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ABSTRACT 

 
The goal of this study is to investigate the influence of fatigue on Steady State Visual Evoked Potential 
(SSVEP) during virtual wheelchair navigation. For this purpose, an experimental environment was set 
based on modifiable parameters (luminosity, number of obstacles and obstacles velocities). A correlation 
study between SSVEP and fatigue ratings was conducted by the mean of spectral analysis. Finally, the best 
correlated parameters are presented for a classification using three algorithms which are MLP (Multi Layer 
Perceptron), LDA (Linear Discriminate Analysis) and SVM (Support Vector Machine). Those findings can 
help us in order to design suitable gaze/brain based wheelchair navigation. 

Keywords: SSVEP, mental fatigue, virtual navigation, wheelchair 
 
1. INTRODUCTION  

 
Severely disabled people find it hardly possible to 
control a powered wheelchair using conventional 
joystick. For this purpose, shared paradigms were 
introduced to enhance wheelchair navigation; the 
basic idea is to give the user more or less control on 
a need basis [21]. This paradigm was integrated in 
many projects in order to conceive a suitable 
wheelchair according to the subject pathology. 
Vander poorten et al. [22] setup a bilateral 
communication channel between the wheelchair 
controller and the user based on haptic feedback; 
through the on-board sensors recordings, the local 
map of the wheelchair environment was rendered. 
Then haptic collision avoidance and haptic obstacle 
avoidance algorithms were introduced to help the 
user to maneuver successfully the wheelchair 
backwards inside an elevator. Urdiales et al. [23] 
proposed the construction of profile-based 
wheelchair navigation.         

The prototype user profile was extracted using real 
traces clustered to determine the average behavior 
expected from the wheelchair user in order to cope 
with real situations. This system confirmed its 
efficiency on 18 volunteers affected by left and 
right brain stroke. Other studies, such that of Ren et 
al. [24], tried to introduce a map matching based on 
Global Positionning Systems (GPS). They also 

proposed an alternative to deal with difficulties 
faced by GPS during navigation such as poor 
satellite availability, by introducing a fuzzy logic-
based algorithm to perform matching in sidewalks. 
Our previous study [25] proposed a new approach 
based on combining the user’s gaze and mental 
state in order to assess wheelchair navigation 
performance in comparison with a standard gaze-
based navigation. The results confirmed that the 
system performance was better using the combined 
modalities.  

These projects focused mainly on modifying the 
wheelchair system either by adding new on board 
sensors such as GPS, cameras… either by assessing 
user’s performance by the mean of motor activities 
such as haptic feedbacks which is centered on the 
wheelchair system and holds a delayed aspect; the 
correction of the navigation is generated after an 
error was committed which can be fatal in some 
cases.   

In this paper, the proposed shared control is rather 
centered on human factors and holds an 
anticipatory aspect; a preventive action is taken 
before that the user commits an error; for example 
in the case where the user is highly tired, the system 
takes a full navigation control. To the best of our 
knowledge, projects dealing with human factors-
based wheelchair navigation are not so many. In 
fact, during the exchange with doctors, 
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occupational therapist and psychologists, many 
human factors could influence wheelchair 
navigation such as mental fatigue and emotions. In 
the current study, mental fatigue are investigated 
and measured through mental activity.   

From clinical perspective, performing a 
cognitively demanding task for an extended period 
of time induces a state that is labeled mental fatigue 
[9]. The latter is a common in everyday life and 
becomes clear in compromised task performance, 
subjective feelings of tiredness, and the 
accompanying unwillingness for further mental 
effort [10].  

However, it is not well understood scientifically 
because it is a complex multidimensional 
phenomenon: It includes changes in motivational, 
mood, and cognitive processes [11].  Mental fatigue 
has been found to result in a reduced goal-directed 
attention [12], a decreased effectiveness in selective 
attention [13] and an increased difficulty in 
dividing attention [14]. Generally, the study of 
mental fatigue is gathered through its impact on 
brain control sources such as Event Related 
Synchronization/Event Related Desynchronization 
(ERD/ERS), Positive300 (P300), and Steady State 
Visual Evoked Potentials (SSVEP). Thanks to its 
excellent results dealing with signal-to-noise ratio 
and its immunity to artifacts, SSVEP is investigated 
in this paper. 

Since mental fatigue is very important, the main 
goal of this study is to setup a fatigue detection 
module that enables the wheelchair system to 
account for the user’s mental fatigue. This 
information could be exploited later to control a 
wheelchair navigation modes; if fatigue level is low 
then the system considers that the user is able to 
drive his wheelchair by his own. Otherwise, if it 
detects that the user’s fatigue level is medium, it 
presents some alternatives to the driver to enhance 
his navigation safety such as obstacle avoidance, 
motion planning… but if mental fatigue reveals to 
be high, the wheelchair system will switch to 
autonomous mode, where the wheelchair deals 
autonomously the whole navigation process.  

Steady-state Visual Evoked Potential (SSVEP) is 
a brain response to visual stimulus that flashes with 
certain pattern. When the retina is excited by a 
visual stimulus presented at frequencies ranging 
from 3,5 Hz to 75 Hz [1], a continuous or 
oscillatory response is generated by the brain. The 
latter appears at the same or multiple frequency of 
the visual stimulus. SSVEP-based BCI uses lights 
that flash at various frequencies. These systems can 

be used for remotely controlled devices such as 
wheelchairs which can be useful for severely 
disabled people [2]. SSVEP provides a means to 
characterize preferred frequencies of neocortical 
dynamic processes, SSVEP is generated by 
stationary localized sources and distributed sources 
that exhibit characteristics of wave phenomena. 

In Brain Computer Interface systems (BCI), 
many modalities were introduced such as P300, 
motor imagery, slow cortical response… SSVEP-
based BCIs have the advantages of better accuracy, 
high information rate and short even no training 
time is required [3]. Yet it suffers from many 
drawbacks, such as risk of high fatigue and can 
induce seizure in photosensitive people.  

In SSVEP-based BCI, many issues should raise 
such as: 

• Robustness: misclassification, errors can 
be very annoying and in some cases very crucial 
especially in a wheelchair navigation context. This 
is why high accuracy is needed. 

• Safety: flashing rate/pattern, size and color 
of the stimulus is very influent. It can cause an 
adverse effect, such as seizure, high fatigue [4]. The 
best chosen frequency ranges between 9 Hz and 15 
Hz, with the use of white color and circular shape 
[5]. 

• Classification algorithms: most SSVEP 
algorithms were developed in frequency domain 
with the use of Welch method [6] to extract features 
for classification. Those algorithms are generally 
based on the first or even the second harmonics of 
the presentation frequency [7]. However, some 
others argue that EEG signal may contain important 
information about the flashing stimulus as well as 
the enhancement of the classification algorithm [8].   

To the best of our knowledge, SSVEP was 
introduced as a source of control but never used to 
assess fatigue. This being said, the goal of this 
article is to study the eventual correlation between 
SSVEP and fatigue. Also all mentioned 
experiments are based on the presentation of static 
stimuli (flashing lights or checkerboard…) but 
never used in a context of virtual wheelchair 
navigation. The Brain Eyes WHEELchair Interface 
(BEWHEELI) project is the extension of former 
projects based on computer assisted vision [15] and 
motion planning [16]. It has as purpose to combine 
two modalities which are gaze and brain signals in 
order to control a powered wheelchair. This being 
said, the migration from joystick-based commands 
to brain/gaze should follow many steps. 
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Furthermore, the detection of fatigue is very 
important in a way that, for security purposes, it 
could make the wheelchair switch to an 
autonomous mode when the user is highly tired. 
This article assesses the impact of fatigue on 
SSVEP parameters. 

This article is divided into three major parts; in 
the first part we describe the virtual environment 
and hardware equipment needed for the experiment 
setup. In the second part, a statistical analysis is 
provided to investigate the correlation between 
subjects’ ratings and the EEG signals. In the third 
part, the results of the different correlations and 
classification techniques are investigated.  Finally, 
in the conclusion we provide the shortages of the 
experiment and the next steps to be taken. 

2. EXPERIMENTAL ENVIRONMENT 

 
Our experience consists on measuring the user 
mental fatigue while navigating in the virtual 
environment. This will supply a reference database 
in order to assign to each fatigue level class a 
temporal EEG data profile and thus applying 
different techniques offline before implementing an 
online fatigue detection module.  Our ground-truth 
is the user mental fatigue rating: in fact, from a 
scale of 10, the given rating is classified into “low”, 
“medium” or “high” fatigue. In this case, the 
association between signal features and fatigue is 
deduced from the correlation between the EEG 
activities (and especially brainwave signals) in each 
visualized SSVEP signal with the rate given by the 
subject at the end of the experiment.   
 

1.  Experimental Setup 

a. Hardware framework  

As the experiment targets wheelchair navigation, 
an Invacare Storm 3G Ranger X branded 
wheelchair is used. Equipped with joystick, 
encoders were added to its wheels so the 
wheelchair velocity can be digitized and treated. 
Those can be useful to control a virtual world 
projected on a 180 degrees panoramic screen to 
help the immersion of the user in the world. As to 
calculate his points of gaze (POG), an ASL 
EyeTrac 6 eye tracker was placed in front of the 
user. A specific algorithm was used for system 
calibration and for dividing the screen into 
command zones. Alternatively, the Emotiv Epoc 
headgear is added to record brain activity. 

 

 

Fig. 1: Virtual World Wheelchair Navigation 

b. Virtual world 

The virtual world was developed using Reality 
Factory engine [17]. It consists of a hallway in 
which, the user has to navigate from point A to 
point B placed respectively at the start and at the 
end of the room. This being said, two parameters 
were modified in each navigation scenario: number 
of obstacles (low, medium, high) and obstacles 
velocity (no velocity, low, medium, high). The 
combination of all cases results in 12 scenarios. To 
induce SSVEP, flashing lights were placed on the 
hallway with a flashing frequency of 10 Hz. The 
scenarios are chosen randomly in a way, the 
learning process is inhibited as the subject don’t 
have any idea about the modified parameter.   

 

 

 

 

 

Fig. 2: The Navigation Scenario With Flashing Lights 

Integrated 
The gaze calibration was ensured using nine-point 
calibration algorithm. For each iteration, a special 
point is projected on the screen and the user has to 
look on it. Meanwhile, the system estimates the 
corresponding points of gaze based on the feature 
vector defined as the distance between the central 
point of the corneal reflection and the central point 
of the pupil reflection. After success of the 
operation, the screen is divided into command 
zones. Those are respectively, left, right and idle. A 
min-right/max-left algorithm was implemented for 
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Obstacles 
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this purpose. The idea is to ask the user to look 
straight ahead on the screen, from the points of 
gaze concentration; the maximum point position 
and the minimum are recorded. Then, when looking 
to the right the minimum point is recorded while 
the same operation is processed but using the 
maximum point position for left look. The zone 
separations are calculated from given points as 
follows: 

�
����_����		

������_�	��	
�	������_��	_�	��

�

   (1) 

�
����_����		

	������_��_
�����������_�	��	


�

 (2) 

Where ������_������  is the X coordinate of the center 
point of the points of gaze when the user looks 
straight. ������_���	_����   is the X coordinate of the 
maximum point of the gaze concentration when the 
user looks left and ������_���	_���� is the X 
coordinate of the minimum point of the gaze 
concentration when the user looks right. An example 
of the operation can be found in the Fig. 3 
 
 

 

 

 

 

 

 

 

 Fig. 3: Example Of Implementation Of The Min-
Right/Max-Left Algorithm 

 
It’s undeniable that a wheelchair is considered as 
wheeled robot, this introduces some important 
differences. In fact, because a robot is provided with 
a communication protocol, it’s easy to send each 
time the needed velocity to reach. This is not 
necessarily the case for a wheelchair which is 
considered as an analogical device. In a real 
wheelchair, the user has to move the joystick 
forward to accelerate, and backward to decelerate. In 
the virtual world, as it’s basically a video game, to 
move forward or backward or to turn left or right the 
user has to push keyboard keys.  
The idea is to link both systems by simulating 
keyboard keys in the virtual world each time the 
user moves the joystick forward or backward. The 
same idea is applied for turning left and right based 
on the user’s points of gaze and command zone 
detection. 

2. Procedure  

Ten subjects took part in the experiment. The results 
were studied depending SSVEP parameters. After 
sitting comfortably in the wheelchair, they were 
given a set of instructions to read, informing them 
about the experiment protocol and the meaning of 
the different scales used for self-assessment. An 
experimenter was also present there to answer any 
questions. After the sensors were placed and their 
signals checked, the participants performed a 
practice trial to familiarize themselves with the 
system. Next, the experimenter started the 
physiological signals recording. The calibration 
process starts by asking the user to look at the nine 
points of the screen to estimate his points of gaze. 
After detecting the command zones, the scene is 
projected on the panoramic screen. The way to 
command the wheelchair in the environment is 
explained and the plan of the maze is displayed.  
The user is asked to navigate from the starting point 
A to the ending point B where a specific visual 
stimulus is displayed. In each scenario, one of the 
two parameters (obstacles and velocity) is modified 
while keeping the flashing lights in each scenario. 
After the projection of the scene, the subject can 
start navigation using gaze to turn left and right and 
the wheelchair joystick to move backward and 
forward. At the end of each trial, the subject has to 
give his assessment on a fatigue scale (ranging from 
0 to 10). 
 
For the investigation of the correlates of the 
subjective ratings with the EEG signals, the EEG 
data was common average referenced, down-
sampled to 128 Hz. Eyes artifacts were removed 
with Blind Source Separation technique (BSS). The 
first five seconds of each trial was extracted as 
baseline. The frequency power of trials and 
baselines between 3 Hz and 64 Hz were then 
extracted using Welch’s method with window of 64 
samples. The baseline power was then subtracted 
from the trial power, yielding the change of power. 
The latter are averaged over the frequency bands of 
delta (1Hz and 3Hz), theta (4Hz and 7Hz), alpha 
(8Hz and 13Hz), beta (14Hz and 29Hz) and gamma 
(30Hz and 60Hz). For each subject, the input 
measures matrix M and fatigue matrix F are 
initialized as follows:    
 

� � � ��	� … ��	��⋮ ⋱ ⋮���	� … ���	��

					�3 

� � � ��⋮����																																				�4 

Right splitter Left splitter 

Left zone 
Idle zone Right zone 
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Where ��	�  is the measure associated to the trial i 
and variable j defined by the combination of band 
wave signals w ∈ {δ,θ,α,β,γ} per sensor � ∈

	����, ���, �� , ��, 	� , 	�, ��, �� , 
�, 
�, ��� , ���, ��, ��� 
resulting in 70 possible crossings. ��  is the fatigue 

rating given by the subject in the ��� trial. We 
computed the Spearman correlated coefficients 
between the power changes and the subjective 
ratings, and computed the p-values, (p). The 
spearman coefficient is calculated as follows:  
 

p � 	1 � 6 ∑ ��
�

���� � 1														�5 

 
Where �� is defined as  �� � �� � ��  in each 
observation, ��  and ��  are the ranks of the raw scores �� � 	��	�  and �� � 	�� and n is the number of 
samples. This was done for each subject individually 
and, assuming independence [39], the 10 resulting p-
values per sensor and power were then combined to 
one p-value via Fisher’s method: 
 

�� �	�2		
������
�

�	


						6� 

Where ��  is the p-value associated to the subject i. 

While k is the total number of subjects equals to 10 

in this experiment. 

3. Classification 
The best correlated sensors/parameters were kept for 
classification. And for this purpose, three 
classification algorithms were used namely: Support 
Vector Machine (SVM), Linear Discriminate 
Analysis (LDA) and Multi Layer Perceptron (MLP). 
In a supervised learning, given the feature vector as 
input, the output could be one of the three studied 
fatigue levels (Low Fatigue, Medium Fatigue, and 
High Fatigue). 

a. Linear Discriminate Analysis (LDA) 
The LDA is a linear combination of variables. They 
are presented in the form of: 

y�� �	u � u
X
�� �	u�X��� �⋯
� u�X���			7� 

Where ��� is the value of the discriminate 
function for the case m on the group k as well as for 
���� which is the discriminate variable �� for the 
case m on the group k, and ��  are the required 

coefficients. This implies that the number of 
discriminate functions is determined by the number 
of considered groups. 

b. Multi Layer Perceptron (MLP) 

The used MLP is composed with an input layer 
with a size, the selected features of the input vector, 
a hidden layer with 20 neurons and an output layer 
with 3 neurons which correspond to the level of 
fatigue. The transfer function used is sigmoid and 
the database was divided into 3 sets: 70% for 
training, 15% for testing and 15% for validation. 

c. Support Vector Machine (SVM) 

SVM maps input vectors into higher dimensional 
space to ease classification. Then it finds a linear 
separation with the maximal margin in the new 
space. It requires the solution of the following 
problem: 

min
�,�,�

1
2��� � �	 �	

�

�	


		8� 
"�#$%&'	'�	����()�� � #� * 1 �  �, 

and  � * 0 

Where C is the penalty parameter of the error �� and 
w is the normal vector to the hyperplane containing 
the training set of the instances label pairs (��, ��  	 ∈ "1. .36$, �� ∈ 	%� is the vector formed by the 
measures of the 8 parameters of the i-th trial and �� 	 ∈ "1, �1$ indicating the class to which  �� 
belongs, and b the offset of the hyperplane . The 
kernel used in this article is the Gaussian radial basis 
function. This could be expressed as follows: 

,-)� , )�/ � ()���	(-)�/
� %������������	��0	1
2 0				9� 

Where &	 � 	�	 �

�	��, σ is a free parameter called 

bandwidth determined exhaustively whose tuning is 
very critical for the good performance of the 
method. A search-grid cross-validation technique is 
used to determine C and γ [29].   
 
3. RESULTS 

 

1.  Environmental correlation 

In order to quantify the term of mental fatigue, we 
referred to a correlation study between mental 
fatigue ratings and environment parameters mainly: 
number of obstacles hit and duration of the trial. In 
fact many studies suggested the influence of fatigue 
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on the navigation performance [27]. In the present 
experiment, the following figure presents the 
variation of the average of obstacles hit and 
durations over all participants for each trial session 
and explains the relationship between those 
parameters and fatigue scale ratings. 

Fig. 4: (Average) Obstacles Hit And Navigation Duration 
Variation For The Chosen Trials 

 
It could be noticed that number of obstacles hit and 
the duration of the navigation are proportional. This 
could be explained by the fact that if one becomes 
tired, he could easily hit obstacles as it affects the 
duration of the navigation. But other important 
factors could explain such a result; in some trials, 
obstacles are moving toward many directions with 
variant velocities which can make it difficult for the 
user to navigate with no damage. Especially in the 
trial 36, where the navigation time reached almost 6 
minutes as well as the number of hit obstacles are 8. 
The same correlation study was brought to 
investigate the relationship between mental fatigue 
and environmental parameters.  
Let the matrix E be the environment matrix that is 
formulated as follows: 

















=

362

12

361

11

e

e

e

e

E MM (10) 

Where 
ij
e  is the measure of the j  th parameter (

{ }2,1∈j , 1= « duration » and 2= « obstacles ») in 

the i th trial ( { }36,,1L∈i ).We computed the 
Spearman correlated coefficients between the 
duration, obstacles and the subjective ratings, and 
computed the p-values, (p) using the spearman 
coefficient which was explained in the equation (5). 

Where 
i

d  is defined as 
iii
yxd −=  in each 

observation, 
i
x  and 

i
y  are the ranks of the raw 

scores 
jii eX = and 

ii
fY =  (the i th fatigue 

rating given in each trial). This was done for each 
subject. And applying equation (6), the p-values per 
parameter and subject were combined to one p-value 
that expresses, the correlation between parameter 
and fatigue level. The mean inter-correlations of 
different parameters over participants are 
recapitulated in the Table 1. 
 
Table 1: Subject Inter-Correlations Between Parameters 

And Correlation Between Each Environmental Parameter 
And Fatigue 

 
Parameter Duration Obstacle Fatigue 

Duration - 0.0134 0.024 

Obstacle - - 0.019 

Fatigue - - - 

 
It could be observed from this table the Obstacle and 
duration highly correlated (p=0.0134) which is 
explained by the fact that an increase of the number 
of obstacles hit will influence the navigation time. 
Notice also that fatigue has a highly positive 
correlation with both parameters with a stronger one 
regarding obstacles hit (0.019). It seems that people, 
even when they are tired, could manage to reach the 
navigation goal even if the number of obstacles hit is 
high. This is due to the fact that in virtual 
navigation, in some cases, when obstacles are hit, 
the wheelchair gets through the wall or the pillar and 
doesn’t stop. 
The results reflect that the experiment was 
successful to induce mental fatigue even that some 
bugs on the virtual reality program biased some of 
the results. In some other cases, the trial on itself 
was repeated as the subject wasn’t able to avoid 
obstacles they hit.    

2. Correlation between fatigue and subjective 
ratings 

The results are recapitulated in Table 2 and Fig. 5 
show the (average) correlations with significantly (p 
< .05) with correlating electrodes highlighted. 
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Fig. 5: The Mean Correlations Over Subjects For Fatigue 

Ratings With The Changes 

 
For the band waves delta, theta and gamma, no 
correlation was found between them and the 
subjective ratings (p> .05). This can be explained by 
the fact that the frequency of the flashing lights is 
10Hz; as a result, response frequency is more 
prominent in the bands close to the stimulus 
frequency of presentation or to its harmonics which 
is not the case for the mentioned band waves. 
For Alpha and Beta, it can be noticed that the latter 
occur especially in the occipital region, thus over 
visual cortices. The latter showed the strongest 
correlations (p = .01). This could be explained by 
the fact that the presented stimuli are of visual 
nature. Also, as the presentation frequency was fixed 
to 10Hz, the principal response frequency and its 
second harmonic are localized in the frequency 
bands ranging from 8Hz to 29Hz which encloses the 
Alpha and Beta waves.  
 

 
Fig. 6: Amplitude Changes Of SSVEP In The Sensor O2 

The SSVEP maximum amplitude is influenced by 
the subject state and evolutes following many steps:  
This also explains the fact that Alpha waves show 
the strongest correlations especially for O1 and O2. 
It could be noticed also that parietal lobe of the brain 
(P7 and P8) show a good correlation with fatigue; 
The parietal lobe plays important roles in integrating 
sensory information from various parts of the body, 
knowledge of numbers and their relations,[18] and 
in the manipulation of objects. Its function also 
includes visuospatial processing. 
In the first part, the maximum amplitude increases 
as the user becomes more concentrated, this 

amplitude starts slightly to decrease as the subject 
becomes more and more tired. At the end, this 
amplitude attends its minimum as the subject is 
exhausted.    
 The results of the classification are recapitulated in 
the following table: 
 

Table 3: Classification Rate Of MLP, SVM And LDA 

 
 
 

 

 

 

 
The results show that LDA has the best 
classification rate with 76%. MLP presents, 
generally, good results as well as SVM (75%). 
SVM and MLP were lower than LDA but the 
difference is not very big. The classification rate is 
not good enough due to many explanations; the 
number of subjects isn’t many as it could form a 
good database which is also the case for the number 
of trials. Despite that, the classification rate could 
be acceptable for such conditions and may give 
better results if the experiment involved many 
subjects and many trials.   
 

4. CONCLUSION AND PERSPECTIVES 

In this paper, a pilot study was conducted to assess 
the influence of fatigue on SSVEP over 14 EEG 
sensors. From the 70 overall parameters, only 5 
correlate significantly with subjective ratings. 
Those occur essentially in the visual cortex, but 
found that the parietal lobe also correlates 
significantly in Alpha and Beta band waves while 
Delta, Theta and Gamma doesn’t show any 
interesting results. As mentioned before, the goal of 
the current study is to seek the needed parameters 
to switch between manual, semi-autonomous, and 
autonomous wheelchair command. Another EEG 
component can be integrated to estimate fatigue 
state, is the Positive 300 (P300). In fact many 
studies showed the influence of fatigue on P300 
(see [19] and [20]), as well as its efficiency as a 
BCI source of control.  
For this purpose, another pilot study will be done to 
assess influence of fatigue on P300. Both inputs 
will be considered in a fusion block that plays an 
important role in decision making; in fact the 
decision issued from SSVEP can differ from the 
one issued from P300. The role of the fusion block 
is to decide whether the system has to switch to 

Technique Classification rate 

SVM 75% 

LDA 76% 

MLP 75% 
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manual, semi-autonomous or autonomous mode 
depending on the user’s fatigue. This can enhance 
the wheelchair navigation. Another approach could 
be established is the linking between fatigue and 
emotions. In fact, emotions play an important role 
in decision making which can affect the navigation 
safety and merging between fatigue and emotions 
can improve it further. This being said, a fuzzy 
logic block is being conceived to help the system 
merging between fatigue and emotions outputs. 
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Table 2: The Electrodes For Which The Correlations With The Scale Were Significant (P < .05) For Each Considered 

Parameter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

 

 
Parameters 

delta theta Alpha beta gamma 
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- 

O1 0,01755 
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0,0335 
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O2 0,01832 

 

O2 
0,045 P7 0,0354 

P8 0,032 


