
Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

819

AN EFFICIENT FLOATING-POINT MULTIPLIER DESIGN

USING COMBINED BOOTH AND DADDA ALGORITHMS

1
DHANABAL R,

 2
BHARATHI V,

3
NAAMATHEERTHAM R SAMHITHA,

4
PAVITHRA S,

5
PRATHIBA S,

6
JISHIA EUGINE

1Asst Prof. (Senior Grade), School of Electronics Engineering,
2Asst. Prof., GGR College of Engineering, Anna University, Vellore,

3M.Tech VLSI Student, School of Electronics Engineering,
4, 5, 6 B.Tech ECE Students, School of Electronics Engineering,

VIT University, Vellore, Tamil Nadu, India
E-mail: 1rdhanabal@vit.ac.in , 2bharathiveerappan@yahoo.co.in, 3samhitha.nr@gmail.com,

4pavithra.girija@gmail.com , 5prathiba.sivakumar@yahoo.com , 6jishhhia@gmail.com

ABSTRACT

This paper includes the design of efficient double precision floating-point multiplier using radix-4
Modified Booth Algorithm (MBE) and Dadda Algorithm. This hybrid multiplier is designed by using
the advantages in both the multiplier algorithms. MBE has the advantage of reducing partial products
to be added. Dadda scheme has the advantage of adding the partial products in a faster manner. Our
main objective is to combine these two schemes to make the multiplier design power efficient and area
efficient. The floating-point multiplier is designed using Verilog HDL. The design is simulated using
Altera ModelSim and synthesized using Cadence RTL compiler in TSMC 45 nanometre technology. It

is found that multiplier has reduced power and area and it consumes 4619.23 Wµ and 34880 2
mµ .

Keywords: Floating Point Multiplication, Dadda Reduction, Modified Booth, Computer Arithmetic

1. INTRODUCTION

Multipliers are among the fundamental

components in modern electronic systems that run
complex calculations in both digital signal
processors and general purpose processors. As the
technology is improving, many researchers are
trying to develop efficient multiplier designs which
can offer high speed or low power or low area or
the combination of all these three in single
multiplier. But for the portable devices power and
area is mainly considered and it should be
minimized as much as possible. Such type of
multiplier is implemented here.

The Booth Algorithm is relatively straight
forward way of doing signed multiplications [1].
Modified Booth algorithm reduces the partial
products than any other method. Then comes
addition of these partial products. In the recent days
Dadda or Wallace are been used for addition of
partial products. But when we reconsider Wallace
and Dadda multipliers it is proved that the hardware
requirement for Dadda is less than the Wallace
multiplier [2, 3]. Dadda reduction method performs
faster addition of partial products [2]. In this work a

Booth encoded Dadda multiplier is implemented
and the improved performance is compared with
some regular multipliers.

The floating-point multiplier (FPM) is the major
logical block in the floating-point unit (FPU) [11]
[12] and ALU [13]. The IEEE-754 standard sets
down specific rules and formats for any system that
uses floating-point arithmetic’s [4]. The main
reason to consider double precision floating-point
multiplier is that many standard FPUs support this
format [5, 6].

This paper is divided into five sections. Basic
floating-point multiplication algorithm is explained
in section II. Section III provides the actual design
of FPM. In section IV results and comparison is
provided. Conclusion is given in section V.

2. FLOATING POINT MULTIPLICATION
2.1 Standard IEEE Floating-Point

Representation

Our multiplier unit performs multiplication on
double precision floating-point data. i.e., the inputs
and outputs to the unit are in standard IEEE-754
double precision format [4]. The standard IEEE-
754 double precision floating-point format consists

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

820

of a 64-bit vector split into three sections as shown
in Fig. 1. The double precision floating-point
number is calculated as shown in equation (1). To
represent any floating-point number, the three fields
are combined and interpreted as follows:

bias
A

sign
AA fractionA
−

××−=
exp

2.1)1((1)

Sign(1-bit) Exponent(11-bit) Mantissa(52-bit)

Fig. 1. IEEE-754 Double Precision (64-bit) Floating-

Point Format

2.2 Floating-Point Multiplication

The floating-point multiplication involves
following steps: Assume that the operands A and B
are in IEEE-754 double precision format,
performing floating-point multiplication

)2()1()2()1(expexpexpexp B

man

BA

man

A

BABA ×−××−=×

where “man” represents mantissa, “exp” represents
exponent.

1. Compute the sign of the result (Aexp ^ Bexp).
2. Multiply the mantissa.
3. Normalize the product if needed.
4. Compute the exponent of the result:

exponent of the result = biased exponent
(Aexp) + biased exponent (Bexp) – bias

5. Round the result to the no. of mantissa bits.

The double precision floating-point multiplier
architecture is as shown in Fig. 2. The architecture
contains a multiplier tree which multiplies two 53-
bit numbers (1 hidden bit+52 bit mantissa). Output
from the multiplier tree is in carry save format and
it is passed to a combined add/round stage, where
the carry save product is added and rounded. Both
the sign and exponent calculation logic runs in
parallel with the mantissa multiplication. To get the
final exponent value, the exponent needs to be
adjusted based on the rounding. Sometimes there is
a chance of getting a wrong value for the exponent
as the actual exponent value exceeds the bit range.
So to avoid this in our design exception handling is
included. Whenever the bit range is high, it
generates an exception while performing exponent
logic or exponent adjust.

2.3 IEEE Rounding Modes

As per IEEE-754 standards there are four
rounding modes as follows:

1. Round to nearest (RN)
2. Round to zero (RZ)
3. Round to positive infinity (RP)
4. Round to negative infinity (RN)

Implementation wise these rounding are further
reduced to three. Round up (RU) with fix up, round
to infinity, round to zero [7]. Round to nearest can
be implemented as Round up with a fix up [7]. We
are using RU in our floating-point arithmetics.
Mathematically RU is given as follows

 x
x

x

=
if

otherwise

xx 5.0≥−

Where x and x are the ceiling and floor

functions.

Fig. 2. Floating-Point Multiplier Architecture

3. FLOATING-POINT MULTIPLIER USING

BOOTH AND DADDA ALGORITHMS

Simple multiplication operation involves three
major steps:

1. Generation of partial products.

2. Reduce the generated partial products into
two rows i.e., one row of final sums and
one row of carries.

3. These final sums and carries need to be
added to generate final result.

In our design for generation of partial products
we have used radix-4 Modified Booth Encoding
(MBE) approach. Dadda algorithm is used to
reduce the generated partial products into one row
of final sums and one row of carries [8] [9]. Finally
these two rows are added using an efficient parallel
prefix adders [10].

3.1 Modified Booth Encoding(MBE)

In our floating-point multiplier design a modified
booth encoding scheme is used as it reduces the

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

821

number of partial products generated. MBE

generates at most 1
2

+

N
 partial products, where

N is the number of bits. MBE algorithm involves
following steps:

1. Pad the LSB with one zero.

2. Pad the MSB with 2 zeros if n is even and 1
zero if n is odd.

3. Divide the multiplier into overlapping
groups of 3-bits.

4. Determine the partial products scale factor
from the recoding table.

5. Compute the multiplicand multiples which
is nothing but partial products.

Radix-4 recoding, the most common modified
booth’s recoding scheme and is used with the digit
set {-2, -1, 0, 1, 2} is shown in Table I.

Table. I. Radix-4 Modified Booth’s Recoding (for BA×)

Bits of multiplier B Encoding

operation on

multiplicand A Ci+1 Ci Ci-1

0 0 0 0

0 0 1 +B

0 1 0 +B

0 1 1 +2B

1 0 0 -2B

1 0 1 -B

1 1 0 -B

1 1 1 0

Each three consecutive bits of the multiplier B
represents the input to the booth recoding block.
This block selects the right operation on
multiplicand A which can be shift or invert (-2B) or
invert (-B) or zero or no operation (B) or shift (2B).
Fig. 3 shows the generation of partial product using
MBE.

For double precision floating –point
multiplication two 53-bit (1 hidden bit + mantissa
52 bits) numbers are to be multiplied. If we use
normal method for generation of partial products 53
partial products will be obtained. But by using
MBE the partial products can be reduced to 27.

Each partial product can be obtained using block
shown in Fig. 3.

3.2 Dadda Reduction Approach

After the generation of partial products, the
partial products need to be added. Usually addition
of these partial products consumes time. For this
reason Dadda scheme is used to minimize the
number of adder stages, by which delay can be
minimized. Reduction of these partial products into
two rows is done in stages using half adders and
full adders. The reduction in size of each stage is
calculated by working back from the final stage.
Each preceding stage height must be not greater

than 2/3 eightsuccessorh• [9]. Heights for the

various stages can be 2, 3, 4, 6, 9, 13, 19, 28, 42,
63, etc., The dot diagram for Dadda reduction for 9
bit by 9 bit multiplication is shown in Fig. 4, this is

performed in 4 stages.

Fig. 3. One Partial Product Generator Using MBE

Fig. 4. 9bit by 9 bit Dadda Reduction

3.3 Parallel Prefix Adder

The final sums and carries are added using
parallel prefix adders as it offer a highly efficient
solution to the binary addition and suitable for
VLSI implementations [10]. Among the parallel

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

822

prefix adders, Kogge-Stone architecture is the
widely used and the popular one.

Kogge-Stone adder is the parallel version of
carry-look-ahead adder. The term prefix means the
outcome of operation depends on the initial inputs.
Parallel means the execution of an operation is in
parallel. This is done by segmenting into smaller
pieces, which are computed in parallel. Kogge-
stone adder is considered as the fastest adder design
possible [10]. 8-bit Kogge-Stone adder is as shown
in Fig. 5. In our design to add the final sums and
carries a 106-bit Kogge-Stone adder is used.

(a)

(b)

Fig. 5. (A) 8-Bit Kogge-Stone Adder, (B) Logic

Implementation of Each Block of Kogge-Stone Adder

[10]

3.4 Multiplier Using MBE and Dadda

As discussed in section II mantissas need to be
multiplied. For mantissa multiplication, both the
concepts of MBE and Dadda reduction is used.
Initially the two 53 bit mantissas are considered to
generate partial products using Radix-4 Modified
Booth Encoding Algorithm as discussed in section
III.A. From this 27 rows of partial products will be
obtained. These 27 partial products are reduced
using Dadda reduction scheme. For example
consider Fig. 6, here multiplication of two 10-bit
numbers is taken and 5 partial products are
generated using MBE. Then these 5 rows of partial
products are reduced to two rows in 3 reduction
stages, where 4, 3, 2 is the height of each stage. The
same context is extended for reduction of 27 partial
products. These 27 rows of partial products are
reduced to 2 rows in 7 reduction stages, where 19,
13, 9, 6, 4, 3, 2 is height of each stage as we go
down in the reduction scheme.

Fig. 6. 10 bit by 10 bit Booth Encoding with Dadda

Reduction Scheme

4. RESULTS AND DISCUSSION

The simulation results of the floating-point Booth
encoded Dadda multiplier is shown in Fig. 7. Table
II provides the synthesis results for the multiplier
designed. The Booth encoded Dadda floating-point
multiplier has been compared with Booth encoded
Wallace tree and simple Modified Booth Encoding
Algorithm. Comparison chart for power, area, and
delay is given in Fig. 8, Fig. 9, and Fig. 10
respectively. In contrast to the Wallace reduction,
Dadda method does the least reduction necessary at
each stage.

Dadda reduction scheme uses fewer half adders
and full adders when compared to the Wallace
reduction scheme. Thus Dadda multipliers area and
power is less than Wallace. In conventional MBE,
partial products are reduced using CSA trees but it
consumes time. To overcome this Dadda reduction
scheme is used.

Table II. Synthesis Results Using TSMC 45nm

Technology

64-bit Floating

–Point

Multiplier

Total

Power (

Wµ)

Area (
2

mµ)

Delay

(ns)

MBE with

Dadda

4619.23 34880.00 6.19

MBE with

Wallace

4765.80 35337.30 6.19

MBE 4883.52 35393.56 6.49

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

823

Fig. 7. Simulation results for 64-bit floating-point multiplier

Fig. 8. Power comparison chart for the 64-bit floating-

point multiplier

Fig. 9. Area Comparison Chart for the 64-Bit Floating-

Point Multiplier

Fig. 10. Delay Comparison Chart for the 64-Bit

Floating-Point Multiplier

5. CONCLUSION

This paper presents a low power and area
efficient double precision floating point multiplier
using Modified Booth Encoding and Dadda
reduction. The design has been compared with
MBE and MBE with Wallace. It is found that
multiplier has reduced power and area and it

consumes 4619.23 Wµ and 34880
2

mµ . The

comparison results in the previous sections prove
that the design is efficient. This multiplier design is
suitable for high performance floating point units or
floating point multiply-add units of the co-
processors.

As the future work this work can be extended to
achieve better speeds by using Residue Number
System [14].

REFRENCES:

[1] D. Booth, “A Signed Binary Multiplication
Technique,” Quarterly J. Mechanical and

Applied Math., vol. 4, pp.236-240, 1951.
[2] K.C. Bickerstaff, E. E. Swartzlander, and M. J.

Schulte, “Analysis of column compression
multipliers,” in proceedings of the 15

th
 IEEE

symposium on Computer Arithmetic, pp. 33-39,
June 2001.

[3] W. J. Townsend, E. E. Swartzlander, and J. A.
Abraham, “A comparison of Dadda and
Wallace multiplier delays,” in Advanced Signal

Processing Algorithms, Architectures, and

Implementations XIII, vol. 5205 of
Proceedings of the SPIE, pp. 552–560, August
2003.

[4] IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Standard 754-1985,
Reaffirmed Dec. 6, 1990, Inc., 1985.

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

824

[5] R. K. Montoye, E. Hokenek, and S. L. Runyon,
“Design of the IBM RISC System/6000
floating-point execution unit,” IBM J. Res.

Development, vol. 34, pp. 59–70, 1990.
[6] E. Hokenek, R. Montoye, and P. W. Cook,

“Second-generation RISC floating point with
multiply-add fused,” IEEE J. Solid-State

Circuits, vol. 25, no. 5, pp. 1207–1213, Oct.
1990.

[7] N. Quach, N. Takagi, and M. Flynn, “On fast
IEEE rounding,” Stanford Univ., Stanford, CA,

Tech. Rep. CSL-TR-91-459, Jan. 1991.
[8] L. Dadda, “Some schemes for parallel

multipliers,” IEEE Transactions on Computers,
vol. 13, pp.14-17, 1964.

[9] Waters. R. S, Swartzlander. E. E, "A Reduced
Complexity Wallace Multiplier
Reduction," Computers, IEEE Transactions on,
vol.59, no.8, pp.1134-1137, Aug. 2010.

[10] Giorgos Dimitrakopoulos and Dimitris
Nikolos, “High-Speed Parallel-Prefix VLSI
Ling Adders,” IEEE Transactions on

Computers, vol. 54, no. 2, pp. 225-231, Feb
2005.

[11] Dhanabal R, Bharathi V, Shilpa K, Sujana D.V
and Sahoo S.K, “Design and Implementation
of Low Power Floating Point Arithmetic Unit”,
International Journal of Applied Engineering

Research, ISSN 0973-4562, vol. 9, no. 3, pp.
339-346, 2014.

[12] Ushasree G, Dhanabal R, Sarat kumar sahoo,
“VLSI Implementation of a High Speed Single
Precision Floating Point Unit Using
Verilog”, Proceedings of IEEE Conference on

Information and Communication Technologies

(ICT 2013), pp. 803-808, 2013.
[13] Dhanabal R, Bharathi V, Salim S, Thomas B,

Soman H, and Sahoo.S.K, “Design of 16-bit
low power ALU-DBGPU”, International
Journal of Engineering and Technology, vol. 5
 no. 3, pp. 2172 – 2180, Jun 2013.

[14] Dhanabal R, Sarat Kumar Sahoo, Barathi V,
N.R.Samhitha, Neethu Acha Cherian, Pretty
Mariam Jacob, “Implementation of Floating
Point MAC using Residue Number System”,
Journal of Theoretical and Applied

Information Technology, vol. 62, no. 2, April
2014.

