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ABSTRACT 

 
This paper includes the design of efficient double precision floating-point multiplier using radix-4 
Modified Booth Algorithm (MBE) and Dadda Algorithm. This hybrid multiplier is designed by using 
the advantages in both the multiplier algorithms. MBE has the advantage of reducing partial products 
to be added. Dadda scheme has the advantage of adding the partial products in a faster manner. Our 
main objective is to combine these two schemes to make the multiplier design power efficient and area 
efficient. The floating-point multiplier is designed using Verilog HDL. The design is simulated using 
Altera ModelSim and synthesized using Cadence RTL compiler in TSMC 45 nanometre technology. It 

is found that multiplier has reduced power and area and it consumes 4619.23 Wµ  and 34880 2
mµ . 
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1. INTRODUCTION  

 
Multipliers are among the fundamental 

components in modern electronic systems that run 
complex calculations in both digital signal 
processors and general purpose processors. As the 
technology is improving, many researchers are 
trying to develop efficient multiplier designs which 
can offer high speed or low power or low area or 
the combination of all these three in single 
multiplier. But for the portable devices power and 
area is mainly considered and it should be 
minimized as much as possible. Such type of 
multiplier is implemented here. 

The Booth Algorithm is relatively straight 
forward way of doing signed multiplications [1]. 
Modified Booth algorithm reduces the partial 
products than any other method. Then comes 
addition of these partial products. In the recent days 
Dadda or Wallace are been used for addition of 
partial products. But when we reconsider Wallace 
and Dadda multipliers it is proved that the hardware 
requirement for Dadda is less than the Wallace 
multiplier [2, 3]. Dadda reduction method performs 
faster addition of partial products [2]. In this work a 

Booth encoded Dadda multiplier is implemented 
and the improved performance is compared with 
some regular multipliers. 

The floating-point multiplier (FPM) is the major 
logical block in the floating-point unit (FPU) [11] 
[12] and ALU [13].  The IEEE-754 standard sets 
down specific rules and formats for any system that 
uses floating-point arithmetic’s [4]. The main 
reason to consider double precision floating-point 
multiplier is that many standard FPUs support this 
format [5, 6].  

This paper is divided into five sections. Basic 
floating-point multiplication algorithm is explained 
in section II. Section III provides the actual design 
of FPM. In section IV results and comparison is 
provided. Conclusion is given in section V. 

2. FLOATING POINT MULTIPLICATION  
2.1 Standard IEEE Floating-Point 

Representation 

Our multiplier unit performs multiplication on 
double precision floating-point data. i.e., the inputs 
and outputs to the unit are in standard IEEE-754 
double precision format [4]. The standard IEEE-
754 double precision floating-point format consists 
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of a 64-bit vector split into three sections as shown 
in Fig. 1. The double precision floating-point 
number is calculated as shown in equation (1). To 
represent any floating-point number, the three fields 
are combined and interpreted as follows: 

bias
A

sign
AA fractionA
−

××−=
exp

2.1)1(    (1) 

 

Sign(1-bit) Exponent(11-bit) Mantissa(52-bit) 

 
Fig. 1. IEEE-754 Double Precision (64-bit) Floating-

Point Format 

 

2.2 Floating-Point Multiplication 

The floating-point multiplication involves 
following steps: Assume that the operands A and B 
are in IEEE-754 double precision format, 
performing floating-point multiplication 

)2()1()2()1( expexpexpexp B

man

BA

man

A

BABA ×−××−=×  

where “man” represents mantissa, “exp” represents 
exponent. 

1. Compute the sign of the result (Aexp ^ Bexp). 
2. Multiply the mantissa. 
3. Normalize the product if needed. 
4. Compute the exponent of the result: 

exponent of the result = biased exponent 
(Aexp) + biased exponent (Bexp) – bias 

5. Round the result to the no. of mantissa bits. 
 

The double precision floating-point multiplier 
architecture is as shown in Fig. 2. The architecture 
contains a multiplier tree which multiplies two 53-
bit numbers (1 hidden bit+52 bit mantissa). Output 
from the multiplier tree is in carry save format and 
it is passed to a combined add/round stage, where 
the carry save product is added and rounded. Both 
the sign and exponent calculation logic runs in 
parallel with the mantissa multiplication. To get the 
final exponent value, the exponent needs to be 
adjusted based on the rounding. Sometimes there is 
a chance of getting a wrong value for the exponent 
as the actual exponent value exceeds the bit range. 
So to avoid this in our design exception handling is 
included. Whenever the bit range is high, it 
generates an exception while performing exponent 
logic or exponent adjust. 

 

2.3 IEEE Rounding Modes 

As per IEEE-754 standards there are four 
rounding modes as follows: 

1. Round to nearest (RN) 
2. Round to zero (RZ) 
3. Round to positive infinity (RP) 
4. Round to negative infinity (RN) 

Implementation wise these rounding are further 
reduced to three. Round up (RU) with fix up, round 
to infinity, round to zero [7]. Round to nearest can 
be implemented as Round up with a fix up [7]. We 
are using RU in our floating-point arithmetics. 
Mathematically RU is given as follows 

 
 x
x

x





=
if  

otherwise

xx 5.0≥−
 

Where  x  and  x  are the ceiling and floor 

functions. 
 

 

 
Fig. 2. Floating-Point Multiplier Architecture 

 

3. FLOATING-POINT MULTIPLIER USING 

BOOTH AND DADDA ALGORITHMS 

Simple multiplication operation involves three 
major steps:  

1. Generation of partial products.  

2. Reduce the generated partial products into 
two rows i.e., one row of final sums and 
one row of carries.  

3. These final sums and carries need to be 
added to generate final result. 

In our design for generation of partial products 
we have used radix-4 Modified Booth Encoding 
(MBE) approach. Dadda algorithm is used to 
reduce the generated partial products into one row 
of final sums and one row of carries [8] [9]. Finally 
these two rows are added using an efficient parallel 
prefix adders [10]. 

3.1 Modified Booth Encoding(MBE) 

In our floating-point multiplier design a modified 
booth encoding scheme is used as it reduces the 
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number of partial products generated. MBE 

generates at most 1
2

+






N
 partial products, where 

N is the number of bits. MBE algorithm involves 
following steps: 

1. Pad the LSB with one zero. 

2. Pad the MSB with 2 zeros if n is even and 1 
zero if n is odd. 

3. Divide the multiplier into overlapping 
groups of 3-bits. 

4. Determine the partial products scale factor 
from the recoding table. 

5. Compute the multiplicand multiples which 
is nothing but partial products. 

 

Radix-4 recoding, the most common modified 
booth’s recoding scheme and is used with the digit 
set {-2, -1, 0, 1, 2} is shown in Table I. 

 

Table. I. Radix-4 Modified Booth’s Recoding (for BA× ) 

Bits of multiplier B Encoding 

operation on 

multiplicand A Ci+1 Ci Ci-1 

0 0 0 0 

0 0 1 +B 

0 1 0 +B 

0 1 1 +2B 

1 0 0 -2B 

1 0 1 -B 

1 1 0 -B 

1 1 1 0 

 

Each three consecutive bits of the multiplier B 
represents the input to the booth recoding block. 
This block selects the right operation on 
multiplicand A which can be shift or invert (-2B) or 
invert (-B) or zero or no operation (B) or shift (2B). 
Fig. 3 shows the generation of partial product using 
MBE. 

For double precision floating –point 
multiplication two 53-bit (1 hidden bit + mantissa 
52 bits) numbers are to be multiplied. If we use 
normal method for generation of partial products 53 
partial products will be obtained. But by using 
MBE the partial products can be reduced to 27. 

Each partial product can be obtained using block 
shown in Fig. 3. 

3.2 Dadda Reduction Approach 

After the generation of partial products, the 
partial products need to be added. Usually addition 
of these partial products consumes time. For this 
reason Dadda scheme is used to minimize the 
number of adder stages, by which delay can be 
minimized. Reduction of these partial products into 
two rows is done in stages using half adders and 
full adders. The reduction in size of each stage is 
calculated by working back from the final stage. 
Each preceding stage height must be not greater 

than  2/3 eightsuccessorh•  [9]. Heights for the 

various stages can be  2, 3, 4, 6, 9, 13, 19, 28, 42, 
63, etc., The dot diagram for Dadda reduction for 9 
bit by 9 bit multiplication is shown in Fig. 4, this is 

performed in 4 stages.  

 

Fig. 3. One Partial Product Generator Using MBE 

 

 

Fig. 4. 9bit by 9 bit Dadda Reduction 

3.3 Parallel Prefix Adder 

The final sums and carries are added using 
parallel prefix adders as it offer a highly efficient 
solution to the binary addition and suitable for 
VLSI implementations [10]. Among the parallel 
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prefix adders, Kogge-Stone architecture is the 
widely used and the popular one.  

Kogge-Stone adder is the parallel version of 
carry-look-ahead adder. The term prefix means the 
outcome of operation depends on the initial inputs. 
Parallel means the execution of an operation is in 
parallel. This is done by segmenting into smaller 
pieces, which are computed in parallel. Kogge-
stone adder is considered as the fastest adder design 
possible [10]. 8-bit Kogge-Stone adder is as shown 
in Fig. 5. In our design to add the final sums and 
carries a 106-bit Kogge-Stone adder is used.  

 

(a) 

(b) 

Fig. 5. (A) 8-Bit Kogge-Stone Adder, (B) Logic 

Implementation of Each Block of Kogge-Stone Adder 

[10] 

3.4 Multiplier Using MBE and Dadda 

As discussed in section II mantissas need to be 
multiplied. For mantissa multiplication, both the 
concepts of MBE and Dadda reduction is used. 
Initially the two 53 bit mantissas are considered to 
generate partial products using Radix-4 Modified 
Booth Encoding Algorithm as discussed in section 
III.A. From this 27 rows of partial products will be 
obtained. These 27 partial products are reduced 
using Dadda reduction scheme. For example 
consider Fig. 6, here multiplication of two 10-bit 
numbers is taken and 5 partial products are 
generated using MBE. Then these 5 rows of partial 
products are reduced to two rows in 3 reduction 
stages, where 4, 3, 2 is the height of each stage. The 
same context is extended for reduction of 27 partial 
products. These 27 rows of partial products are 
reduced to 2 rows in 7 reduction stages, where 19, 
13, 9, 6, 4, 3, 2 is height of each stage as we go 
down in the reduction scheme.  

 

 

Fig. 6. 10 bit by 10 bit Booth Encoding with Dadda 

Reduction Scheme 

4. RESULTS AND DISCUSSION 

The simulation results of the floating-point Booth 
encoded Dadda multiplier is shown in Fig. 7. Table 
II provides the synthesis results for the multiplier 
designed. The Booth encoded Dadda floating-point 
multiplier has been compared with Booth encoded 
Wallace tree and simple Modified Booth Encoding 
Algorithm. Comparison chart for power, area, and 
delay is given in Fig. 8, Fig. 9, and Fig. 10 
respectively. In contrast to the Wallace reduction, 
Dadda method does the least reduction necessary at 
each stage. 

Dadda reduction scheme uses fewer half adders 
and full adders when compared to the Wallace 
reduction scheme. Thus Dadda multipliers area and 
power is less than Wallace. In conventional MBE, 
partial products are reduced using CSA trees but it 
consumes time. To overcome this Dadda reduction 
scheme is used. 

Table II. Synthesis Results Using TSMC 45nm 

Technology 

64-bit Floating 

–Point 

Multiplier 

Total 

Power (

Wµ ) 

Area (
2

mµ ) 

Delay 

(ns) 

MBE with 

Dadda 

4619.23 34880.00 6.19 

MBE with 

Wallace 

4765.80 35337.30 6.19 

MBE 4883.52 35393.56 6.49 



Journal of Theoretical and Applied Information Technology 
 30

th
 June 2014. Vol. 64 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
823 

 

 

Fig. 7. Simulation results for 64-bit floating-point multiplier 

 

 

Fig. 8. Power comparison chart for the 64-bit floating-

point multiplier 

 

Fig. 9. Area Comparison Chart for the 64-Bit Floating-

Point Multiplier 

 

Fig. 10. Delay Comparison Chart for the 64-Bit 

Floating-Point Multiplier 

 

 

 

5. CONCLUSION 

This paper presents a low power and area 
efficient double precision floating point multiplier 
using Modified Booth Encoding and Dadda 
reduction. The design has been compared with 
MBE and MBE with Wallace. It is found that 
multiplier has reduced power and area and it 

consumes 4619.23 Wµ  and 34880
2

mµ . The 

comparison results in the previous sections prove 
that the design is efficient. This multiplier design is 
suitable for high performance floating point units or 
floating point multiply-add units of the co-
processors.  

As the future work this work can be extended to 
achieve better speeds by using Residue Number 
System [14]. 
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