
Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

703

VLSI DESIGN OF FLOATING POINT ARITHMETIC & LOGIC

UNIT

1
DHANABAL R ,

2
BHARATHI V, 3G.SRI CHANDRAKIRAN ,

4
BHARATH BHUSHAN REDDY

.M
1Assistant Professor (Senior Grade), VLSI division, SENSE, VIT University,
2Assistant Professor, GGR College of Engineering, Anna University, Vellore,

3,4BTECH Students, SENSE ECE Department, VIT University, Vellore- 632014,TN,INDIA,
54BTECH Students, SMBS, MECHANICAL Department, VIT University, Vellore- 632014,TN,INDIA,

E-mail: 1rdhanabal@vit.ac.in,2bharathiveerappan@yahoo.co.in, 3chandar_ck@yahoo.com,
4bharath.mallireddy@gmail.com

ABSTRACT

 In most modern general purpose computer one or more Floating Point Units are integrated with the CPU,
however many embedded processors, especially older designs, do not have hardware support for floating
point operation. In this paper, the design of DSP module such as floating point ALU is presented. The
functions performed are handling of floating point data and converting data to IEEE 754 format and can
perform arithmetic operations like Addition, Subtraction Multiplication and Division. The Simulation tool
used is Model Sim for verifying functional simulation. The tool for synthesis and power analysis is Quartus
II
Keywords: XOR, Full adders, XNOR, PTL, XOR-XNOR

1. INTRODUCTION

In areas of Physics, excessively small and large values
are used. For example, finding the effective mass of
electron, Avogadro number etc . The range of fixed
point format is insufficient to represent these values so
we need something that is able to represent these
numbers and operate on them. For representing these
values the position of binary point should be variable
hence we go for floating point numbers.

Multiplier-Accumulator(MAC) is the essential
elements of the digital signal processing.
Multiplication involves two basic operations: the
generation of partial products and their accumulation.
[1] The addition and multiplication of two binary
numbers is the fundamental and most often used
arithmetic operation in microprocessors, digital signal
processors, and data processing application-specific
integrated circuits. [1] Since multiplication dominates
the execution time of most DSP algorithms, so there is
a need of high speed multiplier. [1] The Radix-4 MBA
reduce N-bits of partial products to n/2 partial
products.[1] The parallel multipliers like Radix-4
modified booth multiplier do the computations using
lesser adders and lesser iterative steps. This is very
important criteria because in the fabrication of chips

and high performance system requires components
which have area as small as possible. [1] The
Multiplier and Accumulator can be adapted to various
fields requiring high performance such as signal
processing areas.[1] Thus in above ALU, MAC unit
can be included for fast multiplication processing [1].

In this paper, FPGA implementation of a high speed
FPU has been carried out using efficient addition,
subtraction, multiplication, division algorithms.
Section II depicts the architecture of the floating point
unit and methodology, to carry out the arithmetic
operations. Section III presents the arithmetic
operations that use efficient algorithms with some
modifications to improve latency. Section IV presents
the simulation results that have been simulated in
Altera FPGA. Section V presents the conclusion.

Standard IEEE 754 format of floating point number:

Format Sign (s) Exponen
t (e)

Fraction
or
mantissa
(m)

Bias

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

704

Single
precision

1bit

[31]

8bits

[30-23]

23bits

[22-0]

127

Double
precision

1bit

[63]

11bits

[52-62]

52bits

[51-0]

1023

The floating point of any number is in the form given
by n= (-1) s x 1.F x 2 (e-bias)

32 bit floating point number can be represented as
n= (-1) s x 1.F x 2 (e-127)

64 bit floating point number can be represented as

 n= (-1) s x 1.F x 2 (e-1023)

Sign bit: 0 represents positive number and 1
represents negative number

Biasing the exponent: By adding a constant number
to the original exponent, the biased exponent is
always a positive number. The constant number which
is to be added depends on number of bits available for
exponent. For 32 bit number the exponent range is -
126 to +127. If you add +127 for exponent range you
will get the range of +1 to +254 (0 and 255 are the
special cases).

Mantissa or Significant: Most of the bits are allotted
to mantissa so that it will have more Precision. It
consists of implicit leading bit and fraction bits.

Normalization: In order to store large quantity of
representable numbers, floating-point numbers are
typically stored in normalized form.

De-normalized: If the exponent is all 0s, but the
fraction is non-zero, then the value is a de-normalized
number, which does not have an assumed leading 1
before the binary point. Thus, this represents a number
(-1) s × 0.f × 2-126, where s is the sign bit and f is the
fraction.

Overflow: After performing ALU operations if the
result of operation exceeds the maximum exponent
range. Overflow can also occur not only in
multiplication and division but also in
addition/subtraction. Overflow occurs if the operands
of two numbers are same in case of
addition/subtraction.

Underflow: When the result of operation is too small
to be represented in exponent field. Underflow occurs,
roughly speaking, when the result of an arithmetic
operation is so small that it cannot be stored in its
intended destination format without suffering a
rounding error that is larger than usual

NAN: NAN stands for Not A Number. It is used for
representing undefined or unpredictable numbers.
When E=255 and m≠0, the value of NAN=1 and when
performing an invalid operations such as 0/0, (-1) 1/2,
±∞/±∞,0*±∞.

Special cases:

List of special case given below are used for design of
floating point unit for obtaining efficient capacities for
the design.

1. If 1≤E≤254, then n= (-1) s x 2(E-127) x (1.F) is
normalized number.

2. If E=255 and F≠0, then n=NAN

3. If E=255 and F=0, then n= (-1) s x±∞.

4. If E=0 and F≠0, then n= (-1) s x 2 (-126) x (0.F) is
underflow

5. If E=0 and F=0, then n= (-1) s x 0 is positive and
negative zero.

Fig 1: Block Diagram Of Floating Point Addition And
Subtraction

2. FLOATING POINT

ADDITION/SUBTRACTION:

Using the Classic Timing Analyzer tool, it was
observed that the new multiplier design using carry
look ahead adder has less delay compared to the other
multiplier designs. The power consumption
calculations of the Floating Point

Addition/Subtraction were done successfully using
Powerplay Power Analyser Tool in QuartusII
mapping to the target device family CycloneII. It was
observed that the power consumption of all the
multiplier designs were more or less the same. Thus

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

705

the paper comes up with a new multiplier design of
less delay without compromising on the power
consumption.[2]

 The block diagram of 32-bit floating point
addition/subtraction is as shown above

Steps in Floating point Addition/Subtraction

Algorithm:

Step1:

(i) Read the two floating point numbers.

(ii)Subtract the exponents; if sign bit is 1 perform
swapping operation between two mantissas otherwise
no swapping.

(iii) The magnitude of exponent subtraction is used to
shift the mantissa with lower exponent.

Step 2:

(i)This step is performed by 2:1 multiplexer

(ii)The result of mux is exponent A, if sign bit=0 or
exponent B if sign bit=1.This sign bit is obtained from
Step1

Step 3:

(i)The important block of addition subtraction
algorithm is Combinational Control Network.

(ii)This Network determines which operation has to
be performed on the two mantissas

(iii)Depending on two operand sign bits and
add/subtract we can perform different operations for
different combination of inputs

Step 4:

After performing add/subtract of two mantissas,
normalize the result of mantissa and adjust the
exponent.

Fig 2: Flow Chart Representing The Floating Point

Multiplier

Floating point Multiplication & Division:

Floating point multiplication process is much simpler
process compared to addition and subtraction.

Floating Point Multiplication Algorithm:

i. First compute the sign, exponent, mantissa of the
two operands.

ii. The sign bit of the result is obtained by xoring the
sign bits of two operands.

iii. First convert the biased exponents to unbiased
notation, add the exponents and then result of the
exponent should be represented in biased notation.

iv. Multiply the mantissas of two operands and this
result should be normalized that means the mantissa
result should be in the range of [1,4).

v. The result is normalized by shift left, right
correspondingly exponent was adjusted.

vi. After the normalization result is rounded to nearest
value.

Rounding:

 If we multiply the two twenty four bit operands then
the result should be forty eight bits. So we have to
discard extra bits and consider the result in twenty
eight bit format. This process is done using Rounding.

1. 11011010001101010010110 GRS

We consider three extra bits these are
G(guard),R(round),S(sticky).

Floating point division Algorithm:

Non Restoring algorithm is used for division.

i. Read the operands

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

706

ii. Compute exponent of the result by subtracting the
exponents of two operands and the result is biased.

iii. In Non Restoring algorithm first load the register A
to zero, B with divisor and Q with dividend

 The following loop executed ‘n’ number of times
where n is number of dividend or divisor bits

i. Left shift operation is performed on A and Q

ii. If sign bit of A is zero left shift A and Q,subtract A
and M and result is stored in A.and LSB of Q is set
to 1.

iii. If sign bit of A is one left shift A and Q,add A and
M and result is stored in A.and LSB of Q is set to 0.

After executing these statements

If sign bit of A is Zero operation ends otherwise add
A and M.

Fig3: Flow Chart For Non-Restoring Division

Functional Analysis and Synthesis Results:

Addition:

Synthesis Results:

Subtraction:

Synthesis results:

Fig 3: Functional Verification Of Adder

Quartus II Version 9.1 Build 350 03/24/2010
SP 2 SJ Web Edition

Revision Name Floatadd

Top-level Entity Name Floatadd

amily Cyclone II Device EP2C20F484C7

Timing Models Final

Met timing requirements Yes

Total logic elements 414 / 18,752 (2 %)

Total combinational
functions

413 / 18,752 (2 %)

Dedicated logic registers

144 / 18,752 (< 1 %)

 Total registers 144

Total pins 98 / 315 (31 %

Total virtual pins 0

Total memory bits

0 / 239,616 (0 %)

Embedded Multiplier 9-
bit elements

0 / 52 (0 %)

Total PLLs 0 / 4 (0 %)

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

707

Fig 4: Functional Verification Of Subtraction

Multiplication:

Synthesis results:

Quartus II Version 9.1 Build 350
03/24/2010 SP 2 SJ Web
Edition

Revision Name Multiply

Top-level Entity Name Multiply

Family Cyclone II

Device EP2C20F484C7

Timing Models Final

Met timing requirements Yes

Total logic elements 127 / 18,752 (< 1 %)

Total combinational
functions

127 / 18,752 (< 1 %)

 Dedicated logic registers 32 / 18,752 (< 1 %)

Total registers 32

Total pins 97 / 315 (31 %)

Total virtual pins 0

Total memory bits 0 / 239,616 (0 %)

Embedded Multiplier 9-bit
elements

7 / 52 (13 %)

Total PLLs 0 / 4 (0 %)

Fig 5: Functional Verification Of Multiplication

Quartus II Version 9.1 Build 350 03/24/2010
SP 2 SJ Web Edition

Revision Name Floatadd

Top-level Entity Name Floatadd

Family Cyclone II

Device EP2C20F484C7

Timing Models Final

Met timing requirements No

Total logic elements 414 / 18,752 (2 %)

Total combinational
functions

409 / 18,752 (2 %)

Dedicated logic registers 144 / 18,752 (< 1 %)

Total registers 144

Total pins 98 / 315 (31 %)

Total virtual pins 0

Total memory bits 0 / 239,616 (0 %)

Embedded Multiplier 9-bit
elements

0 / 52 (0 %)

Total PLLs 0 / 4 (0 %)

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

708

Division:

Fig 6: Functional Verification Of Division In Model Sim

Power Analysis:

Addition/ Subtraction: Normal:

Quartus II Version 9.1 Build 350
03/24/2010 SP 2
SJ WebEdition

Revision Name Floatadd

Top-level Entity Name Floatadd

Family Cyclone II

Device EP2C20F484C7

Power Models Final

Total Thermal Power
Dissipation

202.18 mW

Core Dynamic Thermal
Power Dissipation

21.48 mW

Core Static
Thermal
Power
Dissipation

47.59 mW

I/O Thermal Power
Dissipation

133.11 mW

Power Estimation
Confidence

Low user
provided
insufficient
toggle rate data

Reduced:

Quartus II Version 9.1 Build 350
03/24/2010 SP 2 SJ
Web Edition

Revision Name Floatadd

Family Cyclone II

Top-level Entity Name Floatadd

Device EP2C20F484C7

Power Models Final

Total Thermal Power
Dissipation

86.00 mW

Core Dynamic Thermal P
Dissipation

5.63 mW

Core Static Thermal Power
Dissipation

47.38 mW

I/O Thermal Power
Dissipation

32.99 mW

Power Estimation
Confidence

Medium user
provided moderately
complete toggle rate
data

Multiplication:Normal.

Quartus II Version

9.1 Build 350
03/24/2010 SP 2 SJ
Web Edition

Revision Name Multi

Top-level Entity Name

Multi

Family Cyclone II

Device EP2C20F484C7

Power Models Final

Total Thermal Power
Dissipation

125.04 mW

Core Dynamic Thermal
Power D

19.15 mW

Core Static Thermal
Power Dissipation

47.45 mW

I/O Thermal Power
Dissipation

58.44 mW

Power Estimation
Confidence

Low: user provided
insufficient toggle
rate data

Journal of Theoretical and Applied Information Technology
 30

th
 June 2014. Vol. 64 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

709

Reduced:

Quartus II Version 9.1 Build 350
03/24/2010 SP 2
SJ Web Edition

Revision Name Multi

Top-level Entity Name Multi

Family Cyclone II

Device EP2C20F484C7

Power Models Final

Total Thermal Power
Dissipation

94.45 mW

Core Dynamic Thermal PD 5.83 mW

Core Static Thermal Power
Dissipation

47.40 mW

I/O Thermal Power
Dissipation

41.22 mW

Power Estimation
Confidence

Medium: user
provided
moderately
complete toggle
rate data

3. CONCLUSION:

All the Floating Point ALU modules are designed
from block diagram approach and we performed
synthesis, functional verification and power analysis
for addition, subtraction and multiplication in Quartus
II Altera and functional simulation for division in
Model Sim. Here we have designed floating point
ALU for normalized inputs; This ALU can also be
extended for performing Square root, exponential and
logarithmic. Even pipelining for above FPU can
increase the efficiency. In order to increase the
accuracy of mantissa we can implement it using IEEE
754 Double Precision Format.

Based on figure 1 to figure 6, the Functional
Verification of various functions of ALU in
ModelSim, Proposed Multiplication takes 25% less
total thermal power dissipation, 88% less core
dynamic thermal power dissipation and 30 % less I/O
thermal power dissipation. Proposed Adder/Subtractor
takes 57% less total thermal power dissipation, 45 %
less core static thermal power dissipation, 73% less
core dynamic thermal power dissipation and 75 % less
I/O thermal power dissipation as per the above results
developed by Quartus II Version 9.1 Build 350

03/24/2010 SP 2 SJ Web Edition for Cyclone II
EP2C20F484C7.

REFRENCES:

 [1] R. Zimmerman, “Efficient VLSI Implementation
of Modulo 2n+1Þ Addition and Multiplication,”
Proc. 14th IEEE Symp. Computer Arithmetic,
pp. 158-167, Apr. 1999.

 [2] H.T. Vergos, C. Efstathiou, and D. Nikolos,
“Diminished-One Modulo 2n+1 Adder Design,”
IEEE Trans. Computers, vol. 51, no. 12, pp.
1389-1399, Dec. 2002.

[3] H.T. Vergos and C. Efstathiou, “Efficient Modulo
2n + 1 Adder Architectures,” Integration, the
VLSI J., vol. 42, no. 2, pp. 149-157, Feb. 2009.

[4] H.T. Vergos, G. Dimitrakopoulos, On modulo 2n
+ 1 adder design, IEEE Trans. Comput. 61 (2)
(2012) 173–186.

[5] S.-H. Lin and M.-H. Sheu, “VLSI Design of
Diminished-One Modulo 2n + 1 Adder Using
Circular Carry Section,” IEEE Trans. Circuits
and Systems II, vol. 55, no. 9, pp. 897-901, Sept.
2008.

[6] Dhanabal R,,Bharathi V,Saira Salim, Bincy
Thomas, Hyma Soman, Dr Sarat Kumar Sahoo
“DESIGN OF 16-BIT LOW POWER ALU -
DBGPU “ ,International Journal of Engineering
and Technology (IJET) 2013.

[7] R Dhanabal,V Bharathi, Anand N, George
Joseph, Suwin Sam Oommen, Dr Sarat Kumar
Sahoo ,"Comparison of Existing Multipliers and
Proposal of a New Design for Optimized
Performance " ,International Journal of
Engineering and Technology (IJET) 2013.

[8] R Dhanabal, Ushashree, " Implementation of a
High Speed Single Precision Floating Point Unit
using Verilog" ,International Journal of
Computer Applications (0975 – 8887),2013.

