
Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

366

AN APPROACH BASED ON BAND TO PREDICT FAULT

LOCALIZATION IN CLOUD ENVIRONMENT

NETHAJI
1
, CHANDRASEKAR

2

1 Research Scholar, Computer Science department, Karpagam University, Eachanari Post,

Coimbatore, Tamilnadu, India.

2 Associate Professor, Computer Science department, Periyar University, Salem, Tamilnadu, India.

E-mail: 1nethaj.babu@gmail.com, 2ccsekar@gmail.com

ABSTRACT

Despite the advancement in software tools and processes, bugs are prevalent in many systems. There is a
need to develop a system with automated means to help reduce software debugging cost. One important
confront in debugging is to restrict the root cause of program failures. GenProg uses an extensive structure
of genetic programming to develop a program variant that retains essential functionality but it is not
vulnerable to a known deficiency. The existing software testing suite identifies program faults in cloud
environment. Structural differencing algorithms and delta debugging minimizes the dissimilarity among
variant and the original program in terms of minimum repair. GenProg are not more sophisticated with the
localization technique and ranking are not performed with different acceptable patches in software testing.
Subsequently, Fault Localization based on Band (FLB) mechanism is introduced to overcome the faults and
rank the different acceptable patches. Fault Localization based on Band outputs an ordered list of program
elements sorted based on their likelihood. Based on the likelihood, the root cause for a set of failures is
identified in cloud environment. Band based fault localization extracts the number of features in standard
cloud that are potentially associated to the usefulness of fault localization in software testing. It builds
machine learning process and these feature values discover out a discriminative model that is significant to
predict the fault localization and effectiveness in ranking. An experimental evaluation is carried out with
the Amazon EC2 dataset to estimate the performance of the proposed FLB mechanism with GenProg.
Performance metric for evaluation of FLB is measured in terms of CPU utilization, percent time overhead,
communication cost, average auditing time, normalized throughput and performance counter.
Keywords: Fault Localization, Amazon EC2 dataset, Genetic programming, Software Testing, Machine

Learning process, Discriminative model, Structural Differencing Algorithms.

1. INTRODUCTION

 Despite the progression in software tools
and processes, bugs are widespread in many
systems. Thus there arises a need to automate
means that help reduce software debugging cost.
One important challenge in software debugging is
to confine the root cause of program failures in
cloud zone.

When a software program fails, it is
frequently rigid to place the faulty program
elements that are dependable for the failure. Nefeli,
a virtual infrastructure gateway in [4] lifts the
restriction and cloud consumers afford deployment
hints on the achievable mapping of VMs to
physical nodes. The hints in [4] include the
collocation and anti-collocation of VMs, the

survival of potential performance bottlenecks, the
existence of underlying hardware features, but the
proximity of certain VM fails to address scalability
issues present in large infrastructures.

Iterative pattern mining without any sub
pattern have the same support. Iterative generators
as demonstrated in [2] is paired with closed patterns
to construct a set of rules expressing forward,
backward, and in-between temporal constraints
surrounded by events in one normal representation.
The utility of the iterative pattern mining fails to
perform the nested pattern data. The root cause
could be positioned far from the location where the
software failure is exhibit, e.g., the location where a
program crashes or produces a wrong output in
cloud environment.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

367

In order to address the high cost of
software debugging in general, and help in
localizing root causes of failures in particular, many
software localization tools in cloud have been
anticipated. These tools typically take in a set of
normal execution traces and another set of faulty
execution traces. Based on these set of software
program execution traces, these tools allocate
dishonesty scores to various program elements.
Next, software program elements could be sorted
based on their dishonesty scores in descending
order. The resultant list of software program
elements can then be presented to a human
debugger to aid in finding the root cause of the set
of failures.

Collaborative provable data possession
scheme as shown in [3] uses the techniques of
Homomorphic demonstrable responses and hash
index hierarchy. Collaborative fails to expand more
effective and practical CPDP constructions. First
performance of CPDP scheme, especially for large
files, is seriously affected by the bilinear mapping
operations because of high complexity. Cooperative
PDP (CPDP) scheme proves the security based on
multi prover zero-knowledge proof system in [10],
which assure unity bit but it is affected by the
bilinear mapping operations due to its high
complexity. Additionally, articulate performance
optimization mechanisms for CPDP scheme present
an efficient method for identifying the parameter
values to reduce the cost involved during
computation of clients and storage service
providers.
 Hierarchical Attribute Set Based
Encryption (HASBE) extended cipher text-policy
Attribute-Set-Based Encryption (ASBE) with a
hierarchical structure of users. The ASBE scheme
as shown in [15] not only attains scalability due to
its hierarchical arrangement, but also inherits
elasticity and fine-grained accesses manage in
supporting compound attributes of ASBE. ASBE
efficiently share confidential data on cloud servers
using Hierarchical Identity Based Encryption
(HIBE) system and the Cipher Text-Policy
Attribute-Based Encryption (CP-ABE) system, and
finally providing performance expressivity trade off
as described in [18].
 Integrating key feature of Hierarchical
Attribute Based Encryption (HABE) and Cipher
Text Policy Attribute Based Encryption (CP-ABE)
system as shown in [19], did not achieved high
performance and fine grained access rate. These
error occur when user revocation scheme have no
longer use of organization. Secure outsourcing
mechanism for solving large-scale systems of

Linear Equations (LE) in [13] applies LU
decomposition to such large-scale LE would be
prohibitively expensive, building the secure LE
outsourcing mechanism via a wholly different
approach. Iterative method is much easier to
execute in practice and only demands
comparatively simpler matrix-vector operations.
 As the necessary bread and butter of data
forensics and post investigation as shown in [7], is
characterized by providing with the information
privacy. The privacy is provided on sensitive
documents stored in cloud, unidentified
authentication on user access, and provenance
tracking on doubtful documents. Preserving the
privacy of intermediate datasets as shown in [17]
becomes a demanding problem since adversaries
recover privacy sensitive information by inspecting
multiple intermediate datasets. Upper-bound
privacy leakage restriction based approach
recognizes intermediate datasets which are
encrypted. As a result, the privacy-preserving cost
is saved whereas the privacy necessity of data
holders is not satisfied.
 Fine-grained access control as shown in
[20] assures the privacy of the data from the cloud
and preserves the privacy of users who are
authorized to access the data. Data access
scalability and fine-grained process is achieved
using PHRs, leverage encrypts each patient’s PHR
file as depicted in [12]. The multiple data owner
scenarios and dividing the users in the PHR system
into several security domains very much reduce the
key management complexity for owners and users.

Cloud scheduler which takes into
consideration the two types of requirements, user
and infrastructure in hand fails to focus extending
trustworthy collection/calculation of the other
properties. The trust measurements performed by
the DC-C fails in identifying the building up
resource’s RCoT and its integrity measurements in
[6]. The problem of assigning a Third Party Auditor
(TPA) as illustrated in [5, 8] proves the model of
integrity for dynamic types of data stored in the
cloud. The foreword of TPA eliminates the
connection of the client through the auditing of
whether data stored in the cloud are definitely
intact, which is important in achieving maximum
scale for Cloud Computing. The most promising
one is a model in which public verifiability is
enforced and does not allow TPA to audit the cloud
data storage without difficult users’ time,
probability or resources.
 Certain types of high decentralized
information accountability framework keep
following the definite handling of the users’ data in

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

368

the cloud. In particular, object-centred approach [9]
that enables surround logging mechanism together
with users’ data and policies fails to confirm the
integrity of the JRE and the authentication of JARs.
A decentralized mechanism for such self-adaptation
as shown in [14], using market-based heuristics
does not enrich CloudSim. Decentralized
mechanism also fails in methodically at these
junctures to observe their consequence on the
combined adaptation.

Greedy heuristics solve the online problem
as illustrated in [11] has numerous natural
applications in the circumstance of self-determining
tasks scheduling or virtual machines allocation.
Resource allocation considers both the offline and
the online versions of the problem. The degree
constraint on the maximal number of clients serves
a realistic form in many contexts. Statistical
Process Control (SPC) charts as exemplified in [16]
identify performance anomalies and differential
profiling to classify their root causes. By
automating the tasks within the framework fails to
expand the scope of automation, based on detailed
analysis of profiling data. Profiling data includes
report generation of probable culprits and expect to
find other areas of software development.

An effective fault localization mechanism
would return a root cause using the apprehensive
list program elements. Although existing method
with fault localization is effective only on some of
the cases, regrettably, for many other cases, fault
localization method are not effectual sufficient.
GenProg as shown in [1] is an automated method
for repairing defects in off-the-shelf, legacy
programs without official condition, program
annotations, or particular coding practices. GenProg
uses an extended form of genetic programming but
not sophisticated with the localization technique
and ranking. Structural differencing algorithms and
delta debugging decrease the difference between
this variant and the unique program to a least
repair. Root causes are often listed low in the
record of most distrustful program elements. The
unreliability of fault localization tools potentially
motive many developers to distrust fault
localization methods.
Fault localization takes as effort of a faulty
program, along with a set of test cases. The faulty
program is instrumented such that when a test case
is run over it, a program band (i.e.,) in the form of
spectrum is generated. A program band records
certain characteristics of a particular program run
and thus it becomes a behavioural signature of the
run. The program band constitutes a set of counters
which record how many times different program

elements are executed in a particular program run.
Alternatively, the counter could record a Boolean
standard that indicates whether a program element
is executed or not. Fault localization task is to
examine program band of correct and faulty runs
with the program elements for effective
performance counter.
 Based on the aforementioned methods and
techniques, an FLB mechanism is presented, plan to
increase the usability of fault localization model by
building a system to predict if a particular output of
a fault localization model is likely to be effective or
not. An output of fault localization model is
effectual if the faulty program component or root
cause is listed among the program elements. With
FLB model, the debuggers is better notified
whether the output trusts of fault localization run on
a set of program execution traces. The FLB
mechanism, contributions define a new research
problem by ranking the different acceptable
patches. Solving the GenProg problem would help
developers to better trust the output of a fault
localization model based on band. A machine
learning framework tackles the research problem by
ranking with different acceptable patches. The set
of features are appropriate for predicting the
usefulness of a fault localization model.

The structure of this paper is as follows. In
Section 2, describe preliminary materials on fault
localization and the diverse form of existing work
with their limitations. In Section 3, present an eye
view of FLB mechanism by outlining the features
extracted from the execution traces and output of
the fault localization model. Section 4 and 5 outline
experiment settings, datasets, and present results
which answer a number of research questions.
Section 6 finally concludes with helpful solution.

2. BAND BASED FAULT LOCALIZATION

MECHANISM

The goal of Fault Localization based on

Band (FLB) mechanism is to build a model that
predict fault in an effective way. To realize FLB,
illustrated in Figure 1.1, Amazon EC2 dataset are
taken for the fault localization in cloud
environment. Information from Amazon EC2
dataset is leveraged to predict fault localization
model with different set of program execution
traces with the fault being localized based on the
band. Band in FLB mechanism depends on the
spectra that contains ordered list of program
elements. The ordered list of program elements in
FLB mechanism are sorted based on the likelihood.
Fault Localization based on Band extracts features

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

369

in cloud that are potentially associated to perform
effective ranking in cloud environment.

Figure 1.1 Overall Architecture Diagram of FLB

Mechanism

In the special case, as depicted in figure
1.1, where all program elements are given the same
dishonest score values, there is a very low
likelihood that the fault localization model is
effective for those execution traces. Fault
localization comprises of two phases namely
instruction phase and operation phase. The
instruction phase output a model that distinguish
effective and ineffective fault localization instances.
The operation phase applies to a number of
unknown fault localization instances and output if
the cases are probable to be effective. Figure 1.2
and Figure 1.3 describe these two phases in more
detail.

Figure1.2 Instruction Phase

 During the instruction phase, a set of fault
localization occasions are taken into account. Some
of these cases are effective and some others are
ineffective. The instruction phase executes two
processes namely feature extraction, and replica
learning. During feature extraction, based on an
instruction data, the feature values that shed light
into certain imperative characteristics are extracted
that potentially distinguish between the effective

and ineffective instances. In the replica learning
process, the feature values of each of the instruction
instances along with the effectiveness tag are used
to build a discriminative model which forecast
whether an unknown fault localization illustration
is effective or not. Each of these cases is
represented by the program band corresponding to
correct and faulty execution traces. A list of
dishonest score values are assigned by the fault
localization model to the program elements. An
effectual tag is assigned if the root cause is of top
five or it is unsuccessful. This discriminative model
is output to the operation phase.

Figure 1.3 Operation Phase

The operation phase consists of feature

extraction and effectiveness in ranking. Moreover,

feature values are extracted from indefinite

instances whose tags, effective or ineffective, are to

be ranked. These values are then fed to the

discriminative model learned in the instruction

phase. The model would then output a ranking.

2.1 Instruction and Operation Phase Feature

Extraction

Instruction and operation phase takes the

feature extract values from input execution traces

and from the outputs fault localization model.

Fifteen features are extracted from the FLB input

execution traces and the remaining thirty features

are extracted from the dishonest score values

output. Let us consider a scenario with fifteen input

features ‘P1’ to ‘P5’ (traces) and ‘E1’ to ‘E10’

(elements) that capture information about program

execution traces and program elements covered by

these execution traces. Features from ‘P1’ to ‘P5’

capture information available for fault localization.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

370

Lesser number of trace points in cloud environment

might cause effective fault localization

performance.

Features ‘E1’ to ‘E4’ capture the

information on program elements that are covered

by the execution traces. Higher the number of

program elements, the more simplicity to localize

the faults and likely to compare and differentiate

the elements. With more program elements, the

faulty program element is assigned with the same

or lower dishonest score values than the other

program elements for easy diagnosis Feature ‘E5’

in input execution traces captures certain program

elements that appear in faults. Feature ‘E6’ captures

the opposite which indicate omission errors where

some program elements have to be executed.

Features ‘E7’ to ‘E10’ capture the two highest

proportions of failures provided by one program

element. Intuitively, the higher the proportion of

failures that passes a program element, the more

likely it is the root cause.

 The next thirty output features capture the

dishonest scores from FLB mechanism. Output

features of FLB from ‘D1’ to ‘D10’ capture the top

dishonest score values. If the dishonest score value

are too low, intuitively it is less likely for a fault

localization instance to be effective. Features ‘S1’

to ‘S6’ evaluate simple information of the top 10

dishonest score values. FLB mechanism with ‘S’

series serve as information summary of the score.

Features ‘B1’ to ‘B11’ and ‘C1’ to ‘C3’ are aimed

to capture a break and perform relative difference in

the top 10 dishonest score values. The break from

‘B1’ to ‘B11’ is able to localize the faults in FLB

and differentiate some program elements to be

significantly more dishonest score than the others.

This might indicate that some of the top 10 program

elements are probably to be the root cause and able

to differentiate elements in effective way.

2.2 Instruction Phase Replica Learning

The instruction phase serves as the inputs

to replica learning from feature extraction, set of

instruction instances with their effectiveness tags.

Each of the instances is represented as 40 feature

values produced by the feature extraction process as

described in Section A. The goal of the replica

learning process is to convert these set of feature

vectors into a discriminative model that could

predict the effectiveness tag of a fault localization

instance whose effectiveness is unknown. The

chosen Utmost Subsidiary Hyperplane (USH)

separates two classes of information (i.e., fault and

faultless). For example, consider an instruction

phase with Amazon EC2 dataset in form of

 ���, �� Eqn (1)

Where, ��� is the feature vector of the ���

instruction data instance and �� represents tag of

data instance (�� ∈ {+1, −1}). The problem of
searching for a separating Hyperplane with utmost
subsidiary is reduced to finding the minimal value.
The minimum value is represented as

�
� ���� �

�
�	��

�
 ���
 ��� Eqn (2)

Which, satisfies the constrains,

 �����. ���
 � � 1 Eqn (3)

 Where, �� is perpendicular to the separating

Hyperplane and n is the number of attributes and c

is a constant number indicates position of the

Hyperplane in cloud space.

2.3 Operation Phase of FLB for effective

ranking

 The discriminative model learned in the

replica learning of instruction phase ranks the

instances (i.e., fault localization) whether it is

effective or not. The unknown instance needs to be

transformed a set of feature values using the feature

extraction process. These feature values are then

compared with the replica and the rank is obtained.

The feature vector balances with the Hyperplane

that separates effective and ineffective instruction

instances. The feature vector is extracted according

to the side of the Hyperplane, the corresponding

instance is assigned with ranking tags. FLB pseudo

code is shown below

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

371

Begin

Procedure Feature extraction with Replica Learning

Input: List of execution traces ‘P’ and elements ‘E’

Output: Discriminative Model with output score

value ‘D’, ‘S’ ‘C’ and ‘B’

1: If P<E

2: Identify the similarity between the instances

 Similarity of the two vectors

∑ ���∗�����
���

�∑ ��
�∗∑ �����

�

��

�

// Feature Extraction

3: Let the feature extracted based on Input P1 to P5

(traces) and E1 to E4 (elements)

4: Let the features extracted be obtained through

‘E5 to ‘E10’

5: Output features capture the top 10 dishonest

scores

6: Let S1- number of distinct score value; S2-

Mean; S3-Median; S4- Mode; S5-Variance; S6-

Standard Deviation

// Replica Learning

7: Repeat

8: Using Utmost Subsidiary Hyperplane (USH)

perform replica learning

9: Until [Hyperplane satisfies the constrains,

�����. ���
 ��
// Ranking

10: Ranks with instances whether effective or not

11: Feature Vector extracted according to side of

hyperplane and accordingly assigned with tags

12: End

In the case of FLB pseudo code, takes as input a set

of effective fault localization instances ‘P’ and ‘E’.

If the program execution traces is lesser than the

program elements, the feature extraction phase is

performed. The replacement effective instances

appear close to the Hyperplane are effectual

instances while the others are the ineffective

instances. In order to find these effective instances,

the similarity between each effective instance is

evaluated with each of the ineffective instances.

Each fault localization instance viewed as a 40-

dimensional cloud vector and each dimension is a

feature and a localization instance is represented by

the values of the 40 features.

3. EXPERIMENTAL EVALUATION SET-UP

OF FLB MECHANISM

The performance of Fault Localization

based on Band (FLB) mechanism is evaluated using

JAVA with Hadoop. For evaluation purpose,

comparison is performed on the FLB mechanism

with the existing GenProg. Hadoop is an open

source accomplishment of the construction for

large-scale parallel data processing. Hadoop is

distinction in research and data mining, so it is

important to appreciate its runtime activities,

pattern formation and analyze its performance. An

experimental evaluation of FLB mechanism and

Genprog is carried out with the Amazon EC2

dataset to estimate the performance. Amazon

Elastic Compute Cloud (Amazon EC2) presents

resizable calculating capability in the Amazon Web

Services (AWS) cloud.

Amazon EC2 provides a broad

compilation of instance types optimized on top

form diverse use cases. Instance types include

untrustworthy mixtures of memory, CPU, storage,

and networking capability and present the litheness

to decide the suitable mix of resources for the

required applications. Every instance type

comprises one or more example ranges, permitting

to improve the resources to the supplies of the

target workload. Performance metric for evaluation

of FLB mechanism is measured in terms of percent

time overhead, CPU utilization, performance

counter, communication cost, normalized

throughput, precision matchmaking, and average

auditing time.

4. PERFORMANCE RESULT OF FAULT

LOCALIZATION IN CLOUD

ENVIRONMENT

 Fault Localization based on Band (FLB)

mechanism is compared against the existing

Genetic Programming (GenProg) using the JAVA

programming. Time overhead is the processing

time required by a device (i.e.,) FLB mechanism

prior to the execution of a program elements in

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

372

instruction phase is measured in terms of

percentage (%). CPU utilization refers to a usage of

processing resources for fault localization. Actual

CPU utilization in FLB varies depending on the

amount and type of managed computing tasks.

Certain tasks require heavy CPU time, while others

require less because of non-CPU resource

requirements, measured in terms of Mega Bytes

(MB).

 Performance counter is the effective result

obtained on the overall system. The average

amount of system memory used by the database

manager is to hold commonly used information

from the FLB mechanism to prevent file operations.

Communication cost is defined as the rate it takes

to identify the faults using the fault localization

based on band, measured in terms of Kilo Bytes

(KB).

��,�	
	�������������

Where,��,� signifies the communication cost of

program input trace ‘i’ for the program elements

‘r’. �� represent the processing capability of

program elements in the FLB mechanism.

Throughput is the standard rate of successful fault

identification in cloud environment, measured in

terms of Kilo bits per second (Kbps). Precision

matchmaking in the FLB mechanism is the fraction

of retrieved instances that are related to the overall

system output.

��������	������ ��!

� 	
∑#�$�	������%�

∑&��'(���)$����	������%�	%�'$�

 Average auditing time is the average

amount of time consumed to inspect the fault from

the effective and ineffective group based on the

Utmost Subsidiary Hyperplane and measured in

terms of seconds (sec). Table 4.1 shows the

experimental values and graph illustrates the

graphic form of FLB mechanism against GenProg.

Table 4.1 Tabulation of Percent Time Overhead

Sample Periods Percent Time Overhead (%)

Existing
Genetic

Programmin
g

FLB
Mechanism

2 31 29

4 39 36

6 42 40

8 43 41

10 45 42

12 46 44

14 48 45

16 53 50

Figure 4.1 Percent Time Overhead Measure

Table 4.1 and Figure 4.1 describe the time

overhead based on the sample periods observed in

FLB mechanism and existing genetic programming.

As the sample period increases, time overhead is

reduced to 4 – 7 % in FLB mechanism when

compared with the genetic programming. This is

because of the reason that lesser number of trace

points in cloud environment reduce the time

overhead in FLB mechanism, when compared with

the Genetic programming. With FLB model, the

debuggers is better notified whether the output

trusts of fault localization run on a set of program

execution traces.

0

20

40

60

2 6 10 14

P
e

rc
e

n
t

T
im

e
 O

v
e

rh
e

a
d

 (
%

)

Sample Periods

Existing

Genetic

Programming

FLB

Mechanism

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

Table 4.2 Tabulation for CPU Utilization

No. of Faults

Localized
CPU Utilization (MB)

 Existing

Genetic

Programming

FLB

Mechanism

5 15.25 14

10 16.1 14.65

15 17.5 16.21

20 18.85 16.95

25 20.28 18.85

30 21.36 19.54

Figure 4.2 CPU Utilization Measure

 Table 4.2 and Figure 4.2 describe CPU

utilization of FLB mechanism and genetic

programming is measured on the Amazon EC2

dataset. The CPU utilization is reduced in FLB

using the machine learning framework. The set of

features are appropriate for predicting the

usefulness with minimal CPU resource utilization.

As the fault counting ranges from 5, 10…30, CPU

utilization is reduced in FLB mechanism.

Utilization of CPU resources in FLB is 8 – 10 %

lesser when compared with the existing genetic

programming.

Table 4.3 Tabulation of Performance Counter

Problem Size

(Bytes)
Performance Counter (%)

 Existing

Genetic

Programmi

ng

FLB

Mechanism

235 82 90

289 83 91

315 85 93

354 81 92

450 83 92

565 86 97

642 88 98

 Table 4.3 describes the performance

counter based on the size of information. Size is

measured in terms of Kilo Bytes (KB). As the size

increases, the performance count is also improved

in FLB mechanism.

Figure 4.3 Performance Counter Measure

 Figure 4.3 describes the performance

counter of the FLB mechanism and genetic

programming. The FLB mechanism performance

result is approximately 8 – 11 % higher when

compared with the genetic programming because

the FLB mechanism uses band usage for fault

localization that improves the performance range

and the band in FLB mechanism depends on the

spectra which uses the ordered list of program

elements. The ordered list of program elements in

0

5

10

15

20

25

5 10 15 20 25 30

C
P

U
 U

ti
li

za
ti

o
n

 (
M

B
)

No.of Faults Localized

Existing

Genetic

Programming

FLB

Mechanism

0

20

40

60

80

100

235 315 450 642

P
e

rf
o

rm
a

n
ce

 C
o

u
n

te
r

(%
)

Problem Size (Bytes)

Existing

Genetic

Programming

FLB

Mechanism

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

FLB mechanism are sorted based on the likelihood,

to still improve the performance rate when

compared with genetic programming.

Table 4.4 Tabulation of Communication Cost

Size of File

(KB)
Communication Cost (KB)

Existing

Genetic

Programmi

ng

FLB

Mechanism

200 262 223

400 245 210

600 366 325

800 388 338

1000 445 392

1200 555 495

1400 670 596

Figure 4.4 Measure of Communication Cost

 Table 4.4 and Figure 4.4 describes the

communication cost based on file size, whereas the

file size is measured in terms of Kilo bytes (KB).

The file size ranges from 200, 400, 600 up to 1400

KB. As the size increases, the communication cost

incurred using FLB mechanism is reduced to 12 –

20 % when compared with the genetic

programming [1]. The reduced communication cost

is due to the fact that the application of Utmost

Subsidiary Hyperplane separates two classes of

information, resulting in the communication cost

reduced in FLB.

Table 4.5 Tabulation of Normalized Throughput

No. of users Normalized

Throughput(Kbps) Existing

Genetic

Programmi

ng

FLB

Mechanism

3 2000 2500

6 2150 2600

9 2230 2800

12 2460 2920

15 2510 2990

18 2750 3265

21 3010 3620

 Table 4.5 describes normalized throughput

based on the users. At the same time, if the user

count increases, throughput is improved. The

normalized throughput of FLB mechanism and

genetic programming is illustrated through the

graph given below.

Figure 4.5 Measure of Normalized Throughput

 Figure 4.5 illustrates the normalized

throughput, where FLB mechanism is 15 – 22 %

improved when compared with the genetic

programming [1]. The FLB mechanism uses replica

to convert these set of feature vectors into a

discriminative model that predict the effectiveness

with normalized throughput using FLB mechanism.

Replica learning from instruction phase used the

Amazon EC2 dataset for the evaluation of

throughput.

0

200

400

600

800

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
st

 (
K

B
)

Size of File (KB)

Existing

Genetic

Programming

FLB

Mechanism

0

1000

2000

3000

4000

3 9 15 21

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

(K
b

p
s)

No.of users

Existing

Genetic

Programming

FLB

Mechanism

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

Table 4.6 Tabulation of Precision Matchmaking

Information

Size (Bytes)
Precision Matchmaking

(%) Existing

Genetic

Programmi

ng

FLB

Mechanism

33 78 90

65 79 91

94 80 92

121 82 93

156 82 96

184 83 95

215 86 97

249 87 98

 Table 4.6 describes precision

matchmaking effectively in FLB mechanism and
genetic programming based on the information size.

Figure 4.6 Measure of Precision Matchmaking

 Figure 4.6 describes the precision
matchmaking on FLB mechanism and genetic
programming. As the information size varies, the
precision matchmaking is 10 – 15 % improved in
FLB due to the similarity between the instances is

identified
∑ ���∗�����

���

�∑ ���∗∑ �����

�

��

�

 using the 40 features.

Each fault localization instance viewed as a 40
dimensional cloud vector matches the relevance
effectively in FLB when compared with the genetic
programming.

Table4.7 Tabulation of Average Auditing Time

No. of users Average Auditing Time

(sec) Existing

Genetic

Programmi

ng

FLB

Mechanism

10 119 112

20 127 122

30 149 142

40 156 148

50 167 158

60 171 163

 Table 4.7 describes the average auditing

time based on the users. The users count ranges

from 10, 20, 30…. 70, average auditing time is

reduced in FLB mechanism when compared with

the genetic programming.

Figure 4.7 Measure of Average Auditing Time

 Figure 4.7 describes the average auditing

time based on the users. Top dishonest score values

serve as the information summary of the score in

FLB mechanism when compared with the Genetic

programming. The FLB mechanism consumes 5 –

10 % lesser auditing time when compared with the

Genetic programming. The break form from output

features capture the dishonest scores and able to

audit by localize the faults with minimal time.

 Finally, it is being observed that the

contributions define a new research problem by

ranking the different acceptable patches. Solving

0

50

100

33 94 156 215P
re

ci
si

o
n

 M
a

tc
h

m
a

k
in

g

(%
)

Information Size (Bytes)

Existing

Genetic

Programming

FLB

Mechanism

0

50

100

150

200

10 20 30 40 50 60

A
v

e
ra

g
e

 A
u

d
it

in
g

 T
im

e
 (

se
c)

No.of users

Existing

Genetic

Programming

FLB

Mechanism

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

the GenProg problem would help developers to

better trust the output of fault localization model

based on band. FLB mechanism builds machine

learning process and these feature values discover

out discriminative model to predict the fault

localization and obtain the effectiveness in ranking.

5. CONCLUSION

 Fault Localization based on Band

mechanism address the faults and rank the effective

group of 40 features. The values of these features

from an instruction set of faulty localization build a

discriminative model using machine learning. FLB

extracts the features in cloud that are potentially

associated for effective ranking. The FLB

mechanism is then used as an ordered list of

program elements sorted based on their likelihood.

The techniques normally change program runtime

states methodically to localize faulty program

elements. FLB focus on fault localization tools that

compare correct and faulty executions. The FLB

machine learning process and these feature values

discover out a discriminative model that predict the

fault localization and effectiveness in ranking. The

experimental result of FLB mechanism using

Amazon EC2 dataset estimates the performance of

localizing the faults. FLB attains normalized

throughput, precision matchmaking, improved

performance counter, approximately 5.85 % lesser

percent time overhead, minimal CPU utilization,

communication cost and auditing time.

REFERENCES:

[1] Claire Le Goues, ThanhVu Nguyen, Stephanie
Forrest., and Westley Weimer, “GenProg: A
Generic Method for Automatic Software
Repair,” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL.38, NO.1,

 JANUARY/FEBRUARY 2012

[2] David Lo., Jinyan Li., Limsoon Wong., and

 Siau-Cheng Khoo., “Mining Iterative Generators

 and Representative Rules for Software

 Specification

 Discovery,” IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING,
VOL. 23, NO. 2, FEBRUARY 2011

[3] YAN ZHU., SHANBIAO WANG., HONGXIN
HU GAIL-JOON AHN., DI MA., “SECURE
COLLABORATIVE INTEGRITY
VERIFICATION FOR HYBRID CLOUD
ENVIRONMENTS,” World Scientific
Publishing Company., International Journal of
Cooperative Information Systems, DOI:
10.1142/S0218843012410018., Vol. 21, No. 3
(2012)

[4] Konstantinos Tsakalozos., Mema Roussopoulos.,
and Alex Delis., “Hint-Based Execution of
Workloads in Clouds with Nefeli,” IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 24, NO. 7,
JULY 2013

[5] Qian Wang., Cong Wang., Kui Ren., Wenjing
Lou., and Jin Li., “Enabling Public Auditability
and Data Dynamics for Storage Security in
Cloud Computing,” IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 22, NO. 5, MAY 2011

[6] Imad M. Abbadi., and Anbang Ruan., “Towards
Trustworthy Resource Scheduling in Clouds,”
IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, VOL. 8, NO.
6, JUNE 2013

[7] Rongxing Lu., Xiaodong Lin., Xiaohui Liang.,
and Xuemin (Sherman) Shen., “Secure
Provenance: The Essential of Bread and Butter
of Data Forensics in Cloud Computing,” ACM
journal., 2010

[8] Balakrishnan.S., Saranya.G., Shobana.S.,
Karthikeyan.S., “Introducing Effective Third
Party Auditing (TPA) for Data Storage Security
in Cloud,” IJCST Vol. 2, Issue 2, 2011

[9] Smitha Sundareswaran., Anna C. Squicciarini.,
and Dan Lin., “Ensuring Distributed
Accountability for Data Sharing in the Cloud,”
IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, VOL. 9, NO. 4,
JULY/AUGUST 2012

[10] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, Senior
Member, IEEE, Mengyang Yu “Cooperative
Provable Data Possession for Integrity
Verification in Multi-Cloud Storage,” IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, 2012

[11] Olivier Beaumont., Lionel Eyraud-Dubois., and
Hejer Rejeb., “Heterogeneous Resource
Allocation under Degree Constraints,” IEEE

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS., 2012

[12] Ming Li., Shucheng Yu., Yao Zheng., Kui Ren,
and Wenjing Lou., “Scalable and Secure
Sharing of Personal Health Records in Cloud
Computing using Attribute-based Encryption,”
IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, 2012

[13] Cong Wang, Kui Ren, Jia Wang., and Qian
Wang., “Harnessing the Cloud for Securely
Outsourcing Large-scale Systems of Linear
Equations,” IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS,
2012

[14] Vivek Nallur., Rami Bahsoon., “A
Decentralized Self-Adaptation Mechanism For
Service-Based Applications in The Cloud,”
IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 2012

[15] Zhiguo Wan., June Liu., and Robert H. Deng.,
“HASBE: A Hierarchical Attribute-Based
Solution for Flexible and Scalable Access
Control in Cloud Computing,” IEEE
TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, VOL. 7, NO.
2, APRIL 2012 743

[16] Xuyun Zhang., Chang Liu., Surya Nepal., Suraj
Pandey., Jinjun Chen., “A Privacy Leakage
Upper-bound Constraint based Approach for
Cost-effective Privacy Preserving of
Intermediate Datasets in Cloud,” IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, TPDSSI-2012

[17] Donghun Lee., Sang K. Cha., and Arthur H.
Lee., “A Performance Anomaly Detection and
Analysis Framework for DBMS Development,”
IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, VOL. 24, NO.
8, AUGUST 2012

[18] Guojun Wang, Qin Liu., Jie Wu., “Hierarchical
Attribute-Based Encryption for Fine-Grained
Access Control in Cloud Storage Services,”
ACM Journal, 2010

[19] Mr. Shashikant Govind Vaidya., Prof. Mr.
Shailesh Kisan Hule., Mr. Gaurav Balvant
Dagade., Mr. Sharad Arjun Jadhav., “HABE
(Hierarchical Attribute Based Encryption)
Model for Supporting Dynamic structure of
Organization,” Proc. of the Second International
Conference on Advances in Computing, Control
and Communication (CCN)., 2012

[20] Mohamed Nabeel., Elisa Bertino., “Privacy-
Preserving Fine-Grained Access Control in
Public Clouds,” IEEE Computer Society
Technical Committee on Data Engineering,
2012

