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ABSTRACT 

 
Despite the advancement in software tools and processes, bugs are prevalent in many systems. There is a 
need to develop a system with automated means to help reduce software debugging cost. One important 
confront in debugging is to restrict the root cause of program failures. GenProg uses an extensive structure 
of genetic programming to develop a program variant that retains essential functionality but it is not 
vulnerable to a known deficiency. The existing software testing suite identifies program faults in cloud 
environment. Structural differencing algorithms and delta debugging minimizes the dissimilarity among 
variant and the original program in terms of minimum repair. GenProg are not more sophisticated with the 
localization technique and ranking are not performed with different acceptable patches in software testing. 
Subsequently, Fault Localization based on Band (FLB) mechanism is introduced to overcome the faults and 
rank the different acceptable patches. Fault Localization based on Band outputs an ordered list of program 
elements sorted based on their likelihood. Based on the likelihood, the root cause for a set of failures is 
identified in cloud environment. Band based fault localization extracts the number of features in standard 
cloud that are potentially associated to the usefulness of fault localization in software testing. It builds 
machine learning process and these feature values discover out a discriminative model that is significant to 
predict the fault localization and effectiveness in ranking. An experimental evaluation is carried out with 
the Amazon EC2 dataset to estimate the performance of the proposed FLB mechanism with GenProg. 
Performance metric for evaluation of FLB is measured in terms of CPU utilization, percent time overhead, 
communication cost, average auditing time, normalized throughput and performance counter. 
Keywords: Fault Localization, Amazon EC2 dataset, Genetic programming, Software Testing, Machine 

Learning process, Discriminative model, Structural Differencing Algorithms. 

 

1. INTRODUCTION 

 Despite the progression in software tools 
and processes, bugs are widespread in many 
systems. Thus there arises a need to automate 
means that help reduce software debugging cost. 
One important challenge in software debugging is 
to confine the root cause of program failures in 
cloud zone.  

When a software program fails, it is 
frequently rigid to place the faulty program 
elements that are dependable for the failure. Nefeli, 
a virtual infrastructure gateway in [4] lifts the 
restriction and cloud consumers afford deployment 
hints on the achievable mapping of VMs to 
physical nodes. The hints in [4] include the 
collocation and anti-collocation of VMs, the 

survival of potential performance bottlenecks, the 
existence of underlying hardware features, but the 
proximity of certain VM fails to address scalability 
issues present in large infrastructures. 

Iterative pattern mining without any sub 
pattern have the same support. Iterative generators 
as demonstrated in [2] is paired with closed patterns 
to construct a set of rules expressing forward, 
backward, and in-between temporal constraints 
surrounded by events in one normal representation. 
The utility of the iterative pattern mining fails to 
perform the nested pattern data. The root cause 
could be positioned far from the location where the 
software failure is exhibit, e.g., the location where a 
program crashes or produces a wrong output in 
cloud environment. 
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In order to address the high cost of 
software debugging in general, and help in 
localizing root causes of failures in particular, many 
software localization tools in cloud have been 
anticipated. These tools typically take in a set of 
normal execution traces and another set of faulty 
execution traces. Based on these set of software 
program execution traces, these tools allocate 
dishonesty scores to various program elements. 
Next, software program elements could be sorted 
based on their dishonesty scores in descending 
order. The resultant list of software program 
elements can then be presented to a human 
debugger to aid in finding the root cause of the set 
of failures. 

Collaborative provable data possession 
scheme as shown in [3] uses the techniques of 
Homomorphic demonstrable responses and hash 
index hierarchy. Collaborative fails to expand more 
effective and practical CPDP constructions. First 
performance of CPDP scheme, especially for large 
files, is seriously affected by the bilinear mapping 
operations because of high complexity. Cooperative 
PDP (CPDP) scheme proves the security based on 
multi prover zero-knowledge proof system in [10], 
which assure unity bit but it is affected by the 
bilinear mapping operations due to its high 
complexity. Additionally, articulate performance 
optimization mechanisms for CPDP scheme present 
an efficient method for identifying the parameter 
values to reduce the cost involved during 
computation of clients and storage service 
providers. 
  Hierarchical Attribute Set Based 
Encryption (HASBE) extended cipher text-policy 
Attribute-Set-Based Encryption (ASBE) with a 
hierarchical structure of users. The ASBE scheme 
as shown in [15] not only attains scalability due to 
its hierarchical arrangement, but also inherits 
elasticity and fine-grained accesses manage in 
supporting compound attributes of ASBE. ASBE 
efficiently share confidential data on cloud servers 
using Hierarchical Identity Based Encryption 
(HIBE) system and the Cipher Text-Policy 
Attribute-Based Encryption (CP-ABE) system, and 
finally providing performance expressivity trade off 
as described in [18].  
 Integrating key feature of Hierarchical 
Attribute Based Encryption (HABE) and Cipher 
Text Policy Attribute Based Encryption (CP-ABE) 
system as shown in [19], did not achieved high 
performance and fine grained access rate. These 
error occur when user revocation scheme have no 
longer use of organization. Secure outsourcing 
mechanism for solving large-scale systems of 

Linear Equations (LE) in [13] applies LU 
decomposition to such large-scale LE would be 
prohibitively expensive, building the secure LE 
outsourcing mechanism via a wholly different 
approach. Iterative method is much easier to 
execute in practice and only demands 
comparatively simpler matrix-vector operations. 
  As the necessary bread and butter of data 
forensics and post investigation as shown in [7], is 
characterized by providing with the information 
privacy. The privacy is provided on sensitive 
documents stored in cloud, unidentified 
authentication on user access, and provenance 
tracking on doubtful documents. Preserving the 
privacy of intermediate datasets as shown in [17] 
becomes a demanding problem since adversaries 
recover privacy sensitive information by inspecting 
multiple intermediate datasets. Upper-bound 
privacy leakage restriction based approach 
recognizes intermediate datasets which are 
encrypted. As a result, the privacy-preserving cost 
is saved whereas the privacy necessity of data 
holders is not satisfied. 
 Fine-grained access control as shown in 
[20] assures the privacy of the data from the cloud 
and preserves the privacy of users who are 
authorized to access the data. Data access 
scalability and fine-grained process is achieved 
using PHRs, leverage encrypts each patient’s PHR 
file as depicted in [12]. The multiple data owner 
scenarios and dividing the users in the PHR system 
into several security domains very much reduce the 
key management complexity for owners and users. 

Cloud scheduler which takes into 
consideration the two types of requirements, user 
and infrastructure in hand fails to focus extending 
trustworthy collection/calculation of the other 
properties. The trust measurements performed by 
the DC-C fails in identifying the building up 
resource’s RCoT and its integrity measurements in 
[6]. The problem of assigning a Third Party Auditor 
(TPA) as illustrated in [5, 8] proves the model of 
integrity for dynamic types of data stored in the 
cloud. The foreword of TPA eliminates the 
connection of the client through the auditing of 
whether data stored in the cloud are definitely 
intact, which is important in achieving maximum 
scale for Cloud Computing. The most promising 
one is a model in which public verifiability is 
enforced and does not allow TPA to audit the cloud 
data storage without difficult users’ time, 
probability or resources. 
 Certain types of high decentralized 
information accountability framework keep 
following the definite handling of the users’ data in 
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the cloud. In particular, object-centred approach [9] 
that enables surround logging mechanism together 
with users’ data and policies fails to confirm the 
integrity of the JRE and the authentication of JARs. 
A decentralized mechanism for such self-adaptation 
as shown in [14], using market-based heuristics 
does not enrich CloudSim. Decentralized 
mechanism also fails in methodically at these 
junctures to observe their consequence on the 
combined adaptation. 

Greedy heuristics solve the online problem 
as illustrated in [11] has numerous natural 
applications in the circumstance of self-determining 
tasks scheduling or virtual machines allocation. 
Resource allocation considers both the offline and 
the online versions of the problem. The degree 
constraint on the maximal number of clients serves 
a realistic form in many contexts. Statistical 
Process Control (SPC) charts as exemplified in [16] 
identify performance anomalies and differential 
profiling to classify their root causes. By 
automating the tasks within the framework fails to 
expand the scope of automation, based on detailed 
analysis of profiling data. Profiling data includes 
report generation of probable culprits and expect to 
find other areas of software development. 

An effective fault localization mechanism 
would return a root cause using the apprehensive 
list program elements. Although existing method 
with fault localization is effective only on some of 
the cases, regrettably, for many other cases, fault 
localization method are not effectual sufficient. 
GenProg as shown in [1] is an automated method 
for repairing defects in off-the-shelf, legacy 
programs without official condition, program 
annotations, or particular coding practices. GenProg 
uses an extended form of genetic programming but 
not sophisticated with the localization technique 
and ranking. Structural differencing algorithms and 
delta debugging decrease the difference between 
this variant and the unique program to a least 
repair. Root causes are often listed low in the 
record of most distrustful program elements. The 
unreliability of fault localization tools potentially 
motive many developers to distrust fault 
localization methods.  
Fault localization takes as effort of a faulty 
program, along with a set of test cases. The faulty 
program is instrumented such that when a test case 
is run over it, a program band (i.e.,) in the form of 
spectrum is generated. A program band records 
certain characteristics of a particular program run 
and thus it becomes a behavioural signature of the 
run. The program band constitutes a set of counters 
which record how many times different program 

elements are executed in a particular program run.  
Alternatively, the counter could record a Boolean 
standard that indicates whether a program element 
is executed or not. Fault localization task is to 
examine program band of correct and faulty runs 
with the program elements for effective 
performance counter. 
      Based on the aforementioned methods and 
techniques, an FLB mechanism is presented, plan to 
increase the usability of fault localization model by 
building a system to predict if a particular output of 
a fault localization model is likely to be effective or 
not. An output of fault localization model is 
effectual if the faulty program component or root 
cause is listed among the program elements. With 
FLB model, the debuggers is better notified 
whether the output trusts of fault localization run on 
a set of program execution traces. The FLB 
mechanism, contributions define a new research 
problem by ranking the different acceptable 
patches. Solving the GenProg problem would help 
developers to better trust the output of a fault 
localization model based on band. A machine 
learning framework tackles the research problem by 
ranking with different acceptable patches. The set 
of features are appropriate for predicting the 
usefulness of a fault localization model. 

The structure of this paper is as follows. In 
Section 2, describe preliminary materials on fault 
localization and the diverse form of existing work 
with their limitations. In Section 3, present an eye 
view of FLB mechanism by outlining the features 
extracted from the execution traces and output of 
the fault localization model. Section 4 and 5 outline 
experiment settings, datasets, and present results 
which answer a number of research questions. 
Section 6 finally concludes with helpful solution.  
  

2. BAND BASED FAULT LOCALIZATION 

MECHANISM 

 
The goal of Fault Localization based on 

Band (FLB) mechanism is to build a model that 
predict fault in an effective way. To realize FLB, 
illustrated in Figure 1.1, Amazon EC2 dataset are 
taken for the fault localization in cloud 
environment.  Information from Amazon EC2 
dataset is leveraged to predict fault localization 
model with different set of program execution 
traces with the fault being localized based on the 
band. Band in FLB mechanism depends on the 
spectra that contains ordered list of program 
elements. The ordered list of program elements in 
FLB mechanism are sorted based on the likelihood. 
Fault Localization based on Band extracts features 
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in cloud that are potentially associated to perform 
effective ranking in cloud environment.  

 

 
 

Figure 1.1 Overall Architecture Diagram of FLB 

Mechanism 

 

In the special case, as depicted in figure 
1.1, where all program elements are given the same 
dishonest score values, there is a very low 
likelihood that the fault localization model is 
effective for those execution traces. Fault 
localization comprises of two phases namely 
instruction phase and operation phase. The 
instruction phase output a model that distinguish 
effective and ineffective fault localization instances. 
The operation phase applies to a number of 
unknown fault localization instances and output if 
the cases are probable to be effective. Figure 1.2 
and Figure 1.3 describe these two phases in more 
detail. 
 

 
 

Figure1.2 Instruction Phase 
 

 During the instruction phase, a set of fault 
localization occasions are taken into account. Some 
of these cases are effective and some others are 
ineffective. The instruction phase executes two 
processes namely feature extraction, and replica 
learning. During feature extraction, based on an 
instruction data, the feature values that shed light 
into certain imperative characteristics are extracted 
that potentially distinguish between the effective 

and ineffective instances. In the replica learning 
process, the feature values of each of the instruction 
instances along with the effectiveness tag are used 
to build a discriminative model which forecast 
whether an unknown fault localization illustration 
is effective or not. Each of these cases is 
represented by the program band corresponding to 
correct and faulty execution traces. A list of 
dishonest score values are assigned by the fault 
localization model to the program elements. An 
effectual tag is assigned if the root cause is of top 
five or it is unsuccessful. This discriminative model 
is output to the operation phase. 

 

 
 

Figure 1.3 Operation Phase 

The operation phase consists of feature 

extraction and effectiveness in ranking. Moreover, 

feature values are extracted from indefinite 

instances whose tags, effective or ineffective, are to 

be ranked. These values are then fed to the 

discriminative model learned in the instruction 

phase. The model would then output a ranking. 

 

2.1 Instruction and Operation Phase Feature 

Extraction  

Instruction and operation phase takes the 

feature extract values from input execution traces 

and from the outputs fault localization model. 

Fifteen features are extracted from the FLB input 

execution traces and the remaining thirty features 

are extracted from the dishonest score values 

output. Let us consider a scenario with fifteen input 

features ‘P1’ to ‘P5’ (traces) and ‘E1’ to ‘E10’ 

(elements) that capture information about program 

execution traces and program elements covered by 

these execution traces. Features from ‘P1’ to ‘P5’ 

capture information available for fault localization. 
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Lesser number of trace points in cloud environment 

might cause effective fault localization 

performance.  

Features ‘E1’ to ‘E4’ capture the 

information on program elements that are covered 

by the execution traces. Higher the number of 

program elements, the more simplicity to localize 

the faults and likely to compare and differentiate 

the elements. With more program elements, the 

faulty program element is assigned with the same 

or lower dishonest score values than the other 

program elements for easy diagnosis Feature ‘E5’ 

in input execution traces captures certain program 

elements that appear in faults. Feature ‘E6’ captures 

the opposite which indicate omission errors where 

some program elements have to be executed. 

Features ‘E7’ to ‘E10’ capture the two highest 

proportions of failures provided by one program 

element. Intuitively, the higher the proportion of 

failures that passes a program element, the more 

likely it is the root cause. 

 The next thirty output features capture the 

dishonest scores from FLB mechanism. Output 

features of FLB from ‘D1’ to ‘D10’ capture the top 

dishonest score values. If the dishonest score value 

are too low, intuitively it is less likely for a fault 

localization instance to be effective. Features ‘S1’ 

to ‘S6’ evaluate simple information of the top 10 

dishonest score values. FLB mechanism with ‘S’ 

series serve as information summary of the score. 

Features ‘B1’ to ‘B11’ and ‘C1’ to ‘C3’ are aimed 

to capture a break and perform relative difference in 

the top 10 dishonest score values. The break from 

‘B1’ to ‘B11’ is able to localize the faults in FLB 

and differentiate some program elements to be 

significantly more dishonest score than the others. 

This might indicate that some of the top 10 program 

elements are probably to be the root cause and able 

to differentiate elements in effective way. 

 

2.2 Instruction Phase Replica Learning 

The instruction phase serves as the inputs 

to replica learning from feature extraction, set of 

instruction instances with their effectiveness tags. 

Each of the instances is represented as 40 feature 

values produced by the feature extraction process as 

described in Section A. The goal of the replica 

learning process is to convert these set of feature 

vectors into a discriminative model that could 

predict the effectiveness tag of a fault localization 

instance whose effectiveness is unknown. The 

chosen Utmost Subsidiary Hyperplane (USH) 

separates two classes of information (i.e., fault and 

faultless). For example, consider an instruction 

phase with Amazon EC2 dataset in form of  

   

 ���, ��                                               Eqn (1) 

 

Where, ��� is the feature vector of the ��� 

instruction data instance and ��  represents tag of 

data instance (��  ∈ {+1, −1}). The problem of 
searching for a separating Hyperplane with utmost 
subsidiary is reduced to finding the minimal value. 
The minimum value is represented as  

 
�
� ���� �

�
�	��

� 
 ��� 
 ���                      Eqn (2) 

 
Which, satisfies the constrains, 

 

 �����. ��� 
 � � 1                                    Eqn (3) 

 

 Where, �� is perpendicular to the separating 

Hyperplane and n is the number of attributes and c 

is a constant number indicates position of the 

Hyperplane in cloud space. 

 

2.3 Operation Phase of FLB for effective 

ranking 

 The discriminative model learned in the 

replica learning of instruction phase ranks the 

instances (i.e., fault localization) whether it is 

effective or not. The unknown instance needs to be 

transformed a set of feature values using the feature 

extraction process. These feature values are then 

compared with the replica and the rank is obtained. 

The feature vector balances with the Hyperplane 

that separates effective and ineffective instruction 

instances. The feature vector is extracted according 

to the side of the Hyperplane, the corresponding 

instance is assigned with ranking tags. FLB pseudo 

code is shown below 
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Begin 

Procedure Feature extraction with Replica Learning 

Input: List of execution traces ‘P’ and elements ‘E’ 

Output: Discriminative Model with output score 

value ‘D’, ‘S’ ‘C’ and ‘B’ 

1: If P<E 

2: Identify the similarity between the instances  

 Similarity of the two vectors 

∑ ���∗�����
���

�∑ ��
�∗∑ �����

�

��

�

 

// Feature Extraction 

3: Let the feature extracted based on Input P1 to P5 

(traces) and E1 to E4 (elements) 

4: Let the features extracted be obtained through 

‘E5 to ‘E10’ 

5: Output features capture the top 10 dishonest 

scores 

6: Let S1- number of distinct score value; S2- 

Mean; S3-Median; S4- Mode; S5-Variance; S6-

Standard Deviation 

// Replica Learning 

7: Repeat 

8: Using Utmost Subsidiary Hyperplane (USH) 

perform replica learning 

9: Until [ Hyperplane satisfies the constrains,  

�����. ��� 
 �� 
// Ranking 

10: Ranks with instances whether effective or not  

11: Feature Vector extracted according to side of 

hyperplane and accordingly assigned with tags 

12: End 

 

In the case of FLB pseudo code, takes as input a set 

of effective fault localization instances ‘P’ and ‘E’. 

If the program execution traces is lesser than the 

program elements, the feature extraction phase is 

performed. The replacement effective instances 

appear close to the Hyperplane are effectual 

instances while the others are the ineffective 

instances. In order to find these effective instances, 

the similarity between each effective instance is 

evaluated with each of the ineffective instances. 

Each fault localization instance viewed as a 40-

dimensional cloud vector and each dimension is a 

feature and a localization instance is represented by 

the values of the 40 features. 

3.  EXPERIMENTAL EVALUATION SET-UP 

OF FLB MECHANISM 

The performance of Fault Localization 

based on Band (FLB) mechanism is evaluated using 

JAVA with Hadoop. For evaluation purpose, 

comparison is performed on the FLB mechanism 

with the existing GenProg. Hadoop is an open 

source accomplishment of the construction for 

large-scale parallel data processing. Hadoop is 

distinction in research and data mining, so it is 

important to appreciate its runtime activities, 

pattern formation and analyze its performance. An 

experimental evaluation of FLB mechanism and 

Genprog is carried out with the Amazon EC2 

dataset to estimate the performance. Amazon 

Elastic Compute Cloud (Amazon EC2) presents 

resizable calculating capability in the Amazon Web 

Services (AWS) cloud. 

Amazon EC2 provides a broad 

compilation of instance types optimized on top 

form diverse use cases. Instance types include 

untrustworthy mixtures of memory, CPU, storage, 

and networking capability and present the litheness 

to decide the suitable mix of resources for the 

required applications. Every instance type 

comprises one or more example ranges, permitting 

to improve the resources to the supplies of the 

target workload. Performance metric for evaluation 

of FLB mechanism is measured in terms of percent 

time overhead, CPU utilization, performance 

counter, communication cost, normalized 

throughput, precision matchmaking, and average 

auditing time. 

4. PERFORMANCE RESULT OF FAULT 

LOCALIZATION IN CLOUD 

ENVIRONMENT 

 Fault Localization based on Band (FLB) 

mechanism is compared against the existing 

Genetic Programming (GenProg) using the JAVA 

programming. Time overhead is the processing 

time required by a device (i.e.,) FLB mechanism 

prior to the execution of a program elements in 
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instruction phase is measured in terms of 

percentage (%). CPU utilization refers to a usage of 

processing resources for fault localization. Actual 

CPU utilization in FLB varies depending on the 

amount and type of managed computing tasks. 

Certain tasks require heavy CPU time, while others 

require less because of non-CPU resource 

requirements, measured in terms of Mega Bytes 

(MB). 

 Performance counter is the effective result 

obtained on the overall system. The average 

amount of system memory used by the database 

manager is to hold commonly used information 

from the FLB mechanism to prevent file operations. 

Communication cost is defined as the rate it takes 

to identify the faults using the fault localization 

based on band, measured in terms of Kilo Bytes 

(KB). 

��,�	
	�������������
 

Where,��,� signifies the communication cost of 

program input trace ‘i’ for the program elements 

‘r’. ��  represent the processing capability of 

program elements in the FLB mechanism. 

Throughput is the standard rate of successful fault 

identification in cloud environment, measured in 

terms of Kilo bits per second (Kbps). Precision 

matchmaking in the FLB mechanism is the fraction 

of retrieved instances that are related to the overall 

system output. 

��������	������ ��!

� 	
∑#�$�	������%�

∑&��'(���	)$����	������%�	%�'$�
 

 

  Average auditing time is the average 

amount of time consumed to inspect the fault from 

the effective and ineffective group based on the 

Utmost Subsidiary Hyperplane and measured in 

terms of seconds (sec). Table 4.1 shows the 

experimental values and graph illustrates the 

graphic form of FLB mechanism against GenProg. 

 
 

 

 

 

 

 

Table 4.1 Tabulation of Percent Time Overhead 

 

Sample Periods Percent Time Overhead (%) 

Existing 
Genetic 

Programmin
g 

FLB 
Mechanism 

2 31 29 

4 39 36 

6 42 40 

8 43 41 

10 45 42 

12 46 44 

14 48 45 

16 53 50 

 
            

 

 

Figure 4.1 Percent Time Overhead Measure  

 

Table 4.1 and Figure 4.1 describe the time 

overhead based on the sample periods observed in 

FLB mechanism and existing genetic programming. 

As the sample period increases, time overhead is 

reduced to 4 – 7 % in FLB mechanism when 

compared with the genetic programming. This is 

because of the reason that lesser number of trace 

points in cloud environment reduce the time 

overhead in FLB mechanism, when compared with 

the Genetic programming. With FLB model, the 

debuggers is better notified whether the output 

trusts of fault localization run on a set of program 

execution traces. 
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Table 4.2 Tabulation for CPU Utilization 

 

No. of Faults 

Localized 
CPU Utilization (MB) 

 Existing 

Genetic 

Programming 

FLB 

Mechanism 

5 15.25 14 

10 16.1 14.65 

15 17.5 16.21 

20 18.85 16.95 

25 20.28 18.85 

30 21.36 19.54 

 

 

 
 

Figure 4.2 CPU Utilization Measure 

 

 Table 4.2 and Figure 4.2 describe CPU 

utilization of FLB mechanism and genetic 

programming is measured on the Amazon EC2 

dataset. The CPU utilization is reduced in FLB 

using the machine learning framework. The set of 

features are appropriate for predicting the 

usefulness with minimal CPU resource utilization. 

As the fault counting ranges from 5, 10…30, CPU 

utilization is reduced in FLB mechanism.  

Utilization of CPU resources in FLB is 8 – 10 % 

lesser when compared with the existing genetic 

programming. 

 

 

 

 

 
Table 4.3 Tabulation of Performance Counter 

 

Problem Size 

(Bytes) 
Performance Counter (%) 

 Existing 

Genetic 

Programmi

ng 

FLB 

Mechanism 

235 82 90 

289 83 91 

315 85 93 

354 81 92 

450 83 92 

565 86 97 

642 88 98 

 

 Table 4.3 describes the performance 

counter based on the size of information. Size is 

measured in terms of Kilo Bytes (KB). As the size 

increases, the performance count is also improved 

in FLB mechanism. 

 

 

 
 

Figure 4.3 Performance Counter Measure 

 

 Figure 4.3 describes the performance 

counter of the FLB mechanism and genetic 

programming. The FLB mechanism performance 

result is approximately 8 – 11 % higher when 

compared with the genetic programming because 

the FLB mechanism uses band usage for fault 

localization that improves the performance range 

and the band in FLB mechanism depends on the 

spectra which uses the ordered list of program 

elements. The ordered list of program elements in 
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FLB mechanism are sorted based on the likelihood, 

to still improve the performance rate when 

compared with genetic programming. 

 
Table 4.4 Tabulation of Communication Cost 

 

Size of File 

(KB) 
Communication Cost (KB) 

Existing 

Genetic 

Programmi

ng 

FLB 

Mechanism 

200 262 223 

400 245 210 

600 366 325 

800 388 338 

1000 445 392 

1200 555 495 

1400 670 596 

 

 

 
 

Figure 4.4 Measure of Communication Cost 

 

 Table 4.4 and Figure 4.4 describes the 

communication cost based on file size, whereas the 

file size is measured in terms of Kilo bytes (KB). 

The file size ranges from 200, 400, 600 up to 1400 

KB. As the size increases, the communication cost 

incurred using FLB mechanism is reduced to 12 – 

20 % when compared with the genetic 

programming [1]. The reduced communication cost 

is due to the fact that the application of Utmost 

Subsidiary Hyperplane separates two classes of 

information, resulting in the communication cost 

reduced in FLB. 

 
 

Table 4.5 Tabulation of Normalized Throughput 

 

No. of users Normalized 

Throughput(Kbps) Existing 

Genetic 

Programmi

ng 

FLB 

Mechanism 

3 2000 2500 

6 2150 2600 

9 2230 2800 

12 2460 2920 

15 2510 2990 

18 2750 3265 

21 3010 3620 

 

 Table 4.5 describes normalized throughput 

based on the users. At the same time, if the user 

count increases, throughput is improved. The 

normalized throughput of FLB mechanism and 

genetic programming is illustrated through the 

graph given below. 

 

 
 

Figure 4.5 Measure of Normalized Throughput 
 

  Figure 4.5 illustrates the normalized 

throughput, where FLB mechanism is 15 – 22 % 

improved when compared with the genetic 

programming [1]. The FLB mechanism uses replica 

to convert these set of feature vectors into a 

discriminative model that predict the effectiveness 

with normalized throughput using FLB mechanism. 

Replica learning from instruction phase used the 

Amazon EC2 dataset for the evaluation of 

throughput. 
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Table 4.6 Tabulation of Precision Matchmaking 
 

Information 

Size (Bytes) 
Precision Matchmaking 

(%) Existing 

Genetic 

Programmi

ng 

FLB 

Mechanism 

33 78 90 

65 79 91 

94 80 92 

121 82 93 

156 82 96 

184 83 95 

215 86 97 

249 87 98 

 
 Table 4.6 describes precision 

matchmaking effectively in FLB mechanism and 
genetic programming based on the information size. 

 

 
 

Figure 4.6 Measure of Precision Matchmaking 

 

 Figure 4.6 describes the precision 
matchmaking on FLB mechanism and genetic 
programming. As the information size varies, the 
precision matchmaking is 10 – 15 % improved in 
FLB due to the similarity between the instances is 

identified 
∑ ���∗�����

���

�∑ ���∗∑ �����

�

��

�

 using the 40 features. 

Each fault localization instance viewed as a 40 
dimensional cloud vector matches the relevance 
effectively in FLB when compared with the genetic 
programming. 
 
 
 
 
 

 

Table4.7 Tabulation of Average Auditing Time 

 

No. of users Average Auditing Time 

(sec) Existing 

Genetic 

Programmi

ng 

FLB 

Mechanism 

10 119 112 

20 127 122 

30 149 142 

40 156 148 

50 167 158 

60 171 163 

 

 Table 4.7 describes the average auditing 

time based on the users. The users count ranges 

from 10, 20, 30…. 70, average auditing time is 

reduced in FLB mechanism when compared with 

the genetic programming. 

 

 
 

Figure 4.7 Measure of Average Auditing Time  

 

  Figure 4.7 describes the average auditing 

time based on the users. Top dishonest score values 

serve as the information summary of the score in 

FLB mechanism when compared with the Genetic 

programming. The FLB mechanism consumes 5 – 

10 % lesser auditing time when compared with the 

Genetic programming. The break form from output 

features capture the dishonest scores and able to 

audit by localize the faults with minimal time. 

 Finally, it is being observed that the 

contributions define a new research problem by 

ranking the different acceptable patches. Solving 
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the GenProg problem would help developers to 

better trust the output of fault localization model 

based on band. FLB mechanism builds machine 

learning process and these feature values discover 

out discriminative model to predict the fault 

localization and obtain the effectiveness in ranking. 

5. CONCLUSION 

       Fault Localization based on Band 

mechanism address the faults and rank the effective 

group of 40 features. The values of these features 

from an instruction set of faulty localization build a 

discriminative model using machine learning. FLB 

extracts the features in cloud that are potentially 

associated for effective ranking. The FLB 

mechanism is then used as an ordered list of 

program elements sorted based on their likelihood. 

The techniques normally change program runtime 

states methodically to localize faulty program 

elements. FLB focus on fault localization tools that 

compare correct and faulty executions. The FLB 

machine learning process and these feature values 

discover out a discriminative model that predict the 

fault localization and effectiveness in ranking. The 

experimental result of FLB mechanism using 

Amazon EC2 dataset estimates the performance of 

localizing the faults. FLB attains normalized 

throughput, precision matchmaking, improved 

performance counter, approximately 5.85 % lesser 

percent time overhead, minimal CPU utilization, 

communication cost and auditing time. 
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