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ABSTRACT 

 
Floating point multiplier is widely used in digital signal processing applications. The performance of Field 
Programmable Gate Arrays (FPGAs) used for floating point application is low, because of complexity in 
operations. This creates less interest in making FPGAs for use in floating point applications. So we are 
going for the reconfigurable floating point multiplier which provides better utilization of the multiplier in 
all applications and functions. This performs double precision operation or single precision operation. The 
credibility of our multiplier is tested using a standard bench mark circuit namely 4 tap FIR filter. The 
implementation shows a better performance with respect to delay. 
Keywords: Double Precision, Single Precision, Reconfigurable, Floating Point Multiplier (FPM), FIR 

Filter. 

 

1. INTRODUCTION  

 
High processing performance and low power 

dissipation are the most important objectives in 
many multimedia and digital signal processing 
(DSP) systems, where multipliers are always the 
basic arithmetic unit and significantly influence the 
system’s performance and power dissipation. 
Multipliers using floating point numbers are in 
great demand because floating point numbers have 
good precision, since they never deliberately 
discard information.So a fast and energy-efficient 
floating point unit is always needed in electronics 
industry. Field Programmable Gate Arrays 
(FPGA’s) are broadly used for scientific 
computation because of the ease of customizing the 
hardware for the application. The limited size and 
architecture of FPGAs are not well-suited for 
floating-point applications. On the other hand, 
ASICs can be very efficient at floating-point 
operations, but lack the programmability and 
flexibility that is desired in many situations, and the 
cost of an ASIC can be prohibitively high. By 
overcoming the limitations of FPGAs, it will be 
very attractive platform for floating point 
applications. So for the better utilization of the 
floating point multiplier unit, reconfigurable 
computing is added. A new computing method 
using reconfigurable architectures promises an 
intermediate trade-off between flexibility and 
performance. Reconfigurable computing uses 
hardware that can be adapted at run-time to 
facilitate greater flexibility without compromising 
on performance. The re-configurability of the 

hardware permits adaptation of the hardware for 
specific computations in each application to 
achieve higher performance compared to software. 
Here the re-configurability is applied to perform 
single precision and double precision floating point 
multiplication. In order to evaluate the proposed 
FPGA architecture, one of the most widely 
performed operations in DSP namely finite impulse 
response (FIR) filter is used for evaluation. A 4 tap 
FIR filter - a standard benchmark circuit is built and 
implemented.  

The rest of this paper is organized as follows 
Section 2 gives an overview of related works. 
Section 3 & 4 briefs about the floating point 
representation and multiplication respectively. 
Section 5 describes the architecture of the Floating 
Point multiplier followed by the implementation 
and discussion in section 6 and conclusion in 
section7. 

  
2.    RELATED WORKS  

In FPGA’s, re-configurability gives significant 
area utilization and delay improvements. A number 
of works has been proposed based on the 
configurability. Akkas [1] has produced the 
multiplier which is configured to perform either one 
quad precision multiplication or two double 
precision multiplications in parallel. It takes three 
cycles to perform quadruple precision multiplication 
and can produce a quadruple precision product every 
other cycle. And two double precision operations in 
parallel will take two cycles. Diniz and Govindu[3] 
has presented the design of a field programmable 
dual precision multiplier. By getting knowledge 
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from these, the work is proposed for doing one 
double precision multiplication or one single 
precision multiplication. Mainly the multiplier work 
is based on the Akkas design [1]. But the difference 
is that they have used two multipliers for lower 
precision multiplication. These same multipliers are 
used in multi cycle for higher precision 
multiplication. Due to this structure the delay of 
multiplication operation is high in previous works. 
In proposed design, Instead of two simple 
multipliers, Radix-4 booth concept and Wallace tree 
structured multiplier is used, so that, the speed of 
operation can be improved because of single cycle 
utilized for both single and double precision 
multiplication. This is the main advantage of this 
design. The reconfiguration can be obtained by just 
using control signal for multiplexers. 
Reconfiguration time is very low because it involves 
only changing the control signal for the 
multiplexers. But it has a disadvantage of having 
little more area than other works due to tree 
structured multiplier. And then the delay needed to 
perform the single precision operation is slightly 
high.  The main advantage is flexibility in Floating 
Point Multiplier for FPGA architectures so that can 
both double precision multiplication and single 
precision multiplication can be performed. The 
speed of multiplication operation is improved using 
XOR based conditional select adder [10]. 

 

3.      FLOATING POINT REPRESENTATION  

 In general, a floating point number can be 
represented as  
  ±M x BE 
Where M is the mantissa  
            E is the exponent 
            B is the base 
For binary case, the floating point number is 
represented as 

         (-1)s x M x 2E 
where 2 is representing the implied base. Based on 
IEEE 754 standard, floating point number consist 
of three fields   
1) a sign bit (S) 
2) biased exponent (E)  
3) mantissa (M)  
 
 The IEEE 754 floating-point standard uses 32 
bits to represent a single precision floating-point 
number, including a single sign bit, exponent bits 
with bit width 8 and 23 bits of mantissa. The 
mantissa has effectively 24 bits including 1 implied 
bit to the left of the decimal point not explicitly 
represented in the notation. 

 
 

Fig 1. Ieee 754 Single Precision Floating Point  

Number 

IEEE 754 uses 64 bits to represent double 
precision floating point number, including 1 sign 
bit, exponent bits with bit width 11 and 52 bits of 
mantissa. The mantissa has effectively 53 bits 
including 1 implied bit to the left of the decimal 
point not explicitly represented in the notation. 

 

 
Fig 2. Ieee 754 Double Precision Floating Point 

 Number 

 Bias value for the 8 bit and 11 bit exponent is 
127 and 1023 respectively, then the representation 
is as follows 
  
 X = (-1)Sx1.fx2(e-127) 

 

X = (-1)Sx1.fx2(e-1023) 
 
Floating point numbers are having higher 

precision compared to fixed point numbers so that 
discarding of information is low. 

 

4.       FLOATING POINT MULTIPLICATION 

 Consider the two floating point numbers X1 = 
(s1, e1, f1) and X2 = (s2, e2, f2) each consists of 

• Sign bit 

• Exponent bits 

• Mantissa bits 
Then Floating point multiplication Xp can be 

obtained using following steps. 

sp = s1 ⊕ s2 
ep = e1+e2 – bias 
1.fp = 1.f1 x 1.f2 

This equation can be formed as data path as 
shown in Fig.3. 

In mantissa adjust block the normalization 
operation is used, based on that the exponent value 
has been changed. For double precision 
multiplication, the mantissas are getting multiplied 
using 53 x 53 bit multiplier. This multiplier can be 
configured as 24 x 24 bit multiplier; this will help 
to perform single precision multiplication. This 
single precision multiplier will take the inputs from 
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LSB side of the inputs which is applied for double 
precision multiplication 

 
 

Fig 3. Data Path Of Floating Point Multiplication 

 

 In this proposed work, Radix-4 modified booth 
algorithm with Wallace tree structure is used to 
perform the mantissa multiplication. Booth 
encoding is used to reduce the number of partial 
products into half the number of bits in multiplier 
(X). Due to this, number of levels in Wallace 
structure would be reduced. Then partial products 
have been added using number of full adders in 
Wallace structure to produce the final product. 
 

5.      MULTIPLIER UNIT 

 The structure consists of the components for 
double precision multiplication. One of the inputs is 
given as input for booth encoder and then output 
from this will drive the partial product generator. 
Another input for partial product generator is given 
which is same as the second mantissa value. This 
will produce the partial products in 27 rows. And 
then these all the partial products are compressed 
using number of full adders and half adders to get 
the final sum. 

 In this design multiplier [10] block consists of 
following blocks 

1) Booth Encoder 

2) 53 x 53 bit Partial Product Generator 

3) Wallace structure 

4) XCSA adder 

5.1 Booth Encoder 

 Parallel Multiplication using basic Booth’s Recod
ing algorithm technique based on the fact that 
partial product can be generated for group of 
consecutive 0’s and 1’s which is called as Booth’s 
recoding. These Booth’s Recoding algorithm [6] is 
used to generate efficient partial product. These  

 

Fig 5. Proposed Multiplier Structure 

partial products always have large number of bits 
than the input number of bits. This partial product 
width usually depends upon the radix scheme used 
for recoding.  

 

5.1.1Modified booth algorithm: 

 One of the solutions of realizing high speed 
multipliers is to enhance parallelism which helps to 
decrease the number of subsequent calculation 
stages. The first version of the booth algorithm [8] 
(radix-2) had two disadvantages. They are: 
1) The number of add subtract operations and the 
number of shift operations become variable and 
becomes inconvenient in designing parallel 
multipliers. 
2) The algorithm becomes inefficient when there 
are isolated 1’s. 
These drawbacks are overcome by using modified 
radix-4 booth algorithm which scans strings of 
three bits with the algorithm. 
 
5.1.2 Algorithm 

◊ Extend the sign bit by one position if 
necessary to ensure that n is even. 

◊ Add a zero to the right of the LSB of the 
multiplier. 

◊        Based on the value of each vector, each 
partial product will be 0, +y,-y, +2y or -2y. 
  The negative values of y are made by taking the 
two’s complement. The multiplication of y is done 
by shifting y by one bit to the left. Thus, in any 
case, only n/2 partial products are generated in 
designing of n-bit parallel multipliers. The least 
significant block (LSB) uses only two bits of the 
multiplier, and assumes a zero for the third bit. The 
overlap is necessary so as to know what happened 
in the last block, since the MSB of the block acts 
like a sign bit. The modified booth algorithm using 
radix 4 method is the efficient technique. Based on 
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this the booth encoder [10] is designed with three 
basic operator signals.  
1. Direction- Direction operator is used to choose 
either the normal multiplicand(X) or inverse of 
multiplicand (~X). 
2. Shift - Shift operator is shifting the bits by one 
position to left side. 
3. Addition - Addition operator perform addition of 
one to partial product. 
The booth encoding can be simplified using the 
expressions follows 

Direction = Ym+1 ; 

Addition = Ym-1 ⊕ Ym; 

Shift = Ym+1 ⊕ Ym;  

 

 

 

Fig  6. Booth Encoder Circuit 

 

These signals are given to the partial product 
generator to produce the partial products based on 
the operator signal. Totally we are having 53 bits of 
mantissa, by grouping it as 3 bits; we will get the 
27 groups of 3 bits inputs. So for 27 groups of bits 
all the 3 signals are generated and then it will 
trigger the partial product generator. 27 rows of 
partial products are generated according to the 
signals from the booth encoder. 

 

5.2 Partial Product Generator 

Partial products are the intermediate results in the 
multiplications which are added to produce the final 
product. In this design the partial products are 
generated based on the signals from booth encoder. 
Here the output from the booth encoder is acting as 
one of the inputs to PPG and another input is given 
by the second mantissa value. Based on the encoder 
input value, the partial product selector has to be 
considered. Based on these 3 bits of groups, the 
partial products are produced with help of partial 
product selectors [6] such as 0, +1,-1,+2,-2. 

 

         
  Fig 7.Block Diagram Of PPG 

 It illustrates how to calculate partial products 
from the bits of multiplicand B according to the 
values of the recoded digit. 
 

Table 3.Relationship Of Partial-Product And Recoded 

Signed Bits 

 
 The computation of partial products given in 
Table 3 is simple:  
For p1, the partial products equal the bits of B.  
For p2, we obtain the partial products by a left shift 
of B.  
For m1, we need to invert the bits of B and add the 
value 1 at the least significant bit.  
For m2, we need to invert the bits of B, shift them 
left, and add the value 1 at the least significant bit. 
For the encoded digit equal to 0, all partial products 
bits are equal to 0. 
 
 By doing these operations regarding to the table 
all the partial products in 27 rows is obtained, 
because of the 27 groups of bits of inputs to the 
partial product generator. These partial products are 
needed to be arranged in the proper format to get 
the correct result at the output side.  

5.3 Wallace Tree Structure 

 Fast process for multiplication of two numbers 
was developed by Wallace [9].  
Two step process is used to multiply two numbers: 

Multiplier bits Selection 

000 
  001 
010 
011 
100 
101 
110 
111 

            +0(0) 
+1(p1) 
+1(p1) 
+2(p2) 
-2(m2) 
-1(m1) 
-1(m1) 

            -0(0) 
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(1) The bit products are formed. 
(2) The bit product matrix is “reduced” to a two 
row matrix by using carry-save adders. 
(3) The last two rows are summed using a fast 
carry-propagate adder to produce the product. 
 
 The Wallace-Tree binary adder is a usual 
building block in the implementation of the binary 

 

 Fig 8. Wallace Element 

multiplier, and is an integral element in the efficient 
implementation of high-speed binary multipliers. 

5.4 XOR Based Conditional Select Adder 

 Instead of getting the final product directly, a 
special adder [10] can be used at the 2 rows of 
compressed output to get the final product. A 
conditional select adder having a carry generating 
unit which generates a carry of two n-bit input data 
units X0-Xn−1, and Y0-Yn−1, and a sum generating 
unit which generates the sum of the input data 
provided. 
The carry generating unit comprises  

• a first input unit which receives 
predetermined data based on the input data 
Xi and Yi; 

•  a second input unit which receives the 
initial carry;  

• and a selection unit which receives the 
result of performing an XOR operation on 
the input data Xi and Yi, 

 According to the XOR result, either 
predetermined data based on the input data Xi or 
Yi input to the first input unit, or the initial carry 
input to this input unit is selected and output as a 
carry. The sum generating unit calculates a sum 
using the carry generated by the carry generating 
unit.  
 
 The main advantages are reducing power 
consumption, chip area reduction, reducing logic 
count, and delay time. This improved adder based 
on XOR is mainly proposed to minimize gate 
counts and critical path. There are fourteen XCSA 
(XOR based conditional select adder) blocks and a 
separated carry generation block are combined to 

make the 108 bit proposed adder structure. Each 
modularized XCSA consists of  

 

• An 8-bit sum generator and  

• A carry generator 
  
Instead of going with the architecture, the 
expressions can be used to make the operation as a 
simple one. The following expressions are 
describes how to determine a sum and a carry by 
XOR (A, B) [10]. 
 

Sum = Am ⊕ Bm; 

Carry = if((Am ⊕ Bm) == 1) then cout = 
cin; 

else if ((Am ⊕ Bm) == 0) then cout = Am; 
 
By using these equations final sum and carry can 

be calculated. This final sum is the final product of 
mantissa multiplication. Due to this adder the speed 
is improved. 

6.      IMPLEMENTATION AND DISCUSSION 

For implementation Xilinx ISE Design Suite 
13.1with VHDL programming was used. 
Simulation process was done using ISIM tool .The 
results of a floating point multiplier with and 
without conditional select adder is shown. In order 
to evaluate the proposed architecture, a benchmark 
circuit namely a 4 tap FIR filter was implemented. 
Both single-precision and double-precision versions 
of each circuit were built in order to evaluate the 
multimode Floating point multiplier in both 
precision modes.  

 

 
Fig 9.Single Precision Floating Point Multiplier Without 

XCSA 
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Fig 10.Double Precision Floating Point Multiplier 

Without XCSA 

 
Fig 11.Single Precision Floating Point Multiplier With 

XCSA 

 
Fig 12.Double Precision Floating Point Multiplier With 

XCSA 

 
Fig 13.FIR Filter With Single Precision Non XCSA 

Floating Point Multiplier  

 

 
Fig 13.FIR Filter With Double Precision Non XCSA 

Floating Point Multiplier  

 

 
Fig 15.FIR Filter With Single Precision XCSA Floating 

Point Multiplier  
 

 
Fig 16.FIR Filter With Double Precision XCSA Floating 

Point Multiplier 

 

 
Fig 17.FIR Filter Schematic 

 
Comparison of floating point multiplier with and 
without XCSA adder is shown in the following 
Table 4. 

 
Table 4.  Comparison Of Floating Point 

Multiplier 

 Number of 
Slice FFs 

Delay (ns) 

Without 
XCSA 

918 (9312)  9% 3.909 

With XCSA 918(9312)   9% 3.878 
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Comparison of 4 tap FIR filter using floating point 
multiplier with and without XCSA adder is shown 
in the following Table 5. 

 
 

Table 5.  Comparison Of FIR 

Filter 

 Number of 
Slice FFs 

Delay (ns) 

Without 
XCSA 

3836 (9312)    
41% 

3.878 

With XCSA 3832 (9312)    
41% 

3.726 

Thus the results show that the floating point 
multiplier with XCSA adder provides around 4% 
better results with same slice FF counts. 

7.      CONCLUSION 

This paper presented a flexible multimode 
floating-point multiplier for FPGAs. Each floating 
point multiplier can each perform double-precision 
operation or single-precision operation. Results 
show that the FPGA with embedded multimode 
FPUs provide considerable performance and area 
benefits in single-precision, double- precision, 
fixed-point, and integer applications.  
 

REFRENCES:  

 

 [1] A. Akkas¸ and M. J. Schulte, “A quadruple 
precision and dual double precision floating-
point multiplier,” in Proc. Euromicro Symp. 

Digit. Syst. Des. (DSD), 2003, p. 76. 
[2] G. Even, S. M. Mueller, and P.-M. Seidel, “A 

dual precision IEEE floating-point multiplier,” 
Integr. VLSI J., vol. 29, no. 2, 2000, pp. 167–
180. 

[3] P. C. Diniz and G. Govindu, “Design of a field-
programmable dual-precision floating-point 
arithmetic unit,” in Proc. Int. Conf. Field 

Program. Logic Appl. (FPL), 2006, pp. 1–4. 
[4] IEEE Standard for Binary Floating-Point 

Arithmetic, ANSI/IEEE Std 754, 1985. 
[5] D. A. Patterson and J. L. Hennessy, Computer 

Organization and Design, 3rd ed. San 
Francisco, CA: Morgan Kaufmann, ch. H.5, 
2005. 

[6] M. Nicolaidis and R. O. Duarte, “Fault-secure 
parity prediction booth multipliers,” IEEE Des. 

Test, vol. 16, no. 3, , Jul. 1999, pp. 90–101. 
[7] W.-C. Yeh and C.-W. Jen, “High-speed booth 

encoded parallel multiplier design,” IEEE 

Trans. Comput., vol. 49, no. 7, Jul.2000, pp. 
692–701. 

[8] A. D. Booth, “A signed binary multiplication 
technique,” Quarterly J. Mechan. Appl. Math., 
vol. 4, 1951, pp. 236–240. 

[9] C. S. Wallace, “A suggestion for a fast 
multiplier,” IEEE Trans. Electron. Comput., 
vol. EC-13, no. 1, Feb. 1964, , pp. 14–17. 

[10] Ki-seon Cho, Jong-on Park, Jin-seok Hong and 
Goang-seog Choi  “54x54-Bit radix-4 
multiplier based on modified booth algorithm”, 
ACM, GLSVLSI’03, Washington, DC, USA, 
2003, pp. 233-236. 

[11] Padma Devi, AshimaGirdher and Balwinder 
Singh “Improved carry select adder with 
reduced area and low power consumption”, 
International Journal of Computer 

Applications, vol. 3, no.4, 2010. 
[12] Sudharsana rani B. and Vijayakumarraju V.  

“Reducing the size of partial product array in 
two’s complement multipliers”, International 

Journal of Logic and Computation (IJLP), 
vol.5, issue 2, 2012, pp. 714-727. 

[13] Vojin G. Oklobdzija “High-Speed VLSI 
arithmetic units: Adders and Multipliers”, sep. 
1999 

[14] Wen M.C., Wang S.J. and Lin Y.N. “Low-
power parallel multiplier with column 
bypassing”, Electronics letter, vol. 41, no. 10, 
2005. 

[15] Yee Jern Chong and Sri Parameswaran 
“Configurable multimode floating point units 
for FPGAs”, IEEE Trans. VLSI, vol. 19, no. 
11, Nov 2011, pp. 2033-2044. 

[16]Y.Dou, S.Vassiliadis, G.Kuzmanov and 
G.Gaydadjiev,“64-bit floating point FPGA 
matrix multiplication,” in 
Proc.ACM/SIGDA13thInt.Symp.Field-
Program.Gate Arrays,2005, pp.86–95. 

[17]K.S.Hemmert and K.D.Underwood, “An 
analysis of the double-precision floating point 
FFT on FPGAs,” presented at the ACM Int. 
Symp. Field Program .Gate Arrays , 
Monterey,CA,Feb.2004. 

[18]G.Govindu, S.Choi, V.K.Prasanna, V.Daga, 
S.Gangadharpalli, and V.Sridhar, “A high 
performance and energy efficient architecture 
for floating poin tbased LU decomposition on 
FPGAs, ”in Proc. 11th Reconfigurable 
Arch.Workshop(RAW),SantaFe,NM,Apr.2004,
p.149a. 

[19]M.de Lorimer and A.DeHon, “Floating point 
sparse matrix-vector multiply for FPGAs, ”in 
Proc. ACM Int. Symp. Field 
Program.GateArrays,Monterey,CA,Feb.2005,p
p.75–85. 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
338 

 

[20]ConveyComputerCorporation,“Conveycompute
r,”Richardson,TX,2008–2010 [Online] . 
Available : http :// www. Convey 
computer.com/ 

[21]K.Underwood, “FPGAs vs. CPUs: Trends in 
peak floating-point performance, 
”inProc.ACM/SIGDA12thInt.Symp.Field 
Program.GateArrays,Monterey,CA,Feb.2004,p
p.171–180. 

[22]M.J.Beauchamp, S.Hauck, and K.S.Hemmert,“ 
Embedded floating-point units in FPGAs, ”in 
Proc. IEEE Symp.Field Program.GateAr-
rays(FPGA),2006,pp.12–20. 

[23]C.H.Ho, P.H.W.Leong ,W.Luk,S.J.E.Wilton, 
and S.Lopez-Buedo,“ Virtual embedded blocks 
:A methodology for evaluating embedded 
elements in FPGAs, ”in Proc.IEEE 
Symp.Field-Program. Custom Comput. Mach. 
(FCCM),2006,pp.35–44. 

[24]C.H.Ho,C.W.Yu,P.H.W.Leong,W.Luk,andS.J.
E.Wilton,“Domain-specific hybrid FPGA 
:Architecture and floating point applications,” 
in Proc. Int .Conf .Field Program. Logic 
Appl.(FPL),2007,pp.196–201. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


