
Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

331

IMPLEMENTATION OF CONFIGURABLE FLOATING POINT

MULTIPLIER
1
GOKILA D,

 2
Dr. MANGALAM H

1Department of ECE, United Institute of Technology, Coimbatore, Tamil nadu, India
2Department of ECE, Sri Krishna College of Technology Coimbatore ,Tamil nadu ,India

E-mail: 1gokila_dr@yahoo.com, 2hmangalam2@gmail.com

ABSTRACT

Floating point multiplier is widely used in digital signal processing applications. The performance of Field
Programmable Gate Arrays (FPGAs) used for floating point application is low, because of complexity in
operations. This creates less interest in making FPGAs for use in floating point applications. So we are
going for the reconfigurable floating point multiplier which provides better utilization of the multiplier in
all applications and functions. This performs double precision operation or single precision operation. The
credibility of our multiplier is tested using a standard bench mark circuit namely 4 tap FIR filter. The
implementation shows a better performance with respect to delay.
Keywords: Double Precision, Single Precision, Reconfigurable, Floating Point Multiplier (FPM), FIR

Filter.

1. INTRODUCTION

High processing performance and low power

dissipation are the most important objectives in
many multimedia and digital signal processing
(DSP) systems, where multipliers are always the
basic arithmetic unit and significantly influence the
system’s performance and power dissipation.
Multipliers using floating point numbers are in
great demand because floating point numbers have
good precision, since they never deliberately
discard information.So a fast and energy-efficient
floating point unit is always needed in electronics
industry. Field Programmable Gate Arrays
(FPGA’s) are broadly used for scientific
computation because of the ease of customizing the
hardware for the application. The limited size and
architecture of FPGAs are not well-suited for
floating-point applications. On the other hand,
ASICs can be very efficient at floating-point
operations, but lack the programmability and
flexibility that is desired in many situations, and the
cost of an ASIC can be prohibitively high. By
overcoming the limitations of FPGAs, it will be
very attractive platform for floating point
applications. So for the better utilization of the
floating point multiplier unit, reconfigurable
computing is added. A new computing method
using reconfigurable architectures promises an
intermediate trade-off between flexibility and
performance. Reconfigurable computing uses
hardware that can be adapted at run-time to
facilitate greater flexibility without compromising
on performance. The re-configurability of the

hardware permits adaptation of the hardware for
specific computations in each application to
achieve higher performance compared to software.
Here the re-configurability is applied to perform
single precision and double precision floating point
multiplication. In order to evaluate the proposed
FPGA architecture, one of the most widely
performed operations in DSP namely finite impulse
response (FIR) filter is used for evaluation. A 4 tap
FIR filter - a standard benchmark circuit is built and
implemented.

The rest of this paper is organized as follows
Section 2 gives an overview of related works.
Section 3 & 4 briefs about the floating point
representation and multiplication respectively.
Section 5 describes the architecture of the Floating
Point multiplier followed by the implementation
and discussion in section 6 and conclusion in
section7.

2. RELATED WORKS

In FPGA’s, re-configurability gives significant
area utilization and delay improvements. A number
of works has been proposed based on the
configurability. Akkas [1] has produced the
multiplier which is configured to perform either one
quad precision multiplication or two double
precision multiplications in parallel. It takes three
cycles to perform quadruple precision multiplication
and can produce a quadruple precision product every
other cycle. And two double precision operations in
parallel will take two cycles. Diniz and Govindu[3]
has presented the design of a field programmable
dual precision multiplier. By getting knowledge

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

332

from these, the work is proposed for doing one
double precision multiplication or one single
precision multiplication. Mainly the multiplier work
is based on the Akkas design [1]. But the difference
is that they have used two multipliers for lower
precision multiplication. These same multipliers are
used in multi cycle for higher precision
multiplication. Due to this structure the delay of
multiplication operation is high in previous works.
In proposed design, Instead of two simple
multipliers, Radix-4 booth concept and Wallace tree
structured multiplier is used, so that, the speed of
operation can be improved because of single cycle
utilized for both single and double precision
multiplication. This is the main advantage of this
design. The reconfiguration can be obtained by just
using control signal for multiplexers.
Reconfiguration time is very low because it involves
only changing the control signal for the
multiplexers. But it has a disadvantage of having
little more area than other works due to tree
structured multiplier. And then the delay needed to
perform the single precision operation is slightly
high. The main advantage is flexibility in Floating
Point Multiplier for FPGA architectures so that can
both double precision multiplication and single
precision multiplication can be performed. The
speed of multiplication operation is improved using
XOR based conditional select adder [10].

3. FLOATING POINT REPRESENTATION

 In general, a floating point number can be
represented as
 ±M x BE
Where M is the mantissa
 E is the exponent
 B is the base
For binary case, the floating point number is
represented as

 (-1)s x M x 2E
where 2 is representing the implied base. Based on
IEEE 754 standard, floating point number consist
of three fields
1) a sign bit (S)
2) biased exponent (E)
3) mantissa (M)

 The IEEE 754 floating-point standard uses 32
bits to represent a single precision floating-point
number, including a single sign bit, exponent bits
with bit width 8 and 23 bits of mantissa. The
mantissa has effectively 24 bits including 1 implied
bit to the left of the decimal point not explicitly
represented in the notation.

Fig 1. Ieee 754 Single Precision Floating Point

Number

IEEE 754 uses 64 bits to represent double
precision floating point number, including 1 sign
bit, exponent bits with bit width 11 and 52 bits of
mantissa. The mantissa has effectively 53 bits
including 1 implied bit to the left of the decimal
point not explicitly represented in the notation.

Fig 2. Ieee 754 Double Precision Floating Point

 Number

 Bias value for the 8 bit and 11 bit exponent is
127 and 1023 respectively, then the representation
is as follows

 X = (-1)Sx1.fx2(e-127)

X = (-1)Sx1.fx2(e-1023)

Floating point numbers are having higher

precision compared to fixed point numbers so that
discarding of information is low.

4. FLOATING POINT MULTIPLICATION

 Consider the two floating point numbers X1 =
(s1, e1, f1) and X2 = (s2, e2, f2) each consists of

• Sign bit

• Exponent bits

• Mantissa bits
Then Floating point multiplication Xp can be

obtained using following steps.

sp = s1 ⊕ s2
ep = e1+e2 – bias
1.fp = 1.f1 x 1.f2

This equation can be formed as data path as
shown in Fig.3.

In mantissa adjust block the normalization
operation is used, based on that the exponent value
has been changed. For double precision
multiplication, the mantissas are getting multiplied
using 53 x 53 bit multiplier. This multiplier can be
configured as 24 x 24 bit multiplier; this will help
to perform single precision multiplication. This
single precision multiplier will take the inputs from

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

333

LSB side of the inputs which is applied for double
precision multiplication

Fig 3. Data Path Of Floating Point Multiplication

 In this proposed work, Radix-4 modified booth
algorithm with Wallace tree structure is used to
perform the mantissa multiplication. Booth
encoding is used to reduce the number of partial
products into half the number of bits in multiplier
(X). Due to this, number of levels in Wallace
structure would be reduced. Then partial products
have been added using number of full adders in
Wallace structure to produce the final product.

5. MULTIPLIER UNIT

 The structure consists of the components for
double precision multiplication. One of the inputs is
given as input for booth encoder and then output
from this will drive the partial product generator.
Another input for partial product generator is given
which is same as the second mantissa value. This
will produce the partial products in 27 rows. And
then these all the partial products are compressed
using number of full adders and half adders to get
the final sum.

 In this design multiplier [10] block consists of
following blocks

1) Booth Encoder

2) 53 x 53 bit Partial Product Generator

3) Wallace structure

4) XCSA adder

5.1 Booth Encoder

 Parallel Multiplication using basic Booth’s Recod
ing algorithm technique based on the fact that
partial product can be generated for group of
consecutive 0’s and 1’s which is called as Booth’s
recoding. These Booth’s Recoding algorithm [6] is
used to generate efficient partial product. These

Fig 5. Proposed Multiplier Structure

partial products always have large number of bits
than the input number of bits. This partial product
width usually depends upon the radix scheme used
for recoding.

5.1.1Modified booth algorithm:

 One of the solutions of realizing high speed
multipliers is to enhance parallelism which helps to
decrease the number of subsequent calculation
stages. The first version of the booth algorithm [8]
(radix-2) had two disadvantages. They are:
1) The number of add subtract operations and the
number of shift operations become variable and
becomes inconvenient in designing parallel
multipliers.
2) The algorithm becomes inefficient when there
are isolated 1’s.
These drawbacks are overcome by using modified
radix-4 booth algorithm which scans strings of
three bits with the algorithm.

5.1.2 Algorithm

◊ Extend the sign bit by one position if
necessary to ensure that n is even.

◊ Add a zero to the right of the LSB of the
multiplier.

◊ Based on the value of each vector, each
partial product will be 0, +y,-y, +2y or -2y.
 The negative values of y are made by taking the
two’s complement. The multiplication of y is done
by shifting y by one bit to the left. Thus, in any
case, only n/2 partial products are generated in
designing of n-bit parallel multipliers. The least
significant block (LSB) uses only two bits of the
multiplier, and assumes a zero for the third bit. The
overlap is necessary so as to know what happened
in the last block, since the MSB of the block acts
like a sign bit. The modified booth algorithm using
radix 4 method is the efficient technique. Based on

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

334

this the booth encoder [10] is designed with three
basic operator signals.
1. Direction- Direction operator is used to choose
either the normal multiplicand(X) or inverse of
multiplicand (~X).
2. Shift - Shift operator is shifting the bits by one
position to left side.
3. Addition - Addition operator perform addition of
one to partial product.
The booth encoding can be simplified using the
expressions follows

Direction = Ym+1 ;

Addition = Ym-1 ⊕ Ym;

Shift = Ym+1 ⊕ Ym;

Fig 6. Booth Encoder Circuit

These signals are given to the partial product
generator to produce the partial products based on
the operator signal. Totally we are having 53 bits of
mantissa, by grouping it as 3 bits; we will get the
27 groups of 3 bits inputs. So for 27 groups of bits
all the 3 signals are generated and then it will
trigger the partial product generator. 27 rows of
partial products are generated according to the
signals from the booth encoder.

5.2 Partial Product Generator

Partial products are the intermediate results in the
multiplications which are added to produce the final
product. In this design the partial products are
generated based on the signals from booth encoder.
Here the output from the booth encoder is acting as
one of the inputs to PPG and another input is given
by the second mantissa value. Based on the encoder
input value, the partial product selector has to be
considered. Based on these 3 bits of groups, the
partial products are produced with help of partial
product selectors [6] such as 0, +1,-1,+2,-2.

 Fig 7.Block Diagram Of PPG

 It illustrates how to calculate partial products
from the bits of multiplicand B according to the
values of the recoded digit.

Table 3.Relationship Of Partial-Product And Recoded

Signed Bits

 The computation of partial products given in
Table 3 is simple:
For p1, the partial products equal the bits of B.
For p2, we obtain the partial products by a left shift
of B.
For m1, we need to invert the bits of B and add the
value 1 at the least significant bit.
For m2, we need to invert the bits of B, shift them
left, and add the value 1 at the least significant bit.
For the encoded digit equal to 0, all partial products
bits are equal to 0.

 By doing these operations regarding to the table
all the partial products in 27 rows is obtained,
because of the 27 groups of bits of inputs to the
partial product generator. These partial products are
needed to be arranged in the proper format to get
the correct result at the output side.

5.3 Wallace Tree Structure

 Fast process for multiplication of two numbers
was developed by Wallace [9].
Two step process is used to multiply two numbers:

Multiplier bits Selection

000
 001
010
011
100
101
110
111

 +0(0)
+1(p1)
+1(p1)
+2(p2)
-2(m2)
-1(m1)
-1(m1)

 -0(0)

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

335

(1) The bit products are formed.
(2) The bit product matrix is “reduced” to a two
row matrix by using carry-save adders.
(3) The last two rows are summed using a fast
carry-propagate adder to produce the product.

 The Wallace-Tree binary adder is a usual
building block in the implementation of the binary

 Fig 8. Wallace Element

multiplier, and is an integral element in the efficient
implementation of high-speed binary multipliers.

5.4 XOR Based Conditional Select Adder

 Instead of getting the final product directly, a
special adder [10] can be used at the 2 rows of
compressed output to get the final product. A
conditional select adder having a carry generating
unit which generates a carry of two n-bit input data
units X0-Xn−1, and Y0-Yn−1, and a sum generating
unit which generates the sum of the input data
provided.
The carry generating unit comprises

• a first input unit which receives
predetermined data based on the input data
Xi and Yi;

• a second input unit which receives the
initial carry;

• and a selection unit which receives the
result of performing an XOR operation on
the input data Xi and Yi,

 According to the XOR result, either
predetermined data based on the input data Xi or
Yi input to the first input unit, or the initial carry
input to this input unit is selected and output as a
carry. The sum generating unit calculates a sum
using the carry generated by the carry generating
unit.

 The main advantages are reducing power
consumption, chip area reduction, reducing logic
count, and delay time. This improved adder based
on XOR is mainly proposed to minimize gate
counts and critical path. There are fourteen XCSA
(XOR based conditional select adder) blocks and a
separated carry generation block are combined to

make the 108 bit proposed adder structure. Each
modularized XCSA consists of

• An 8-bit sum generator and

• A carry generator

Instead of going with the architecture, the
expressions can be used to make the operation as a
simple one. The following expressions are
describes how to determine a sum and a carry by
XOR (A, B) [10].

Sum = Am ⊕ Bm;

Carry = if((Am ⊕ Bm) == 1) then cout =
cin;

else if ((Am ⊕ Bm) == 0) then cout = Am;

By using these equations final sum and carry can

be calculated. This final sum is the final product of
mantissa multiplication. Due to this adder the speed
is improved.

6. IMPLEMENTATION AND DISCUSSION

For implementation Xilinx ISE Design Suite
13.1with VHDL programming was used.
Simulation process was done using ISIM tool .The
results of a floating point multiplier with and
without conditional select adder is shown. In order
to evaluate the proposed architecture, a benchmark
circuit namely a 4 tap FIR filter was implemented.
Both single-precision and double-precision versions
of each circuit were built in order to evaluate the
multimode Floating point multiplier in both
precision modes.

Fig 9.Single Precision Floating Point Multiplier Without

XCSA

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

336

Fig 10.Double Precision Floating Point Multiplier

Without XCSA

Fig 11.Single Precision Floating Point Multiplier With

XCSA

Fig 12.Double Precision Floating Point Multiplier With

XCSA

Fig 13.FIR Filter With Single Precision Non XCSA

Floating Point Multiplier

Fig 13.FIR Filter With Double Precision Non XCSA

Floating Point Multiplier

Fig 15.FIR Filter With Single Precision XCSA Floating

Point Multiplier

Fig 16.FIR Filter With Double Precision XCSA Floating

Point Multiplier

Fig 17.FIR Filter Schematic

Comparison of floating point multiplier with and
without XCSA adder is shown in the following
Table 4.

Table 4. Comparison Of Floating Point

Multiplier

 Number of
Slice FFs

Delay (ns)

Without
XCSA

918 (9312) 9% 3.909

With XCSA 918(9312) 9% 3.878

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

337

Comparison of 4 tap FIR filter using floating point
multiplier with and without XCSA adder is shown
in the following Table 5.

Table 5. Comparison Of FIR

Filter

 Number of
Slice FFs

Delay (ns)

Without
XCSA

3836 (9312)
41%

3.878

With XCSA 3832 (9312)
41%

3.726

Thus the results show that the floating point
multiplier with XCSA adder provides around 4%
better results with same slice FF counts.

7. CONCLUSION

This paper presented a flexible multimode
floating-point multiplier for FPGAs. Each floating
point multiplier can each perform double-precision
operation or single-precision operation. Results
show that the FPGA with embedded multimode
FPUs provide considerable performance and area
benefits in single-precision, double- precision,
fixed-point, and integer applications.

REFRENCES:

 [1] A. Akkas¸ and M. J. Schulte, “A quadruple
precision and dual double precision floating-
point multiplier,” in Proc. Euromicro Symp.

Digit. Syst. Des. (DSD), 2003, p. 76.
[2] G. Even, S. M. Mueller, and P.-M. Seidel, “A

dual precision IEEE floating-point multiplier,”
Integr. VLSI J., vol. 29, no. 2, 2000, pp. 167–
180.

[3] P. C. Diniz and G. Govindu, “Design of a field-
programmable dual-precision floating-point
arithmetic unit,” in Proc. Int. Conf. Field

Program. Logic Appl. (FPL), 2006, pp. 1–4.
[4] IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std 754, 1985.
[5] D. A. Patterson and J. L. Hennessy, Computer

Organization and Design, 3rd ed. San
Francisco, CA: Morgan Kaufmann, ch. H.5,
2005.

[6] M. Nicolaidis and R. O. Duarte, “Fault-secure
parity prediction booth multipliers,” IEEE Des.

Test, vol. 16, no. 3, , Jul. 1999, pp. 90–101.
[7] W.-C. Yeh and C.-W. Jen, “High-speed booth

encoded parallel multiplier design,” IEEE

Trans. Comput., vol. 49, no. 7, Jul.2000, pp.
692–701.

[8] A. D. Booth, “A signed binary multiplication
technique,” Quarterly J. Mechan. Appl. Math.,
vol. 4, 1951, pp. 236–240.

[9] C. S. Wallace, “A suggestion for a fast
multiplier,” IEEE Trans. Electron. Comput.,
vol. EC-13, no. 1, Feb. 1964, , pp. 14–17.

[10] Ki-seon Cho, Jong-on Park, Jin-seok Hong and
Goang-seog Choi “54x54-Bit radix-4
multiplier based on modified booth algorithm”,
ACM, GLSVLSI’03, Washington, DC, USA,
2003, pp. 233-236.

[11] Padma Devi, AshimaGirdher and Balwinder
Singh “Improved carry select adder with
reduced area and low power consumption”,
International Journal of Computer

Applications, vol. 3, no.4, 2010.
[12] Sudharsana rani B. and Vijayakumarraju V.

“Reducing the size of partial product array in
two’s complement multipliers”, International

Journal of Logic and Computation (IJLP),
vol.5, issue 2, 2012, pp. 714-727.

[13] Vojin G. Oklobdzija “High-Speed VLSI
arithmetic units: Adders and Multipliers”, sep.
1999

[14] Wen M.C., Wang S.J. and Lin Y.N. “Low-
power parallel multiplier with column
bypassing”, Electronics letter, vol. 41, no. 10,
2005.

[15] Yee Jern Chong and Sri Parameswaran
“Configurable multimode floating point units
for FPGAs”, IEEE Trans. VLSI, vol. 19, no.
11, Nov 2011, pp. 2033-2044.

[16]Y.Dou, S.Vassiliadis, G.Kuzmanov and
G.Gaydadjiev,“64-bit floating point FPGA
matrix multiplication,” in
Proc.ACM/SIGDA13thInt.Symp.Field-
Program.Gate Arrays,2005, pp.86–95.

[17]K.S.Hemmert and K.D.Underwood, “An
analysis of the double-precision floating point
FFT on FPGAs,” presented at the ACM Int.
Symp. Field Program .Gate Arrays ,
Monterey,CA,Feb.2004.

[18]G.Govindu, S.Choi, V.K.Prasanna, V.Daga,
S.Gangadharpalli, and V.Sridhar, “A high
performance and energy efficient architecture
for floating poin tbased LU decomposition on
FPGAs, ”in Proc. 11th Reconfigurable
Arch.Workshop(RAW),SantaFe,NM,Apr.2004,
p.149a.

[19]M.de Lorimer and A.DeHon, “Floating point
sparse matrix-vector multiply for FPGAs, ”in
Proc. ACM Int. Symp. Field
Program.GateArrays,Monterey,CA,Feb.2005,p
p.75–85.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

338

[20]ConveyComputerCorporation,“Conveycompute
r,”Richardson,TX,2008–2010 [Online] .
Available : http :// www. Convey
computer.com/

[21]K.Underwood, “FPGAs vs. CPUs: Trends in
peak floating-point performance,
”inProc.ACM/SIGDA12thInt.Symp.Field
Program.GateArrays,Monterey,CA,Feb.2004,p
p.171–180.

[22]M.J.Beauchamp, S.Hauck, and K.S.Hemmert,“
Embedded floating-point units in FPGAs, ”in
Proc. IEEE Symp.Field Program.GateAr-
rays(FPGA),2006,pp.12–20.

[23]C.H.Ho, P.H.W.Leong ,W.Luk,S.J.E.Wilton,
and S.Lopez-Buedo,“ Virtual embedded blocks
:A methodology for evaluating embedded
elements in FPGAs, ”in Proc.IEEE
Symp.Field-Program. Custom Comput. Mach.
(FCCM),2006,pp.35–44.

[24]C.H.Ho,C.W.Yu,P.H.W.Leong,W.Luk,andS.J.
E.Wilton,“Domain-specific hybrid FPGA
:Architecture and floating point applications,”
in Proc. Int .Conf .Field Program. Logic
Appl.(FPL),2007,pp.196–201.

