
Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
461 

 

ASSEMBLER DESIGN TECHNIQUES FOR A 

RECONFIGURABLE SOFT-CORE PROCESSOR 
 

1
SANI IRWAN MD SALIM, 

 2
HAMZAH ASYRANI SULAIMAN, NOR RAHIMAH 

JAMALUDDIN, LIZAWATI SALEHUDDIN, MUHAMMAD NOORAZLAN SHAH ZAINUDIN, 

YEWGUAN SOO 

Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 
76100, Durian Tunggal, Melaka, Malaysia 

E-mail:  1sani@utem.edu.my, 2asyrani@utem.edu.my   
 
 

ABSTRACT 

 
The reconfigurable processor design which utilizes platform such as Field Programmable Gate Array 
(FPGA) has offered several advantages in minimizing the non-recurring engineering cost and to reduce the 
time-to-market for processor-based products. However, when any modification is made to the processor 
architecture, the same information needs to be relayed to the assembler in order to generate the correct 
object files. This paper presents the assembler design techniques for a reconfigurable reduced instruction 
set computer (RISC) processor called UTeMRISC03. The processor is a soft-core processor, which is 
described in Verilog and its instruction set architecture (ISA) has been expanded to include a custom 
instruction. Thus, the assembler would have to adjust according to the changes being made to the ISA. One-
pass and two-pass techniques have been adopted during the construction of the assembler and the generated 
object files are used as the initialization files during the FPGA implementation of the processor core. The 
assembler has been successfully developed by using both techniques and the object files are verified by 
executing the processor core in the Xilinx Spartan-3A FPGA chip. For comparisons, the assembling 
execution times for both techniques have been recorded and the one-pass technique has been able to 
complete the assembling process in half of the time it took for two-pass technique. The design techniques 
adopted in this paper will serve as the base platform with the aim of establishing a full-customizable 
assembler for reconfigurable soft-core processor in the near future. 

Keywords: Assembler, Reconfigurable Processor, FPGA 
 

1. INTRODUCTION  

 
In the past decade, embedded system design has 

gone through tremendous technological 
advancement in every aspect of its methodologies. 
Conventionally, embedded systems incorporate 
several discrete ICs such as processor, memory 
chips and other I/O peripherals. A modular 
approach in embedded system design has given 
freedom to the engineers to achieve high system 
performance while at the same time provides easier 
circuit maintenance. However, the demand for 
smaller and compact consumer devices has led to 
the introduction of single chip solutions, also 
known as the system-on-chip methodology. By 
integrating all parts of the embedded system in one 
single die packaging, the circuit board size is 
significantly reduced without compromising the 
system performance. 

The pervasiveness of embedded system 
applications especially in mobile and portable 

platforms has raised the importance of handling 
intensive tasks in reconfigurable devices [1]. While 
the embedded system could be designed to achieve 
the highest performance level, not all applications 
would require those extra gains in order to function 
efficiently. Furthermore, operating at the highest 
performance level would consume more power and 
directly reduced the battery life of the system. 
Therefore, for non-critical embedded system, the 
system design can be developed using logic 
synthesis techniques whereby the embedded 
processors are described using Hardware 
Description Language (HDL) and synthesized in a 
much shorter period. 

The term soft-core processor refers to a processor 
core that is implemented using logic synthesis. To 
execute the processor core, the design is 
implemented via programmable logic devices such 
as Field Programmable Gate Array (FPGA). Soft-
core processors are coded in HDL that enables 
designers to customize its internal architecture to 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
462 

 

suit the targeted application. As a comparison, a 
hard-core processor is a processor that is also 
embedded in the programmable fabric, but the 
architecture is fixed and cannot be modified by 
users. Soft-core processor offered flexibility to the 
designer in creating custom functional unit and to 
perform instruction set extension. By implementing 
the soft-core processor on FPGA fabric, the 
performance of the processor is only limited to the 
specification and the technology of the FPGA chip. 
Portability of a soft-core processor is also important 
as the design could easily be ported to another 
FPGA chip with minimal re-coding effort. 
Meanwhile, reduced instruction set computer 
(RISC) is a type of microprocessor that has a 
relatively limited number of instructions. It is 
designed to perform a smaller number of types of 
computer instructions so that it can operate at a 
higher speed. One advantage of RISC is that it can 
achieve faster instruction execution owing to its 
simple instruction sets that are simple and basic 
from which more complex instruction can be 
composed. Most instructions are completed in one 
machine cycle, which allows the processor to 
handle several instructions at the same time through 
pipelining.  

In conventional processor programming flow, the 
assembler is tightly integrated with the processor’s 
architecture, especially in the ISA. The ISA 
configuration directly affects the operation of the 
instruction decoder module of the soft-core 
processor. The issue here is when any modification 
is being made to the ISA, it will make the existing 
processor’s assembler unusable due to the 
incompatibility of the instruction format. 
Furthermore, custom instruction sets, which are 
created in the processor, are also unavailable in the 
original assembler. With regards to this matter, 
assembler design techniques are proposed to 
address the assembler’s compatibility issues 
specifically during the ISA modification procedure 
on a soft-core processor. 

This paper will present two assembler design 
techniques that are applied during the development 
of the assembler for a reconfigurable soft-core 
processor. Section II discussed the related research 
being done on the assembler design in 
reconfigurable architecture. The architecture of the 
soft-core processor, which is utilized as the 
processor platform, is explained in details in 
Section 3. Section 4 described both one-pass and 
two-pass assembly techniques and their differences. 
Results and discussion are presented in Section 5 

with the simulation results and also execution time 
comparison between both design techniques. 

2. RELATED WORKS 

 
Instruction program that is created by 

programmers, either by using low-level or high-
level language, would require a compiler or an 
assembler in order to translate the program to a 
machine code. In this case, the processor’s 
assembler is developed using various platforms 
which matched the processor programming 
procedure. The different platforms of assembler 
include Perl [2], eclipse plug-ins [3] and custom-
made lexical and syntactical analyzer generator 
called GALS [4]. All of these cross-assemblers are 
formed as a part of an integrated design 
environment for their respective processor. 
Compiler that is developed for soft-core processors 
such as LEON2 [5] and Picoblaze [6] is designed to 
offer code optimization associated to its specific 
CPU architecture.  

Another method that is widely adopted in 
developing an assembler that is based on the target 
architecture is the architecture description language 
(ADL). Essentially, ADL involved architecture 
modification and successively the development of 
the corresponding assembler. Most of the ADL 
tools’ main objective is to simplify the processor 
design steps together with the supporting compilers 
and simulators [7]. ADL also introduced a 
framework that allows generation of SDK which 
includes compiler, assembler, simulator and 
debugger. All of the software tools are generated 
based on the processor specification and memory 
architectures describes by the ADL [3]. Researches 
have been done on system with ADL such as flat 
architecture description [8], retargettable compiler 
backend [9] and energy dissipation and monitoring 
[10]. 

3. SOFT-CORE RISC PROCESSOR 

The assembler is developed based on a soft-core 
RISC processor architecture called UTeMRISC03 
which is a 16-bit RISC processor that is described 
in Verilog HDL. Essentially, UTeMRISC03 has 
been derived from an earlier design of 8-bit RISC 
processor that was compatible with the popular PIC 
microcontroller architecture. UTeMRISC03 utilized 
Harvard architecture with a total of 33 instruction 
sets available to program the processor [11]. 

The modification processor from 8-bit to 16-bit 
processor involved significant changes being made 
to system busses, registers’ width and other key 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
463 

 

modules such as an arithmetic logic unit (ALU) and 
instruction decoder. To accommodate the expanded 
data bus, the ISA must be modified in order to fetch 
a 16-bit of data from the instruction command. 
Simultaneously, the processor’s program assembler 
has to be re-developed to generate the matching 
machine codes that suit the new ISA format. With 
the re-organization of ISA, there is also opportunity 
to customize or create new instruction sets that 
indirectly demonstrates the capability of 
implementing application specific instruction set 
processor (ASIP) method using a soft-core 
processor. 

3.1 Instruction Set Architecture 

 
The instruction register that was utilized by the 

original 8-bit RISC processor consisted of 12 bits. 
For the UTeMRISC03’s ISA, the width of the IR is 
extended to 22 bits which comprised of 6-bits 
opcode, 12-bit file register address and an option of 
4-bit select bit or 1-bit direction bit as shown in 
Figure 1. In total, there are 64 instruction sets and 
4,096 file registers could be addressed according to 
the new ISA setting. As the processor architecture 
is implemented in FPGA, all modifications are 
made by re-programmed the Verilog code of the 
instruction decoder module. Design verification is 
done through synthesis and implementation process 
to ensure the modified architecture is structurally 
correct. 

 
Figure 1 : Instruction Set Register Format 

 

3.2 Custom Instruction Set Generation 

 
Apart from the ISA expansion, a new instruction 

set is introduced to show the potential of 
UTeMRISC03 processor as a reconfigurable 
processor. Customized instruction sets are 
frequently being adopted to streamline processor 
operations, especially in data-intensive and 
complex tasks. Although instruction sets in a RISC 
processor are basic and simple, the processor’s 
performance could be affected when executing 
complex calculation as more instruction sets are 
required to perform a single operation. 
Optimization of instructions through creating new 
instruction sets could reduce the total clock cycles 
hence improve the overall execution times. 

  For testing purpose, a new instruction set called 
‘multwf’ is created in addition to the existing 
instruction sets. Multiplication process is executed 
first between two 16-bit numbers and the resulting 
32-bits output is added to the pre-defined 
accumulator registers. A current instruction sets that 
is also modified to perform different function from 
its original setting. The ‘swapn’ instruction will 
swap the lower and upper nibble in a file register 
instead of swapping data from a file register to 
another register. The new instruction set has its own 
opcode and operand formatting. ALU module is 
also modified to perform the alternate functions 
once the instructions are fetched from the 
instruction register. Table 1 shows the list of 
instruction set available for UTeMRISC03 soft-core 
processor with shaded row indicate the new 
instruction set (multwf) and the modified 
instruction set (swapn). 

Table 1: Modified Instruction Set List 

Mnemonic Opcode Operand 
swapn f,1 001110 ffff_ffff_ffff_ffff 

multwf f,0 011110 ffff_ffff_ffff_ffff 

 

4. METHODOLOGY 

 
Fundamentally, the decoding process of the 

assembler utilized tokenization process and lexical 
analyzer in order to generate the relevant machine 
code from the assembly program [12, 13]. There are 
two design techniques proposed in this paper in 
order to develop a fully functional code assembler 
for the UTeMRISC03 soft-core processor. The 
implementations of both types of encoding in the 
assembler program model are necessary to 
distinguish the best approach in executing the 
assembler program. As the goal of the assembler is 
to create the object file, the execution time for the 
assembler to encode all the instruction sets are 
measured from processor file initialization to object 
file generation. Comparison is made on the elapsed 
time between the ones-pass assembler with the two-
pass assembler and the result would suggest the 
faster encoding approach in assembler execution. 

The assembler is developed in Visual Basic (VB) 
platform because of its complete development tools 
and a wide range support from users worldwide. In 
the code development, the assembler design applied 
string manipulation functions as the input and 
output file of the assembler are in text format. The 
assembler’s targeted output file is called a 
coefficient (COE) file. The COE file is similar to 
hexadecimal file (.hex) which contained the 
machine codes of the assembly program. However, 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
464 

 

in COE file, the machine codes are arranged with 
COE file syntax which is designated by Xilinx. 

To verify the COE file output, the soft-core 
processor (with the modified architecture) is 
implemented in the FPGA board with a memory 
core that is initialized with the COE file. The data 
in the COE file are loaded into the memory space 
during the memory core initialization. The soft-core 
processor will fetch an instruction from the memory 
core and decoded the command to the instruction 
register. Device simulation is done to observe the 
instruction register in order to verify that correct 
decoding bits are produced from the assembly 
program. 

4.1 Two-pass Assembler Design 

 
In two-pass assembler design, the assembling 

processes include the opcode/operand extraction 
phase (first pass) and subsequently the encoding 
phase (second pass) [14]. In the first pass, the 
assembly program file is analyzed line-by-line to 
identify whether each line of command contained 
either opcode/operands or other elements such as 
labels, comments and blanks. Once the opcode or 
operand is detected, it will be saved in a hash table 
together with its line number (LC) as reference. 
Oppositely, the process will skip to the next line 
when comments or blanks are identified. The 
special hash table is also created to store labels and 
its line count to be used as reference during the 
second pass. When the end-of-file is reached, an 
intermediate file called a listing file is created 
which contained only the line count, opcode and 
operand of the assembly program. The listing file is 
considered an organized and uncluttered version of 
the assembly program that omitted all unrelated 
elements before the encoding process.  

In the second pass, the assembler will reread the 
listing file and directly encodes each line of 
instruction with the help of hash tables that are 
already established during the first pass. By the end 
of the second pass, all the machine codes are 
arranged and saved as the COE file. Figure 2 shows 
the flowchart of two-pass assembler design. 

4.2 One-pass Assembler Design 

 
In the one-pass assembler design, the instruction 

set encoding is executed in a single pass. After he  
tokenization process, each line of instruction is 
encoded immediately by referring to hash tables 
such as the symbol table and the  instruction opcode 
table. Comment and blank lines are ignored and the 
process skips to the next line when both of these 

elements are identified. The encoded opcodes and 
operands are translated to their hexadecimal 
numbers and stored as data in the COE file. Figure 
3 shows the flowchart of the implementation of 
one-pass assembler design. 

4.2.1 Forward Referencing 

 
The implementation of the one-pass assembler 

will inevitably lead to the forward referencing issue 
which occurred during encoding the labels. Under 
normal circumstances, the labels are defined prior 
to it being used in the assembly program. However, 
when a label is detected, but yet to be defined in the 
symbol table, it indicates that the label symbol will 
be used in the later part of the assembly program. In 
order to overcome this problem, the one-pass 
assembler has an additional hash table to store the 
labels and its corresponding line count or literal 
value for reference during the code encoding 
process. 

During the tokenization process, labels are 
recognized either by identifying the assembler 
directive such as ‘EQU’ or the colon symbol which 
trailed the label tag at the first column of the 
instruction program. The labels then are stored in 
the symbol table which consists of a label field and 
a data field which could be a line count number or a 
literal value. 

 When an undefined label is detected, the label is 
stored in the symbol table with flag ‘X’ is marked 
as its data field indicating that the label is yet to be 
defined. The flag ‘X’ will be overwritten with 
correct line count or literal value once the same 
label is identified in the subsequent instructions. 
The assembler also will keep track all of the 
undefined labels and constantly updating its entries 
until all of the label’s data are properly addressed. 
By the end-of-file, the symbol table’s entries are 
supposed to be clear without any ‘X’ flag in the 
data field or else an error message would be 
generated implying that there are unrecognized 
labels that are yet to be addressed. 

4.3 FPGA Implementation 

 
The UTeMRISC03 processor is setup in the 

Xilinx ISE Design Suite for FPGA implementation 
procedures which include modules’ initialization, 
floor planning and timing constraint setup. To store 
all the program instruction in ROM, the COREgen 
section is invoked to instantiate the single block 
memory module with 2048 x 22 bits in size. During 
this process, the COE file is loaded as a memory 
initialization file.  



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
465 

 

Once the machine code resides in the ROM 
module, the UTeMRISC03 processor design is 
implemented using the common FPGA design flow. 
Initially, a behavioral simulation process is 
conducted in order to verify the syntax and the 
functionality of the processor’s architecture without 
any timing information.  The Verilog design files 
then are synthesized, translated, mapped and 
placed-and- routed to generate a netlist file called 
bitstream. The bitstream file is programmed into the 
Spartan-3AN FPGA board using a JTAG 
programmer. To observe the content of the 
processor’s internal registers during the FPGA 
execution, a behavioral simulation process is 
conducted through the ISim The selected internal 
signals can be observed through the ISim waveform 
window to verify the assembly program sequence, 
instruction decoding and the instruction command 
execution. 

5. RESULTS AND DISCUSSION 

 
The assembler is built using the Visual Basic 

platform and Figure 4 shows the graphical user 
interface for the assembler. The interface is made 
with simple and clear layout for the users to easily 
select the appropriate files and review the output 
files once the assembling process is completed. 

 
Figure 4: Graphical User Interface of the Assembler 

 
Firstly, the user is required to select a processor 

opcode file with the extension .op. The processor 
opcode file contained all the instruction sets’ 
mnemonic, opcode and its instruction set types. The 
information in this file is stored in a hash table and 
for references during the tokenization and lexical 
analysis process. The instruction set types will 
indicate the number of operands expected for the 
specified instruction set. Hence, the lexical analyzer 
will ensure that the correct operands are existed and 
matched the instruction set types. The translation of 
the instruction mnemonics to its respective opcode 
are also referred to the processor opcode file.  

The assembly program file is also loaded to the 
assembler. The assembly program file, with 
extension .asm, is a file that contains the source 
code of a program which is written in assembly 

language. The instruction set used in the assembly 
program must adhere to the instruction set list as 
mentioned in Table 1. Users can examine the 
content of both processor opcode and assembly 
program files in Notepad application by clicking the 
‘View’ button. Both opcode file and assembly 
program file are shown in Figure 5. 

 
Figure 5: Assembly Program File (left); Processor 

Opcode File (right) 
 

Button ‘Go’ is pressed in order to start the 
assembling process. Both processor opcode file and 
assembly program file are simultaneously read and 
pass through tokenization and lexical analysis 
process. A status bar indicator at the bottom of the 
interface would indicate the progress during the 
execution of the processes. The elapsed time for the 
assembler operation is displayed in the status bar 
once all of the processes have been successfully 
completed. The elapsed time is measured from the 
start of the input files initiation until the generation 
of the COE file. Figure 6 shows the output files of 
both the listing file (in two-pass assembler) and the 
COE file. To reflect the accuracy of the elapsed 
time, the assembling process is repeated several 
times and the average time is calculated. Table 2 
shows the results of the execution time of the 
assembling process on the designated assembly 
program file. 

 

 
Figure 6: Listing file for Two-Pass Assembler (left) and 

the COE File (right) 

 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
466 

 

Table 2: Results of the Average Execution Times 
Assembler  

Design Technique 
Average  

Execution Times 

One-pass 
Two-pass 

1.16 ms 
2.22 ms 

 
To observe the generated COE file, the ‘Open 

COE file’ button is pressed and the COE file will be 
opened through the Notepad application. User can 
compare and cross check the COE file output with 
the listing file output to verify its accuracy. 
Essentially, both files contained the same data set of 
opcode but in different formatting. Although the 
assembler execution is done on both one-pass and 
two-pass design techniques, the generated COE file 
of both techniques is exactly the same. This is 
because the assembler took the same input files, 
hence the assembling processes are done to the 
same assembly program and using the same 
instruction set list.  

Subsequently, in the FPGA implementation, the 
COE file is loaded into the memory module during 
the ROM generation inside the UTeMRISC03 
architecture. After a successful synthesis process, 
the UTeMRISC03 architecture is translated, 
mapped and placed-and-routed before being 
programmed in the FPGA. Figure 7 shows the 
waveforms of selected internal signals observed 
during the behavioral simulation of the 
UTeMRISC03 processor core. In this case, the test 
program’s instruction flow is monitored to verify 
whether the RISC processor is capable to fetch, 
decode and execute all the instructions correctly 
and in a timely manner. 

As shown in Figure 7, the test program is 
implemented by the RISC processor core is in a 
correct sequence as defined in the coefficient file. 
All instructions are executed in a single clock cycle 
with the exception of ‘goto’ instruction which 
required two clock cycles (GOTO and NOP 
instruction). The assembler has successfully 
assembled the assembly language program to its 
equivalent hexadecimal format which is readable by 
the RISC processor core. The black circles in the 
Figure 7 indicate the new instruction that is created 
during the custom instruction set generation phase. 
The ‘goto’ instruction is also functioning properly 
as the PC register is constantly updated in 
accordance with the program flow. 

With regards to the inner working operation of 
the UTeMRISC03 core, the instructions are fetched 
from the ROM address pointed by the PC register. 
Then, the machine code is decoded in order to 
identify its opcode and operand. The instruction 

decoding process is performed by the decoder 
module which is heavily reliant to the instruction 
set architecture. As a consequence, both instruction 
opcode file and instruction decoder module in the 
UTeMRISC03 core must have an identical set of 
instruction opcode in order to successfully decode 
and assemble any test program during the FPGA 
implementation. After the operands are identified, 
whether it is a literal value, file register address or 
direct memory address, the operands are fed to the 
ALU module for command execution. The output 
results are observed as internal signals and could be 
sourced out to the input/output port depending on 
the processor core design. 

From the execution time recorded for both one-
pass assembler and two-pass assembler, it is clear 
that one-pass approach to the assembler design 
yielded the fastest execution time in generating the 
listing file and the coefficient file. The obvious 
advantage of one-pass assembler is the ability to 
process the assembly program file in single-read 
procedure that ultimately halved the execution time 
required by the two-pass assembler. The forward 
referencing issue is solved by using additional hash 
tables that flagged any of the yet-to-be-defined 
symbols. Incidentally, the resource requirement for 
one-pass assembler execution is significantly higher 
due to more allocation is needed to generate the 
required hash tables. 

On the other hand, two-pass assembler offered 
more organized and simpler assembling process, 
albeit delays in the execution time. Symbol 
identification and table of references are completed 
in the first pass and it makes the assembling process 
in the second pass ensued smoothly. Nonetheless, 
the longer execution time is contributed by the 
multiple read/write processes on the listing file and 
also to generate the coefficient file towards the end 
of the process. 

6. CONCLUSION 

 

A customized assembler is an important 
component when designing a RISC processor core 
using the ASIP design methodology. The 
modification of the processor’s ISA that is tailor-
made for a specific application would directly 
improve certain aspects of the processor’s 
performance. However, the ISA modification would 
require a compatible assembler and also an 
instruction decoder module with identical data set 
of instruction opcodes. The assembler presented in 
this paper has the ability to adopt the changes made 
in the ISA and also to include new instruction set 
through the processor opcode file. One-pass and 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
467 

 

two-pass design techniques have been adopted 
during the assembler development and one-pass 
assembler provides the quickest assembling time in 
order to generate the coefficient file. The coefficient 
file is loaded in ROM module into the 
UTeMRISC03 core and the implementation on the 
FPGA chip has produced correct program execution 
of the assembly program file. Overall, the design 
techniques adopted in the assembler development 
would be a good starting point for future 
development of a customizable and full-scale 
compiler for an ASIP processor design. 

ACKNOLEDGEMANT: 
 

This work was supported by the Universiti Teknikal 
Malaysia Melaka and Ministry of Education 
Malaysia through the research grant number 
PJP/2012/FKEKK(45C)/S01050. 
 

REFRENCES:  
 

[1] I. Skliarova, T. Vallejo, V. Sklyarov, A. 
Sudnitson, and M. Kruus, "Solving 
Computationally Intensive Problems in 
Reconfigurable Hardware: A Case Study", 
Journal of Convergence Information 

Technology, vol. 8, 2013. 

[2] K. Nakano, K. Kawakami, K. Shigemoto, Y. 
Kamada, and Y. Ito, "A Tiny Processing 
System for Education and Small Embedded 
Systems on the FPGAs", in IEEE/IFIP 

International Conference on Embedded and 

Ubiquitous Computing, EUC '08 2008, pp. 
472-479. 

[3] J. C. Metrolho, C. A. Silva, C. Couto, and A. 
Tavares, "Retargetable frameworks for 
embedded systems exploration", in IEEE 

International Conference on Industrial 

Technology, 2006, pp. 2223-2227. 

[4] L. Taglietti, J. O. C. Filho, D. C. Casarotto, O. 
J. V. Furtado, and L. C. V. dos Santos, 
"Automatically retargetable pre-processor and 
assembler generation for ASIPs", in The 3rd 

International IEEE-NEWCAS Conference, 
2005, pp. 215-218. 

[5] Y. Li, X. Zhu, W. Zhang, C. Wang, and Z. 
Deng, "Research and design of CPU for 
teaching based on SPARC V8", Journal of 

Theoretical and Applied Information 

Technology, vol. 50, pp. 352-357, 2013. 

[6] A. Z. Mansoor, M. R. Khalil, and O. A. Jasim, 
"Position control of DC servo motors using 
soft-core processor on FPGA to move robot 
arm", Journal of Theoretical and Applied 

Information Technology, vol. 32, pp. 99-106, 
2011. 

[7] P. Karlstrom, S. Loganathan, F. Akhlaq, and 
D. Liu, "Automatic assembler generator for 
NoGap", in Conference on Ph.D. Research in 

Microelectronics and Electronics (PRIME) 

2010, pp. 1-4. 

[8] L. Ghica, B. Ditu, and N. Tapus, "Automatic 
Generation of Architecture Model for 
Reconfigurable Build Tools", in 19th 

International Conference on Control Systems 

and Computer Science (CSCS), 2013, pp. 142-
146. 

[9] F. Brandner, D. Ebner, and A. Krall, 
"Compiler generation from structural 
architecture descriptions", in International 

Conference on Compilers, Architecture, and 

Synthesis for Embedded Systems, 2007, pp. 13-
22. 

[10] K. Ko, "ADL-Driven Simulator Generation for 
Energy Dissipation Tracing and Monitoring," 
in Future Information Technology, 

Application, and Service. vol. 164, J. J. Park, 
V. C. M. Leung, C.-L. Wang, and T. Shon, 
Eds., ed: Springer Netherlands, 2012, pp. 459-
466. 

[11] A. J. Salim, S. I. M. Salim, N. R. Samsudin, 
and Y. Soo, "Instruction Set Extension 
Through Partial Customization of Low-End 
RISC Processor", Australian Journal of Basic 

and Applied Sciences, vol. 7, pp. 678-687, 
2013. 

[12] A. V. Aho, M. S. Lam, R. Sethi, and J. D. 
Ullman, Compilers: Principles, Techniques, & 

Tools, 2nd ed.: Addison Wesley, 2007. 

[13] K. Cooper and L. Torczon, Engineering a 

Compiler, 2nd ed.: Morgan Kaufmann, 2011. 

[14] D. Solomon, Assemblers and Loaders: Prentice 
Hall, 1993. 

 



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
468 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Flowchart of the Two-Pass Assembler Design 
 

 
 

Figure 3: Flowchart of the One-Pass Assembler Design  



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
469 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

 

 

 

 

 
Figure 7: Simulation Results of the UTeMRISC03 FPGA Implementation  

 

 
 


