
Journal of Theoretical and Applied Information Technology 
 20

th
 June 2014. Vol. 64 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
413 

 

GA AND ACO TECHNIQUES FOR THE ANALOG 

CIRCUITS DESIGN OPTIMIZATION 
 

1 
BACHIR BENHALA,   

2 
OMAR BOUATTANE 

1 Sensor Electronic & Instrumentation Group, LEAB, Faculty of Sciences,  
University of Moulay Ismaïl, B.P. 11201, Zitoune, Meknes, Morocco. 

2  Laboratory of Signals, Distributed Systems and Artificial Intelligence, LSSDIA 
University Hassan II Mohammedia Casablanca, ENSET, B.P.159, Mohammedia, Morocco.  

E-mail:  1 benhalab@yahoo.fr ,  2 o.bouattane@gmail.com  
 
 

ABSTRACT 

 
In this paper we propose a comparison between two population-based metaheuristic techniques, the Genetic 
Algorithm (GA) and the Ant Colony Optimization (ACO), to make easier the sizing of analog circuits with 
optimal objective functions. The paper details the corresponding algorithms and highlights the optimal 
design of a positive second generation current conveyor (CCII+) and an active filter circuit. The computing 
time and robustness of both algorithms are checked. SPICE simulation is used to validate the obtained 
sizing/performances. 

Keywords: Metaheuristic, Ant Colony Optimization, Genetic Algorithm, Current Conveyors, Second Order 

Low-pass Filter. 

 
 

1. INTRODUCTION  

 
Over the past decade, important progress in the 

combinatorial problem resolution has been achieved 
with the appearance of a new generation of 
powerful and approximate optimization methods, 
known as metaheuristics [1]. These methods lead to 
solve real-world problems within an acceptable 
length of time. They always offer “good” 
approximation of the “best” solutions for 
optimization problems [2]. The microelectronic 
field development was also investigated by those 
methods. Thus, some (meta)heuristics were used by 
the designers to optimize the sizing of the analog 
components automatically, such as Tabu Search 
(TS) [3], Genetic Algorithms (GA) [4], Local 
Search (LS) [5], Wasp Nets (WN) [6], Particle 
Swarm Optimization (PSO) [7] and recently Ant 
Colony Optimization (ACO) [8,9]. 

The discrete components are still preferred in 
analog active filter design. In order to reduce the 
costs and make the design more reliable, discrete 
components such as resistors and capacitors are 
chosen from the industrial series values such as 
E12, E24, E48 series. Performing an exhaustive 
search on all possible combinations of preferred 
values for obtaining an optimized design is not 
feasible. Therefore, intelligent search methods must 

be developed that requires short computation time 
with high accuracy. 

In this work, we focus on the use of the two 
algorithms:  Genetic Algorithm and and Ant Colony 
Optimization; to solve typical analog circuit sizing 
problems. Two application examples are 
considered, a positive second generation current 
conveyor and a second order low-pass filter. The 
aim is to compare these two techniques in terms of 
results quality, robustness and computing time. The 
SPICE simulations are given to show the validity of 
obtained results. 

The remainder of the paper is structured as 
follows: The second section presents an overview 
of the used algorithms. The third section illustrates 
the two application examples and the fourth section, 
deals with the simulations and comparison results. 
The final section is devoted to some concluding 
remarks. 

2. ACO AND GA: A BREF OVERVIEW 

2.1 Ant Colony Optimization technique 

The ACO technique is inspired by the collective 
behavior of deposition and monitoring of some 
traces as it is observed in insect colonies [10], such 
as ants. It is for example well known that ants 
deposit pheromone on the ground in order to mark 
some favorable paths that should be followed by 
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other members of the colony. The ants behavior is 
used by the scientists to model some optimization 
problems and sort out some optimal solutions. As 
an example, for the minimal path finding problem, 
the modeling approach is established as follows: 

• For solving such problems, ants randomly select 

the vertex to be visited. When an ant k is in the 

vertex i, the probability for going to the vertex j is 

given by the following expression [11, 12]: 
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J is the set of neighbours of the vertex i 

of the kth ant, ij
τ  is the amount of pheromone trail 
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where 
ij

d is the distance between vertices i and j. 

• The pheromone rate values are updated during 

each iteration by all the m ants that have built a 

solution in the iteration itself. The pheromone 

rate ij
τ

, which is associated with the edge joining 

vertices i and j, is updated as follows: 
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Where ρ is the evaporation rate, m is the number 

of ants, and )(tk

ijτ∆  is the quantity of pheromone 

laid ‘deposited, or dropped of’on edge (i, j) by ant 

k: 
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if ant k used edge (i, j)  

in its tour, 

 

otherwise 
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Q is a constant and Lk is the length of the tour 

constructed by the ant k. 
 
The pseudo code of the ACO procedure is as 
follows: 

Random initialization of the pheromone value 

Do 

  For each iteration 

   For each ant 
          Compute of the probability P according to (1) 

          Determine the P
max

 

    End  

          Compute OF 

  End  

         Deduce the best OF 
         Update pheromone values according to (3) 

End  

    Report the best solution 

END 
ALGORITHM 2. PSEUDO CODE OF ACO 

2.2 Genetic Algorithm 

The GA find their origins in the biological 
processes of survival and adaptation. Its principle 
consists of sampling a population of potential 
solutions. A population of individuals is, initially, 
randomly generated. The GA performs then 
operations of selection, crossover and mutation on 
the individuals, corresponding respectively to the 
principal of survival of the fittest, recombination of 
genetic material and random mutation observed in 
nature [13]. The optimization process is carried out 
through the generation of successive populations 
until a stop criterion is met. 

To implement the genetic algorithm technique, 
the following parameters need to be selected are 
[14]: 

• Population size,  
• Probability of crossover, 

• Probability of mutation. 
 
The pseudo code of the GA procedure is as follows: 

 Random initialization of the population 

max_fitness := 0 

Do 

For each member chromosome 

fitness := Fitness_Evaluation (chomosome) 
           If fitness > max_fitness 

max_fitness := fitness 

fittest_solution = chromosome 

           End if 

End for 

While generation < max_generations 

offspring := Selection (parents)  
fitness := Fitness_Evaluation (offspring) 

If fitness > max_fitness 

max_fitness := fitness 
fittest_solution = offspring 

End if 

savefittest_solution 

END 
ALGORITHM 1. PSEUDO CODE OF GA 
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3. APPLICATION TO THE OPTIMAL 

DESIGN OF ANALOG CIRCUITS 

In this section we present the two circuit’s 
optimization subject:  The CCII+ and a second 
order low-pass filter. 

3.1 Performance sizing of a CMOS CCII+ 

The CMOS positive second generation current 
conveyor (CCII+) circuit is shown in the following 
figure: 

Figure 1: A positive second generation current conveyor  

(CCII+) 

The objective functions to be optimized are: 

• RX: the X-port input parasitic resistance to 
be minimized. 

42
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• fci: the current high cut off frequency to be 
maximized. 
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Cgs, Cgd, gm and go refer to the parasitic grid to 
source capacitance, the parasitic grid to drain 
capacitance, the transconductance and the 
conductance of the MOS transistor, respectively. 

The constraints of the problem, correspond to the 
conditions of saturation of transistors, are presented 
by expressions (7) and (8): 
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where, COX, VTP, VTN, μN and μP are technological 
parameters. 

The Bias current Ibias=100 μA and the Supply 
voltages used are  VSS/VDD = -2.5V/2.5V.  

The geometric variables that will be used to 
optimize performances of a CMOS positive second 
generation current conveyor (CCII+) are the MOS 
transistors sizes. Precisely, they are the channels 
lengths (LN, and LP) and gates widths (WN and 
WP) while respecting the saturation conditions of 
the transistors MOS.  

 
3.1 Performance Optimization Of A Second 

Order Low-Pass Filter 

The considered circuit is a low pass filter 
formed by the second-order six resistors and two 
capacitors. The schematic of this filter is given in 
Figure 2. 

 
 

Figure 2: Second order low-pass filter 

 

The cutoff frequency ω  and the selectivity 

factor Q of filter, which depend only on the values 

of the passives components, are given as follows: 
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The specification chosen here is 
o

ω = 10 000 rad/s   

(f = 1591.55 Hz) and 707.0=Q for reduced peak 

on low-pass response.  

 
The values of the resistors and capacitors to 

choose must be able to generate ω  and Q   

approaching the specified values. For this, we 
define the Total error which expresses the offset 
values, of the cut-off frequency and the selectivity 
factor, compared to the desired values, by: 

 

QerrorTotal ∆+∆= 5.05.0_ ω  
(11)
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The objective function considered is the total 

error. The decision variables are the resistors and 
capacitors forming the circuit. Each component 
must have a value of the standard series (E12, E24, 
E48 or E96). The resistors have values in the range 
of 103 to 106Ω. Similarly, each capacitor must have 
a value in the range of 10-9 to 10-6F. 

4. SIMULATIONS AND COMPARISON 

RESULTS 

In this section we applied the two algorithms 
(GA and ACO) to perform optimization of the 
CCII+ and a second order low-pass filter. 

 
The studied algorithms parameters are given in 

Table 1 with a generation algorithm of 1000. The 
optimization techniques work on MATLAB codes 
and are able to link SPICE to measure 
performances. 

Table 1: The  algorithm parameters 

  
 A

C
O

 

Number of Ants 100 

Evaporation rate (ρ) 0.1 

Quantity of deposit pheromone (Q) 0.2 

Pheromone Factor (α) 1 

Heuristics Factor (β) 1 

G
A

 

Population size 100 

Crossover Probability 0.9 

Mutation Probability  0.0001 

 

The simulations are performed using the 
technology of 0.35 µm CMOS from AMS.  

 
 

4.1 The Current Conveyor 

 Tables 2 and 3 give optimal results 
obtained by using the ACO and  GA algorithms for 
the parameters and the circuit’s performances for 
CCII+. 

Table 2: Optimization and simulation results for Rxmin 

 
LN 

(µm) 

WN 

(µm) 

LP 

(µm) 

WP 

(µm) 

Rx min (Ω) 

Opt.  Sim. 

ACO 0.55 20.76 0.37 30.00 443 464 

GA 0.57 15.83 0.39 28.51 512 548 

Table 3: Optimization and simulation results for fci
max

 

 
LN 

(µm) 

WN 

(µm) 

LP 

(µm) 

WP 

(µm) 

fcimax (GHz) 

Opt. Sim. 

ACO 0.55 05.10 0.35 08.91 1.792 1.787 

GA 0.60 05.98 0.36 10.67 1.541 1.546 

 

Figures 3 and 4 show the SPICE simulation 
results (Rx and fci) using the obtained optimal 
values by the ACO and GA algorithms for CCII+. 
We notice that simulation results are in good 
agreement with those obtained using the two 
algorithms. 

 

Figure 3: Rx-pole resistance (ohm) vs. frequency (Hz) 
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Figure 4: Current gain (dB) vs. frequency (Hz) 

4.2 The Second Order Low-Pass Filter 

The optimal values of resistors and capacitors 
forming the considered filter and the performance 
associated with these values for the different series 
are shown in Tables 4 and 5 respectively for the 
GA and the ACO algorithms. 

Table 4: Values of components and related filter 

performance for GA 

 E12 E24 E48 E96 

R1 (KΩ) 47.0 51.0 53.6 54.9 

R2 (KΩ) 100 91.0 95.3 97.6 

R3 (KΩ) 47.0 51.0 51.1 51.1 

R4 (KΩ) 100 91.0 95.3 93.1 

R5 (KΩ) 10.0 9.10 9.53 9.76 

R6 (KΩ) 47.0 47.0 48.7 49.9 

C1 (nF) 8.20 7.50 7.87 7.68 

C2 (nF) 4.70 4.70 4.87 4.99 

∆ω 0.0773 0.0808 0.0234 0.0121 

∆Q 0.2045 0.0478 0.0506 0.0302 

Total  

error 
0.1409 0.0643 0.0370 0.0212 

Table 5: Values of components and related filter 

performance for ACO 

 E12 E24 E48 E96 

R1 (KΩ) 10.0 9.10 8.66 8.66 

R2 (KΩ) 2.20 2.20 2.26 2.26 

R3 (KΩ) 5.60 6.20 5.90 6.04 

R4 (KΩ) 3.90 3.90 4.22 4.22 

R5 (KΩ) 6.80 6.80 6.81 6.98 

R6 (KΩ) 1.20 1.30 1.27 1.24 

C1 (nF) 15.0 13.0 14.0 13.7 

C2 (nF) 56.0 56.0 59.0 59.0 

∆ω 0.0079 0.0115 0.0006 0.0007 

∆Q 0.0438 0.0612 0.0081 0.0034 

Total 

 error 
0.0259 0.0364 0.0044 0.0020 

Notice that for both algorithms, the accuracy of 
the spacing values associated to the components 
affect significantly the performance of the filter. 
Indeed, the values of the E96 series are the smallest 
total error compared to other series. For all series, 
the ACO returned values of components that have a 
total error smaller than that given by the GA. 

 
In order to check the validity of the results, the 

following figure shows the PSPICE simulation in 
the filter gain for the optimal values of the E96 
series for the ACO and GA. The cut off frequency 
are equal to 1593 Hz for the ACO and 1610 Hz for 
the GA.  

Figure 5: Frequency responses of second order low-pass 

filter 

The following table shows the comparison 
between the theoretical values and those practices 
for the error on the cut-off frequency. 

Table 6: Comparisons 

 GA ACO 

 Opt. Sim. Opt. Sim. 

∆ω 0.0121 0.0116 0.0007 0.0009 

 
From the results presented in Table 6, we notice 

that simulation results are in good agreement with 
those obtained using ACO and GA. 

 

4.3 Computing Time And Robustness 

To complete the comparison, we check the 
running time and the convergence rate of the two 
algorithms. The convergence rate is a robustness 
test which shows the ability of the algorithm to find 
the same result for different executions. 

 
Table 7 correspond to a comparison between 

computing times (average running times for 100 
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runs of each algorithm) of the optimization 
algorithms using a Pentium R - dual Core CPU 
T4500 - 2. 3GHZ - 2Mo RAM PC. 

Table 7: Comparison of the computing time (seconds)  

 GA ACO 

Rx min 23.47 112.21 

fci max 29.17 123.48 

Total error (for E96) 15.72 049.73 

 

We notice that the GA algorithm is faster than the 
ACO algorithm.  

In order to check the convergence rate, the 
algorithms are repeated a hundred times for 
optimizing the Rx, fci and the Total error (for E96) 
objectives. In the Figures 6, 7 and 8 we present the 
obtained results (respectively for Rx, fci and Total 

error) for the ACO and GA algorithms. 

 
Figure 6: Results obtained for 100 generations for Rx 

 

 

Figure 7: Results obtained for 100 generations for fci 

 

 

Figure 8: Results obtained for 100 generations for Total 

error (for E96) 

The good convergence ratio can be easily 
noticed, despite the probabilistic aspect of the two 
algorithms. We can, also, notice that the robustness 
of the ACO algorithm is better than the robustness 
of the GA algorithm; in fact the convergence rates 
to the same optimal value are 47% and 12% 
respectively for ACO and GA. 
 

For an overall comparison, the following table 
resumes and compares the main features of the 
ACO and GA algorithms. 

Table 8: Performances comparison between ACO and 

GA algorithms 

Algorithms 
Running 

time 

Robustness Optimum 

ACO - + + 

GA + - + - + 

‘+’: good, ‘- +’: medium and ‘-’:low. 

5. CONCLUSION 

We presented in this paper two metaheuristic 
optimization techniques that are the Ant Colony 
optimization and Genetic Algorithm for optimal 
analog circuits design. Both techniques were used 
for the optimal sizing of two analog circuits; a 
CMOS second generation current conveyor and a 
second order low-pass filter. It has been shown that 
ACO algorithm offers better results in terms of 
optimality and robustness. The GA is faster and 
requires less algorithm-parameters to handle. 
Accordingly, the choice between these algorithms 
will depend on the desiderata of the designer. 
However, our results suggest that a hybrid 
algorithm consisting of at least two techniques, one 
taking care of optimum quality, the other taking 
care of running time, is a promising research 
direction. 
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