
Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

PARALLELIZED HIERARCHICAL EXPECTED MATCHING

PROBABILITY FOR MULTIPLE SEQUENCE ALIGNMENT

 1
KEDHAR M,

 2
 DR. M. RAJASEKHARA BABU,

 3
MAYANK G,

 4

ABHINIVESH M

1Student, Department of Computer Science ,VIT University, Vellore

 2Associate Professor, Department of Computer Science ,VIT University, Vellore
3Student, Department of Computer Science ,VIT University, Vellore
4Student, Department of Computer Science ,VIT University, Vellore

1kedhar1992@gmail.com, 2mrajasekharababu@vit.ac.in,3mayankgarg121@gmail.com
4 abhiniveshmahto@gmail.com

ABSTRACT

Sequence alignment of two or more than two biological sequences such as protein, DNA
(Deoxyribonucleic acid) or RNA (Ribonucleic acid) is called MSA (Multiple Sequence Alignment).
Sequence homology can be inferred from the resulting MSA. Existing System uses dynamic programming
technique which suffers from exponential growth of time as the sequence grows. A Hierarchical Expected
Matching Probability (HEP) Matrix scoring technique improves accuracy but it consumes more time. This
paper presents an implementation of HEP on GPU’s to speed up the Multiple Sequence Alignment (MSA).
The experiment results shown that there is 25% accuracy of MSA and also 4% of speedup.

Keywords: Multiple Sequence Alignment, Hierarchical Expected Matching Probability, Protein Residue

Conservation, Scoring Matrix, Protein And DNA Sequence, Heterogeneous Environment

1. INTRODUCTION

Sequence alignment of two or more than two

biological sequences is called MSA (Multiple
Sequence Alignment) [1]. MSA is one of most
quickest and faster approach in aligning the
sequences [33]. It is used to assess the future
genetic database based on the existing sequences
[1], [33]. It is a computational procedure for
aligning the sequences [33]. The accuracy of MSA
is essential because a lot of Bioinformatics
techniques and procedures are addict MSA result
[3].If the current MSA runs on sequential
programming language [4], [5]. It suffers from two
problems. (1).The user cannot break the work into
several tasks. (2) The overall computation time is
increased. Most probably it relies on a single core
processor. The increase in the number of cores has
laid a foundation for parallel environment that
address several problems [36]. It got a chance to
split the work into several tasks [36]. Each task is
performed by the individual core that reduces the
execution time [34]. The further increase in cores it
laid the foundation for Graphical Processing Unit
(GPU) that contains thousands of cores which
raises the power of computation [2][31] . It reduces
the overall time complexity [31]. The intent of this
paper is to parallelization of a Multiple Sequence

Alignment (MSA) with Hierarchical Expected
Matching Probability (HEP) on Heterogeneous
environment to speed up the process of alignment
[37].

.

2. RELATED WORK

MSA is a popular approach that is used to
understand the behavior of a newly found gene with
the existing sequences [3], [28]. Sequence
alignment algorithms are used to find relationship
among DNA sequences [29]. These alignment
algorithms are broadly classified into two categories
Pair wise and MSA algorithms [29]. The main
functionality of Pair wise sequence alignment is to
identify the similar pattern in two sequences .In
Multiple Sequence alignment algorithm the
functionality is to identify the similar pattern of two
or more sequences of DNA[29],[36]. The definition

of Multiple Sequence Alignment is as follows.

=

=

=

=

),......,,(

),.....,,(

),....,,(

:

21

2222212

1112111

rnrrrr

n

n

aaaA

aaaA

aaaA

A
M

 (1)

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

The resulting aligned sequences will be in the form
of

=

=

=

=

),(

),,,(

),,,(

:

*

,,

*

2

*

1

*

*

2

*

22

*

21

*

2

*

1

*

12

*

11

*

1

rLrrr

L

L

aaaA

aaaA

aaaA

A

LL

M

K

K

 (2)

Currently MSA are implemented with the help of
scoring methods such as sum of pair method,
Valdar’s and Trident method, Smith’s prima
method and many more.

2.1 Sum Of Pair Method

The Sum of Pairs (SP) scoring method is as
follows Given A set of N aligned sequences each of
length L in the form of a L x N MSA alignment
matrix M, A substitution matrix that gives the
score s(x, y) for aligning two characters x,
y[29],[30] .

Scoring Formula

()xS = ())(),,(xsxsS
j

n

i

n

ij
i∑ ∑

≠

 (3)

Where

i
S (x) = amino acid at column x in the

th
i

sequence (a).

j
S (x) = amino acid at column x in the

th
j

sequence (b).

)()(bSaS
ji

 = score aligning two amino acids a

and b.

The disadvantage of the sum of pair method is their
inability to use some relevant information about the
local variation region that appears across multiple
sub trees.

2.2 VALDAR’S AND TRIDENT METHOD

The VALDAR’S and Trident Method scoring
methods is as follows .It resolves the limitations of
existing methods by proposing a conversation
score. The conversation score formula [29] is
mentioned in figure (4).

))()(()(xSxSMwwxs
jij

n

i

n

ij

i∑∑
>

= λ (4)

Where n is the sequence length,

 λ scale to range[0,1]

j

n

i

n

j

i
ww∑∑

>

=

1

/1λ (5)

i

w weight of sequence
i

S

j

w weight of sequence
j

S

The disadvantage of this method is inconsistency in
calculating the sum of score method. Trident has
generalized the above formula in calculating the
score matrix [28].

2.3 SMITH PRIMA METHOD

Smith’s Pima is an ad-hoc scoring method

that was developed to measure amino acids
assembly quality by pattern induced multiple
sequence alignment technique [27]. The
advantage of smith prima method is very
reliable and robust which describes to combine
Amino acid class having substitution scoring
matrix. The above said scoring methods are
used to find an optimal multiple sequences.
The Hierarchical Expected Matching
Probability (HEP) is developed based on the
above specified methods [29]. With the help of
above three specified methods this paper tried
to develop HEP method that optimizes the
overall complexity of the previous specified
methods. The developed HEP method runs on
different environments such as heterogeneous
environments under various samples of input
[37]. This paper evaluates the total time
required to execute those sequences in
sequentially first [29]. It tried to implement in
CPU environment and compare both the
results in terms of time complexity. Later on
our work has been extended to implement the
HEP method in GPU environment also that
provides better enhancement in terms of
performance of time and power issues [37].

To overcome the disadvantage of the
sequential programming languages the
developers used microprocessors [10]. The
microprocessor are based on a single
processing unit that improves the performance
and cost reduction [8],[9],[10]. The design
methodology in microprocessor is having
multiple processing units called cores [7], [11].
This new interest in parallel program
development has been called the “concurrency
revolution” [12].The two main methodologies
that are used to parallelize sequential
applications are Auto parallelization and
parallel programming [13], [14]. The main

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

working principle of the parallel programming
languages is to divide the give problem into
the set of task [13]. Each task is carried out by
the individual core parallel so that the overall
computational complexity is reduced[16]. To
address the parallel programming we use
OPENMP for shared memory and MPI for
distributed memory [7],[15],[16]. The
OPENMP multithreading interface is
especially designed for high performance
computing [17], [18]. With the above said
specifications we can improve the performance
when compared with the sequential
programming. The drawbacks are more heat
dissipation and power consumption.

The further advancement in increasing the
number of cores, A new paradigm in the
programming languages has paved a powerful
tool in the present generation [39]. To
overcome the problems of parallel
programming that is heat dissipation and
power Consumption is CUDA [36]. The
developers of the CUDA parallel programming
model is carried out by NVIDIA [23], [24],
[25]. It is started in the year 2006. The major
goal of this CUDA programming languages is
to achieve high performance and optimizes the
time and space complexity with the previous
existing methodologies [39]. Computing the
special consideration with the tools available
which named as CUDA [20], [21] tool for
implementing a parallel computing
environment in the Graphical processing
unit(GPU). Due to several advantages with
low cost option to achieve very powerful and
efficient power gains over CPU
approaches[19] and Also we get a doubled or
tripled folded speedup of GPU compared to a
general CPU is already obtained[20],[21],[22].
The programming of CUDA is scalable
parallel programming which together includes
barrier synchronization, shared memories and
grouping of threads parallel. The rest of the
paper is organized as follows in section 3 this
paper explains proposed HEP method and in
section 4 this paper explains the HEP method
in CPU using OPENMP programming
concepts and in GPU using CUDA
Programming languages[29]. In section 5 this
paper compares results of HEP method in both
the environments and in section 6 the paper
explains conclusion.

3. DESIGN METHODOLOGIES:

Multiple sequence alignment with HEP
scoring technique gives better performance in
sequential CPU implementation for alignment of
sequences. This paper suggest MSA with HEP in
parallel with OPENMP and CUDA. OPENMP
supports Multiple Instruction and Multiple Data
(MIMD) and Compute Unified Device Architecture
(CUDA)[20],[21] .Support Single Instruction and
Multiple Data(SIMD) but they provides different
level of parallelism. This paper s runs the MSA
with HEP scoring technique both in OPENMP and
CUDA and compare the results in terms of
performance and efficient for MSA[17],[40]. This
paper developed a metric (Hierarchical Expected
Matching Probability (HEP)) that measures the
chance of residual mutations. It also improves the
biological correctness for aligning the MSA results
[32]. It is a reliable consistent and powerful for
aligning the sequences rather than other grading
metrics[29]. The probability of getting a residue
from one residue to another residue is very less.
Among given sequences the chance of matching
from sequence in to column is k-product. It defines
the multiple times that seems residue at one
particular location. It approaches that the
probability of k-product is zero. It shows that event
may occur as k-step is increasing[29][30]. It grows
conversely with comparison to matching
probability function. In order to stop some
unrealistic alignments this scoring function should
penalize some gap insertions. Hence MSA
algorithm optimizes the residue columns. This
paper chooses a flexible scoring metric called HEP.
It finally quantifies the residue matching
conversation that operates with random matching
probability function.

3.1 WORK FLOW OF OPENMP

An OPENMP is an API for writing Multithreaded
Applications[41]. It is a set of compiler directives
and library routines for writing parallel
applications[42]. It shares the address by
communicating the threads variables. The Block
diagram of OPENMP programming model is
shown in the Fig 1. If follows fork-join parallelism
[1]. The parallelism is introduced on sequential
programming code to achieve the better
performances [42]. To implement parallelism on
sequential codes one should use OMP directives.
To implement the proposed HEP method the
workflow is shown in the FIG1. The workflow
addresses that the division of the core into parallel
regions[43]. Each parallel region is designated to a

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

particular task. Each task is carried out by an
individual thread parallel so that overall execution
time is reduced and optimizes the performance(1).
In the proposed HEP we are having four modules
namely MATRIX, SCORING, TRACEBACK and
printing the ALIGNED sequences. Each module
specified in HEP are carried out by an individual
thread parallel(1). When each thread completes its
execution it calculates the overall execution time
and speedup the process of alignment.

Fig1: OPENMPIMPLEMENTATIONWORKFLOW

3.2 WORK FLOW OF CUDA:

CUDA (Compute Unified Device
Architecture) is parallel computing platform created
by NVIDIA corporation[38]. It is designed for
graphical processing unit (GPUs) to enhance better
performance. It overcomes the problem of MPI
such as scaling ability due to serialization and
synchronization phases that increases with core
count [46]. It provides an extension to c ANSI to do
heterogeneous computing. The Fig 2 shows the
CUDA implementation workflow. The flow of the
data in CUDA is classified into two categories. The
first flow of data represents the flow among the
multithreads. The second flow represents the flow
within the GPU [45]. These multithreaded
programs are represented as blocks. Each block is
designed for a particular task and work independent
of each block. Based on the number of cores
available on the GPU the blocks are classified
according to it. The four blocks that are represented
in multithreaded program namely block0, block1,
block2, block3. If the number of cores are two in
GPU then each block can execute in one core as we
are having four blocks, two blocks can execute
simultaneously on each core. Similarly if we
implemented in 4-core GPU architecture all the
blocks can be executed simultaneously. The CUDA
tool used to perform parallel sparse matrix
computations.

Fig2 : Cuda Implementation Workflow

3.3 GPU COMPUTATIONAL MODEL

The FIG.3 shows the computational model of GPU.
The configuration of GPU systems are purely based
on the hardware of the system. Most of the GPU
systems come with Tesla C2070 and Single
Instruction Multiple data (SIMD) that are organized
into a Symmetric Multiprocessor. In this all the
threads are grouped into blocks and blocks are
organized into Grid. Each block is assigned serially
to the symmetric multiprocessor and each block are
divided into SIMD groups called WRAPS [45].
Computations on the GPU are demonstrated in the
code as explicit kernels. CUDA code is broadly
classified into host code and device code. The host
code executes on (CPU) thread and device code
that executes in (GPU) threads [39].

Fig3:Heterogenous Computing Model

4. IMPLEMENTATION

This paper implements the Multiple

Sequence Alignment using HEP method. First this
paper implements sequentially on CPU and
calculates the execution time. The specifications

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

that are required to run the sequential code parallel
on CPU is OPENMP and GPU is CUDA.

4.1 Implementation Of Openmp

The method of HEP on MSA can be done
using OPENMP. The parallelism in OPENMP is
done using shared memory. This method consists of
four parts. The first part is generation of matrix
which is based on the input sequences. The second
part is scoring ,it is computed by HEP scoring
method for aligning of sequences. The third part is
trace back that performs diagonal adjustment of the
matrix. The fourth part specifies the printing of the
aligned sequences with optimal sequence length.
All these parts are executed simultaneously based
on the number of cores available in the system.

4.2 Implementation Of Cuda

The implementation of HEP on MSA can be
done in the heterogonous computing using CUDA.
In this CUDA the code is classified into two parts
such as host code and device code. All the specified
modules such as matrix, scoring, trace back are
written in device mode. The host mode issues a
kernel call to the GPU after all the functions are
performed again the GPU sends the results to the
CPU and print the aligned sequences.

5. RESULTANALYSIS

This paper compares the results of the

proposed HEP method for aligning of multiple
sequences on different platforms for various length
of sequences and represented in the forms of
Graphs. The FIG 4 compares the execution time
and length of the sequence in sequential and
parallel two core machine. From the graph it is
inferred that as the sequence grows the execution
time is decreases in a parallel two core machine
when compared to the sequential execution time.
The FIG 5 demonstrates that as the number of cores
increases execution time decreases when compared
to the sequential time. The FIG 6 specifies further
decrease in execution time when implements in a
six-core. The FIG 7 specifies the further decrease in
execution time when we implement in an eight core
processor. The FIG 8 Specifies the increase in
speedup as the number of cores increases for a
particular length of a sequence. The FIG 9specifies
the inter and intra task parallelism on GPU. The
FIG 10 specifies the comparison of OPENMP and
CUDA in terms of speedup for various length of
sequence.

 Fig 4: Two Core Vs Sequential

The fig 4 demonstrates that blue line specifies
sequential time and the red line specifies the
parallel time. As we inferred from the graph for
given input sequence the blue line increase in time
as the sequence grows when compared to the red
line.

 Fig 5: Four Core Vs Sequential

The FIG 5 demonstrates that as the number of cores
increases execution time decreases when compared
to the sequential time

Fig 6: Six Core Vs Sequential

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

The FIG 6 demonstrates that as the number of cores
increases execution time decreases when compared
to the sequential time

Fig 7: EIGHT CORE VS SEQUENTIAL

The FIG 7 demonstrates that as the number of cores
increases execution time decreases when compared
to the sequential time

Fig 8: No Of Cores Vs Speed Up

The fig 8 demonstrates the speedup for
aligning of the sequences. From the graph it is
inferred that as the number of cores increases
there is increase in speedup for aligning of the
sequences.

Fig 9: Sequence Length Vs Speedup On Gpu

The fig 9 specifies how the parallelism take
place in CUDA both inter and intra task
parallelism. From the graph it is inferred that
inter task parallelism speedup is more when
compared to the intra task parallelism.

Fig 10: Comparision Of Execution Time On

Openmp And Cuda

The fig 10 specifies the speedup comparison
between OPENMP and CUDA. From the
graph it is inferred that speedup for aligning of
sequences is more in CUDA when compared
to the OPENMP

6. CONCLUSION

This paper explains the parallelization of Multiple
Sequence Alignment for aligning of sequences.
From the results it can be inferred that as the
number of core increases there is a decrease in
execution time as the length of the sequence grows.
This paper also says that there is a increase in
speedup for aligning of the sequences as the
number of core increases. From the result analysis
it can be inferred that there is a increase in speedup
and decrease in execution time when it is
implemented in a heterogeneous computing.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

384

REFRENCES:

[1]
hindawi.com/isrn/biomathematics/2013/6156
30/.

[2] Peter N. Glaskowsky. NVIDIAs Fermi: The
First Complete GPU Computing
Architecture (White Paper).

 Nvidia Corporation, September 2009.
[3] L.Wang and T. Jiang, “On the complexity of

multiple sequence alignment,” J. Compum.

Biol., vol. 1, no. 4, pp. 337–348, 1994.
[4] WIRTH, N.: 'Program development by stepwise

refinement', Commun. ACM, 1971, 14, pp.
221-227.

 [5] ELSHOFF, J.L., and MARCOTTY, M.:
'Improving computer program readability to
aid modification', Commun.ACM, 1982, 25,
pp. 512-521.

[6] ZPL: A Machine Independent Programming
Language for Parallel Computers IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 26, NO. 3, MARCH
2000

[7] A survey of parallel programming models and
tools in the multi and many-core era IEEE
transactions on

 parallel and distributed systems, vol. 23, no. 8,
august 2012

[8] P.B. Hansen, Studies in Computational Science:
Parallel Programming Paradigms. Prentice-
Hall, 1995.

[9] K.M. Chandy and J. Misra, Parallel Program
Design: A Foundation. Addison-Wesley,
1988.

[10] OPENMP, “API Specification for Parallel
Programming,”
http://openmp.org/wp/openmp-specifications,
Oct. 2011.

[11] W. Hwu, K. Keutzer, and T.G. Mattson, “The
concurrency challenge,” IEEE Design and
Test of Computers, vol. 25, no. 4, pp. 312-
320, July 2008

[12] H. Sutter and J. Larus, “Software and the
Concurrency Revolution,”ACM Queue, vol.
3, no. 7, pp. 54-62, 2005.

[13] M.J. Quinn, Parallel Computing: Theory and
Practice. McGraw-Hill,1994.

[14] P.B. Hansen, Studies in Computational Science:
Parallel Programming Paradigms. Prentice-
Hall, 1995.

[15] T.G. Mattson, B.A. Sanders, and B. Massingill,
Patterns for Parallel Programming. Addison-
Wesley Professional, 2005.

[16] V. Kumar, A. Grama, A. Gupta, and G.
Karypis, Introduction to Parallel Computing:
Design and Analysis of Algorithms.
Benjamin/ Cummings Publishing Company,
1994.

[17] OPENMP, “API Specification for Parallel

Programming,”http://openmp.org/wp/openmp
-specifications, Oct. 2011.

[18] K. Kedia, “Hybrid Programming with OpenMP
and MPI,” Technical Report 18.337 J,
Massachusetts Inst. of

 Technology, May 2009.
[19] Y. Liu, B. Schmidt, and D.L. Maskell, “MSA-

CUDA: Multiple Sequence Alignment on
Graphics Processing Units With CUDA,”
Proc. IEEE Int’l Conf. Application-Specific
System, Architecture and Processors (ASAP),
pp. 121-128, 2009.

[20]NVIDIA Corporation, NVIDIA CUDA
Programming Guide, Version 3.1.1, July
2010.

[21]NVIDIA Corporation, NVIDIA CUDA
Programming Guide, Version 2.3.1, Aug.
2009.

[22]NVIDIA.CUDAzone,http://www.nvidia.com/obj
ect/cuda_home.html, 2009.

[23]NVIDIADeveloperZone,http://developer.nvidia.
com, Oct. 2011.

[24] NVIDIA Company. Nvidia CUDA
Programming Guide, v3.0, 2010.

[25] NVIDIA Company. Nvidia CUDA C
Programming Best Practices Guide, Version
3.0, 2010.

[26] Ken D. Nguyen and Yi Pan,”An Improved
Scoring Method for Protein Residue
Conservation and Multiple

Sequence Alignment,” IEEE TRANSACTIONS ON
NANOBIOSCIENCE, VOL. 10, NO. 4,
DECEMBER 2011

[27] R. F. Smith and T. F. Smith, “Pattern-induced
multi-sequence alignment (PIMA) algorithm
employing secondary Structure dependent gap
penalties for use in comparative protein
modeling,” Protein Eng. Design Selection,
vol. 5, pp. 35–41, 1992

[28] J. Taheri and A. Y. Zomaya, “RBT-GA: A
novel met heuristic for solving the multiple
sequence alignment problem,” BMC

Genomics vol. 7, p. S10, 2009.
[29] An Improved Scoring Method for Protein

Residue Conservation and Multiple sequence
Alignment IEEE

 TRANSACTIONS ON NANOBIOSCIENCE,
VOL. 10, NO. 4, DECEMBER 2011

Journal of Theoretical and Applied Information Technology
 20

th
 June 2014. Vol. 64 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

[30] H. Carillo and D. Lipman, “The multiple
sequence alignment problem in biology,”
SIAM J. Appl. Math., vol. 48, no. 5, pp. 1073–
1082, 1988.

[31] K. Fatahalian and M. Houston, “GPUs: A
Closer Look,” ACM Queue, vol. 6, no. 2, pp.
18-28, 2008.

[32] A reliable Metric for Quantfying Multiple

Sequence Alignment 1-4244-1509-
8/07/$25.00 2007 IEEE.

[33] Multiple Biological Sequence Alignment:
Scoring Functions, Algorithms, and
Evaluations Ken D. Nguyen

[34] Exact Multiple Sequence Alignment using
Forward Dynamic Programming by LIU KAI.

[35] Multiple Sequence Alignment Group by Liu
Kai.

[36] A Survey of Parallel Programming Models and
Tools in the Multi and Many-Core EraJavier
Diaz, Camelia Mun˜oz-Caro, and Alfonso
Nin˜oA

[37] A Heterogeneous Parallel Framework for
Domain-Specific Languages Kevin J. Brown_
Arvind K. Sujeeth_

 Hyouk Joong Lee_ Tiark Rompf.
[38] http://en.wikipedia.org/wiki/CUDA.
[39] GrABFAST: A CUDA based GPU Accelerated

Fast Short SequenceAlignment Algorithm
Ankur Narang Jyothish Soman and Sheetal
LahabarIBM India Research Labs Vasant
Kunj, Delhi, India-110070.

[40]perilsofparallel.blogspot.in/2008/09/larrabee-vs-
nvidia-mimd-vs-simd.html.

[41] www.openmp.org.
[42]msdn.microsoft.com/en/us/magazine/cc163717.a

spx.
[43] msdn.microsoft.com/en-

us/library/0ca2w8dk.aspx .
[44] Global Sequence Alignment using

CUDAcompatible multi-core GPUT. R. P.
Siriwardena & D. N. Ranasinghe

 [45] CUDACL: A Tool for CUDA and OPENCL
Programmers Ferosh Jacob David Whittaker,
Sagar Thapaliya,Purushotham Bangalore,
Marjan Mernik and Jeff Gray.

[46] Fast Parallel Markov Clustering in
Bioinformatics Using Massively Parallel
Computing on GPU with CUDA and
ELLPACK-R S parce Format vol9 NO.3.

