
Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

EVALUATION SUBQUERY METHODS IN MICROSOFT SQL

SERVER 2008

Tanty Oktavia

Bina Nusantara University, School of Information Systems, Jakarta – 11480, Indonesia

E-mail: tanty_oktavia@yahoo.com

ABSTRACT

Frequently user compiles a query to satisfy business process needs, whether directly using DBMS or
connecting into application system. There are many methods that can be used to generate desired results to
support transaction, but all the query processing should be run effectively and efficiently. A significant
aspect of query processing is how to choose an efficient execution strategy to minimize resource usage.
Based on competitive environment in industry, many companies compete with each other to be a number
one. For this reason, company doing a lot of experiments, in order to accomplish a visions and mission
objectives. One of those is increasing performance of the system to support daily activities. Nowadays,
most of business process in company already integrated with information technology. All of data is
consolidated by database, so user easily doing their job. According to this fact, user does not matter about
how many transactions to be process per day, but how much time they need to process that transaction is
the priority concern. Because of that, query optimization techniques become more important to be applied
in many applications. In this research focused on measurement effectiveness of the method sub query
which can be applied to reach optimal execution and present a comparative study of various cost to declare
Sub query. This study based on Microsoft SQL Server 2008 platforms.
Keywords: Query Processing, Microsoft SQL Server 2008, Sub query, Cost Control

1. INTRODUCTION

Almost all of the business applications require
database for the purpose of integration data as well
as data distribution among the system. Database
Management System (DBMS) as software which
manage data should be administered and optimized
for better performance. This system should fast
respond any kind of possible threats that may be
frighten. The performance of database system is
influenced by several factors i.e.: database size
which growing proportional with the data,
increased user base, increase in the user processes,
improperly and un-tuned DBMS. All these factors
degrade the system response time that would
anticipate the performance degradation [1]. This
increased load has to be minimizing to stabilize the
response rate of system.

One of the major critical issues often happened in a
company was inadequate performance of queries to
perform the suitable output. Many factors that
cause this occurrence, one of them are query
processing problem. Since then, a significant
amount of research and observation has been done
to find an efficient solution for processing queries.

A query may be expensive in terms of cost of
execution if it is not optimized well [2]. For a long
time this matter can be a negative impact for a
company because decreasing business performance.
The detection of performance degradation is
detected by continuously monitoring system
performance parameter.

In first generation structure database systems, the
low level procedural query language is generally
embedded in a high level programming language
and the programmer’s should select the most
appropriate execution strategy. In contrast, with
declarative languages such as SQL, the user
specifies what data is required rather than how it is
to retrieved [3]. This pattern transforms the user
responsibility to determine, or even know what
method to support good execution strategy. The
most important objectives to be considered in order
to improve the performance of DBMS are:
designing an efficient data schema, optimizing
indexes, analyzing execution plans, monitoring
access to data, and optimizing query [4]. For this
research focused on optimizing query in Microsoft
SQL Server 2008 platform.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

Microsoft SQL Server 2008 is one of the most
widely large scale databases in commercial. As a
Database Management System (DBMS), it is a
software product that function is to store and
retrieve data as complied by software applications.
This version aims to make data management self
tuning, self organizing, and self maintaining, also
provide near zero downtime.

Table 1. Rule Based Optimization Rankings [3]

2. MATERIALS & METHODS

Generally, this study tries to compare the total
execution time of all individual operation in order
to enhance query performance using sub query
methods. A large variety of processing techniques
are supported by Microsoft SQL Server 2008 in its
SQL Processing engine. For the analysis, the query
execution plan and response time are considered.
This study is iterative process to measure the
impact of sub query methods and reassessing the
changing from the query construction from the
other method to determine satisfactory
performance, but need to realize the performance
depends on the amount of data and users’ activities
that access the application. There are still many
factors that should be considered in order to
increase optimal performance of queries that
connect with application [5]. High performance can
be reached by constructing an efficient code at the
application level and design the database using
suitable techniques. Nevertheless, using superior
specification of hardware is one of the
performances influenced.

3. RESULT AND DISCUSSION

Information system application is growing faster in
the future and the database is going to be larger
than before to support business process. Day by
day, data is manipulated by operation insert,

update, delete this condition makes the system
running slow and needs more time to execute the
transaction. Depending on application requirements
and user needs are force to retrieve the records of a
file on either fast or sequential. Disk devices can
store records in some logical sequence. Assume one
file consists of many thousands or even a million
records and user want to retrieve a single records
based on a particularly criteria [3]. The disk device
may be capable of going directly into the middle of
a file to show a record, but to accomplish that, the
system need time execution to generate that record
with many procedures compilation in the system
DBMS. To solve or prevent this indication
problem, the database tunings can be the best
solution. In this research, the method of database
tuning that being applied is the query optimization
process on sub query functions, which should
optimized for better performance.

The process of DBMS manages query, consist of
several stages are as follow: After receiving query
from external level, query parser checking
semantically and syntax. If there are violation of
structure, user right, or procedure; an error message
will send to user, otherwise query will be translated
into internal level in relational algebra expression.
Furthermore, query optimizer selects appropriate
optimal method to implement relational algebra and
finally generate query execution plan [6]. The query
plan is compiled code that contains the ordered
steps to carry out the query [7]. Identifying an
appropriate plan for execution is very important
because these queries can be the determinants of
effectiveness transaction. Using statistics on tables
and indexes, the optimizer predicts the cost of using
alternative access methods to resolve a particular
query.

Queries in algebra are constructed using operators.
Each relational query describes a step by step
procedure for computing the desired output, based
on the order in which operators are applied [8].
There are many variations of the operations that are
included in relational algebra. The five fundamental
operations in relational algebra: selection,
projection, Cartesian product, union, set difference,
join, intersection, and division operations. The
selection and projection operations are unary
operations, which operate only on one relation. The
other operations work on pairs of relations is
therefore called binary operations [3].

Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

Figure 1 Process Of Query Execution [6]

A Sub query as one of the binary operations, is a
query that is nested anywhere inside DML
syntaxes, such as INSERT, UPDATE, DELETE,
OR SELECT statement. By default, the sub query
list only consists of a single column name or
expression, except for sub query that use EXISTS
keyword. Sub query can be combined with all
function of SQL Server 2008. The SQL Server
2008 will resolve the IN condition by accessing the
index for a number of times equal to the number of
values which to search. There are three types of sub
query [3]:
� A scalar sub query returns a single column

and a single row.
� A row sub query returns multiple columns, but

only a single row.
� A table sub query returns one or more column

and multiple rows.
The types of sub query can be applied in
accordance what data and how many value of data,
a user want to return and satisfy the requirement.
 According to the utilization requirements
for the system, Microsoft SQL Server 2008
provides indexing method. It divided into clustered
index and non clustered index. The clustered
indexes are recommended only for tables that are
frequently updated. Clustered type indexes are
effective when operators like BETWEEN, >, >=, <,
<=, <>, !=. Non clustered indexes use is
recommended only for databases where updates are
infrequent and gives the optimal solution for the
“exact match” [5]. Many questions are come up,
which attributes are suitable to be applied index to
get better performance. Gilenson states there are
two sorts of possibilities: primary keys, and search
attributes [9].
 Indexes are extremely method for
searching data, but should keep in mind when the
record in a table is modified, the system must take
the time to update the table’s indexes too. It will do
update automatically, but it needs time. If user
updates a lot of data, the time that it takes to
execute the updates operation and update all the
indexes could slow down the operations that are

just trying to read the data for applications, and also
degrading query response time. Hence that fact,
user should beware when applied index in query.
The placement of index must be precise with the
necessity and procedures.

In transact SQL statements, there is usually no
procedure that regulate when to apply a sub query
or that does not, because it is not difference
between them. User does not concern how to
retrieve the data, but how many times the execution
occurred. However, in some cases where the data to
be returned numerous or the conditions from the
query are very complicated, it caused the
performance query is going to down. In case of
query optimization, it is impractical to search
evaluation plans exhaustively, when the
optimization of query involves many relations [10].

The table used in the experiment is named
TransactionAttendances. The
TransactionAttendances table consists of
TransactionAttendanceId,
ClassTransactionDetailId, BinusianId, AttendDate,
AttendPlace, Status, and InsertedDate. The table is
populated with 500,000 transactional records. The
experiments are performed on ten times with
Microsoft SQL Server 2008 platform. The
following four queries are used in the experiments
for observing time execution. Experiments are
performed using both INDEX and NONINDEX.
Indexes are applied in ClassTransactionDetailId
Ascendingly, BinusianId Ascendingly include
InsertedDate; ClassTransactionDetailId
Ascendingly, BinusianId Ascendingly include
Status, InsertedDate.

Table 2. List Of Query Used For Experiments

N

o.

Method

s

Query

1 IN SELECT

i.ClassTransactionDetailId,i.Binusian

Id,i.Status

FROM

Messier.dbo.TransactionAttendances

i
WHERECONVERT(VARCHAR(50)

,i.ClassTransactionDetailId)+CONVE

RT(VARCHAR(50),
i.BinusianId)+CONVERT(VARCHA

R(50),i.InsertedDate,13)

IN(

SELECT
CONVERT(VARCHAR(50),ClassTr

ansactionDetailId)+CONVERT(VAR

CHAR(50),

Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

BinusianId)+CONVERT(VARCHAR

(50),LastInsertedDate,13) AS [Key]

FROM (
 SELECT

ClassTransactionDetailId,

BinusianId,

MAX(InsertedDate) AS

LastInsertedDate

 FROM

TransactionAttendances

GROUP BY

ClassTransactionDetailId,

BinusianId
) x

)

GO

2 EXIST SELECT

i.ClassTransactionDetailId,i.Binusian

Id,i.Status
FROM

Messier.dbo.TransactionAttendances

i

WHERE EXISTS(
SELECT 1 FROM (

 SELECT

ClassTransactionDetailId,

BinusianId,

MAX(InsertedDate) AS

LastInsertedDate

 FROM

TransactionAttendances

 GROUP BY

ClassTransactionDetailId, BinusianId
) x

WHERE

CONVERT(VARCHAR(50),
i.ClassTransactionDetailId)+CONVE

RT(VARCHAR(50),

i.BinusianId)+CONVERT(VARCHA
R(50),i.InsertedDate,13) =

CONVERT(VARCHAR(50),

ClassTransactionDetailId)+CONVER

T(VARCHAR(50),
BinusianId)+CONVERT(VARCHAR

(50),LastInsertedDate,13)

)
GO

3 RELAT

IONAL
OPERA

TOR (=)

SELECT

i.ClassTransactionDetailId,i.Binusian
Id,i.Status

FROM

Messier.dbo.TransactionAttendances
i

WHERE

CONVERT(VARCHAR(50),

i.ClassTransactionDetailId)+CONVE
RT(VARCHAR(50),i.BinusianId)+C

ONVERT(VARCHAR(50),i.Inserted

Date,13) =(
 SELECT

CONVERT(VARCHAR(50

),

ClassTransactionDetailId)+

CONVERT(VARCHAR(50
),

BinusianId)+CONVERT(V

ARCHAR(50),LastInserted

Date,13) AS [Key]

FROM (

 SELECT

ClassTransaction

DetailId,

BinusianId,

MAX(InsertedDat
e) AS

LastInsertedDate

 FROM

TransactionAttendances
 GROUP BY

ClassTransactionDetailId, BinusianId

) x
 WHERE

x.ClassTransactionDetailId

=
i.ClassTransactionDetailId

AND x.BinusianId =

i.BinusianId)

GO

4 RELAT

IONAL

OPERA

TOR (=)

+ TOP

SELECT

i.ClassTransactionDetailId,i.Binusian

Id,i.Status

FROM

Messier.dbo.TransactionAttendances

i
WHERE i.TransactionAttendanceId

=(

 SELECT TOP 1
TransactionAttendanceId

 FROM

TransactionAttendances x
 WHERE

i.ClassTransactionDetailId

=

x.ClassTransactionDetailId
AND i.BinusianId =

x.BinusianId

 ORDER BY x.InsertedDate
desc

)

GO

Based on the above query can be checked, the user
want to retrieve the last transaction record that
represented by inserted date of each data. First to
third query, using an aggregate function that is
MAX to return the latest record that user input. For
the last query, the experiment try to change the
MAX function with TOP, but still refer to the same
mean of query and the same amount of result.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

After doing the experiments, using the same query
and same platform, there are results from the
experiments on table 3:

Table 3 Time Comparison Of Sub Query Method No

Index Applied

The time execution average shows relational

operator sub query methods take the most time to

process the query. Relational operators consist of =,

<, >, <=, >=, <>, != in WHERE clause, or a

HAVING clause. To apply this method enclosed

the query in parentheses and combine the relational

operators corresponding to the requirements.

IN and EXISTS method does not have a significant
differentiation for time processing. On average the
comparison between IN and EXISTS only 147.3
second faster if IN applied. Despite the fact IN only
return one value, otherwise EXISTS, but IN and
EXISTS has no high variance time. This fact can be
as a guideline for user to choose the appropriate
method, while using sub query method in query
application. It depends on how many data, user
wants to return in query but for the processes have
the same time execution.

Table 4 Time Comparison Of Sub Query Method With

Index Applied

To overcome the boundary of existing condition,
this study proposed an improved method of query
optimization to reduce execution time. The manual
query tuning process is analyzed by applying index
method that affects the query performance, whereas
automatic query tuning process is provided by
Microsoft SQL Server 2008. After the indexing is
applied, there are extremely transformations of time
execution from every activity than before. Average
time execution of IN and EXISTS inversely with
relational operator. IN and EXISTS need the most

time execution, but relational operator and TOP
only need the minimal time to execute query. If
user decides to use relational operator for sub query
or using combination with TOP keyword,
INDEXING is the standard requirement that query
must be applied to gain the best performance in
query execution.

Utilization of IN and EXISTS still have the same
levels of time execution. The difference average
execution is only 17.2 second faster if IN applied.
This condition is contrast with before execution,
when index were not applied. There are no
significant difference between indexing applied or
not for IN and EXISTS keyword. It’s up to user to
choose what method to be applied in query.

Figure 2 Time Comparison of Query Using IN

Figure 3 Time Comparison of Query Using EXISTS

Figure 4 Time Comparison of Query Using Relational

Operator

Journal of Theoretical and Applied Information Technology
 10

th
 June 2014. Vol. 64 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

Figure 5 Time Comparison of Query Using

Collaboration Operator and TOP

4. CONCLUSION

In Structured Query Languages (SQL), there are
many collaboration methods that can be applied to
form sub query, such as IN, EXISTS, or Relational
Operator sub query. Based on the study, there are
the facts have founded:
1. IN and EXISTS has no significant difference

on time execution, although IN only return
single value and EXISTS return many values
from the query result. Likewise indexing is
applied in query.

2. Relational operator sub query is not
recommended for the query because more
time consuming than the other methods of sub
query if index are not applied. The situation is
inversely if index are applied. Relational
operator will extremely efficient than IN and
EXISTS methods.

3. Relational operator sub query can be very
effective, if the query structured
systematically and use different method, i.e. it
can be combined with keyword TOP to return
query in specific order particularly

4. INDEXING extremely influenced query
processing with all methods sub query. The
method can be applied to reach out optimal
query execution. This can happen because the
item in the index was sorted; each indexed
item was associated with a physical address.
So the process can quickly find a record that
user looking for [9]

The above conclusions are based on experiment
data. The result may be varied in other environment
with different configuration system or volume of
data. According to these results, user can specify
the effective methods to get an optimal query
processing in order to support business process in
organization.

REFERENCES

[1] Verma, A. (2011). Enhanced Performance of
Database by. IJCSMS International Journal of
Computer Science & Management Studies .

[2] Gupta, M. K., & Chandra, P. (2011). An
Empirical Evaluation of LIKE Operator in
Oracle. BVICAM’s International Journal of

Information Technology .

[3] Connolly, T. M., & Begg, C. E. (2010).
Database Systems : A Practical Approach to
Design, Implementation, and Management.
Boston: Pearson Education.

[4] Mercioiu, N., & Vladucu, V. (2010).
Improving SQL Server Performance.
Informatica Economică

[5] Lungu, I., Mercioiu, N., & Vladucu, V. (n.d.).
Optimizing Queries in SQL Server 3008.
Scientific Bulletin – Economic Sciences, Vol. 9

(15)

[6] Alamery, M., Faraahi, A., Javadi, H. H.,
Nourossana, S., & Erfani, H. (2012).
Application of Bees Algorithm in Multi-Join
Query Optimization. ACSIJ Advances in

Computer Science: an International Journal .

[7] Karthik, P., Reddy, G. T., & Vanan, E. K.
(2012). Tuning the SQL Query in order to
Reduce Time Consumption. IJCSI

International Journal of Computer Science

[8] Lasya, S., & Tanuku, S. (2011). A Study of
Library Databases by Translating Those SQL
Queries Into Relational Algebra and
Generating Query Trees. IJCSI International

Journal of Computer Science

[9] Gillenson, M. L. (2012). Fundamentals of
Database Management Systems. USA: Wiley.

[10] Mahajan, D. S., & Jadhav, V. P. (2012).
GENERAL FRAMEWORK FOR
OPTIMIZATION OF DISTRIBUTED
QUERIES. International Journal of Database

Management Systems (IJDMS)

