
Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

781

A COMBINATORIAL TREE BASED FREQUENT PATTERN

MINING

1
YAMUNA DEVI. N,

2
DEVI SHREE J

1Assistant Professor (SG), Department of MCA, Coimbatore Institute of Technology, Coimbatore, India;
2Assistant Professor (SG), Department of EEE, Coimbatore Institute of Technology, Coimbatore, India.

E-mail : 1yamunaacit@gmail.com, 2devishreecit@gmail.com

ABSTRACT

Frequent pattern mining is a process of extracting frequently occurring itemset patterns from very large
data storages. These frequent patterns are used to generate Association Rules. Association rules define the
relationship among items. The strength of the relationship can be measured using two different units
namely support value and confidence level. Any relationship that satisfies minimum threshold of support
value is known as frequent pattern. There are several methods and algorithms suggested to mine frequent
patterns from large databases. Most of the methods can be assessed for its complexity based on the number
of processing levels and number of candidate sets with subsets that are generated in each level. In this
paper, the combinatorial approach which automatically filters infrequent itemsets and mine only frequent
patterns is suggested. The complexity is based on the number of transactions and the maximum length of
transactions. The new approach purely depends on the size of input transaction database. The combinatorial
approach does not depend on the unknown number of processing levels and does not generate unnecessary
candidate sets and subsets. The method is compared with number of existing legendary methods for its
performance.

Keywords: Association Rule Mining, Frequent Item Set Mining, Combinatorial Approach, Tree Structure

Based Combinations.

1. INTRODUCTION

 In recent years, extracting interesting patterns
from a huge volume of data is necessary since the
new technologies such as cloud computing,
mobile applications, social networks cause a huge
amount of data generation in many ways. These
data are to be stored, maintained and integrated to
get useful information from them by analyzing in
various ways. This extraction process is an
essential part of knowledge discovery which is
also known as data mining. Association rule
mining is a key technique which defines the
dependency between any two itemsets.
Association rules are generated using algorithms
by finding frequent patterns as an initial step. The
frequent patterns are mined using minimum
support threshold. Mining frequent patterns from
large scale databases is a hot research area in
which Apriori algorithm is the most widely used
oldest algorithm to find frequent patterns and
association rules. Many improvements have been
achieved to increase the efficiency of Apriori
algorithm and most of the available algorithms

generates too may candidate sets and subsets
which takes much time to complete the process
and occupies more memory. After careful
analysis, it is found that the main deficiencies in
almost all Apriori-based algorithms suffered are,
too many scans of the transaction database, large
amount of unnecessary candidate itemsets and
subsets generation and pruning process. Many
methods have been suggested which scan the
database only once, still they have the drawback
of large set of candidate sets and subsets in
pruning process.

 It is absolute necessary to reduce the
execution time and memory usage as much as
possible. It is achieved by new ideas that can
reduce the number of scans, number of candidate
sets and subsets generation in pruning process. In
this paper, a new method is suggested that scans
the database only once. It also avoids pruning
process and hence candidate sets and subsets
generation. Instead, it uses combinatorial method
to generate combinations of itemsets which is less
in number when comparing to pruning process.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

782

2. RELATED WORKS

 The Apriori algorithm is the first and
foremost method to mine frequent patterns. The
limitations of Apriori algorithm are suggested as
the number of scans and generation of huge
quantity of candidate sets. The algorithm takes a
stretched duration to generate candidate sets and
pruning process. The pruning process generates in
turn a large quantity of subsets for each candidate
set in every kth level and compared with the
candidate sets in k-1th level. This also extends the
execution time of the algorithm. The ECLAT
algorithm is suggested with only one database
scan and transforms the input database into
{Itemset, Tid} form. It does intersection with the
{Itemset, Tid} sets. It is a monotonous task in
vast databases to prune the candidate sets using
apriori property at each level. Sheng-Li Zhang
proposed a method that reduces the number of
scans and hence the candidate set generation [13].

Following that many methods and techniques
have been suggested with improvements. Among
them, frequent pattern tree growth algorithm
eliminates candidate large itemset generation. But
the process of generating tree data structure and
the pruning process using the tree structure is
considered as lacking part. Agrawal Rakesh and
Srikant Ramakrishnan [1] developed AprioriTid

algorithm which uses the set k-1 (frequent sets in

k-1th level) to prune candidate sets in Ck

(candidate sets in kth level) and produces k

(frequent sets in kth level). In this algorithm scans
the database once but the huge candidate sets are
generated as in Apriori method. The
AprioriHybrid method is suggested by same
authors that combines the Apriori algorithm and
AprioriTid algorithm. In AprioriHybrid, during
the initial passes, the method follows Apriori
algorithm and AprioriTid method is followed in
latter passes. This further reduces execution time
since Apriori takes more time in latter passes and
AprioriTid takes the same through initial passes.

 As further improvements, Goswami et al.
proposed a new algorithm using record filter
approach [4]. In this approach the transactions
that are not having number of items that is equal
to or greater than k (k-itemset) are rejected for
scanning. The probability concept is used in
Apriori algorithm by Sunil Kumar et al. [16].
Jaishree et al. explained transaction reduction
method to improve efficiency [7]. Jnanamurthy et
al. discussed mining maximal frequent item sets
using subset creation [9]. In all the above said and

new improvements, the thing which cannot be
avoided is the generation of huge volume of
candidate sets. Any algorithm that avoids or
reduces the generation of candidate sets will
further improves the performance of frequent
pattern mining. The ECLAT algorithm
implemented by Christian Borglet avoids
candidate sets generation but Apriori property is
used for pruning [3]. Vijayarani and Sathya
proposed the implementation of ECLAT
algorithm over data streams[18].

The implementation of prefix tree to mine
frequent sets was given by Grahne and Zhu [5].
Venkatesan and Ramraj proposed a Bit search
method instead of depth first and breadth first
search techniques [17]. To improve the
performance of Apriori algorithm, sorting and
clustering technique was used by Ish Nath Jha
and Samarjeet Borah [6]. Another improvement
was done by Nagesh et al. using fully organized
candidate generation and viper algorithm [10].
The candidate set size is considered for
improvement in the work proposed by Sheila A
Abaya [12]. The probability theory is used by
Smythe and Goodman [14]. Sunil joshi et al.
suggested a method with dynamic function
applied on transposition of the database in [15].
While comparing all the above Apriori-based
algorithms, ECLAT algorithm best performs in
the aspect of time and memory efficiency to
generate frequent itemsets. This paper suggests a
new algorithm which outperforms ECLAT in a
way of using combinatorial method to mine
frequent patterns which avoids generation of
candidate sets and pruning process.

3. FREQUENT PATTERNS

 Association Rules are generated in two steps.
As first step, frequent patterns are generated. The
frequent patterns are those itemsets whose
occurrences exceed a predefined threshold
support value in the database. The second step is
to generate association rules from those large
frequent itemsets with the constraints of minimal
confidence. The first step can be done in turn two
sub-steps. They are, candidate itemsets generation
and frequent itemsets generation by pruning
process. Here, the generation of candidate large
itemsets and pruning process are focused for
improvement. Formally, Jiawei Han et al. [8]
defined Association rule mining problem as
follows. D={T1, T2, ….,TN} is a database of N
transactions. Each transaction consists of subset
of I, where I = {i1, i2,….,im} is a set of all items.
An association rule is an implication of the form

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

783

A ⇒ B, where A and B are itemsets, A ⊆ I, B ⊆

I, A ∩ B = ∅. In support-confidence framework,
each association rule has support and confidence
to confirm the validity of the rule. The support
denotes the occurrence rate of an itemset in D,
and the confidence denotes proportion of data
items containing B in all items containing A in D.
Defined in terms of equations,

Sup(I) = Count(I) / Count(D)

Sup(A ⇒ B) = Sup (A ∪ B)

Conf(A ⇒ B) = Sup (A ∪ B) / Sup(A).

An itemset is frequent if its support is greater
than a support threshold, originally denoted by
min_support. The frequent itemset mining
problem is to find all frequent k-itemset,
1<=k<=m, in a given transaction database D.
Assume that the items are from an ordered set and
the transactions in D contain sorted itemsets.

4. PROPOSED ALGORITHM

The proposed Direct-vertical algorithm mines
the frequent patterns in a different way using
combinatorial method. It generates all possible k-
itemset frequent patterns corresponding to each
transaction on the fly while the transaction is read
from the input database. The algorithm works in
stages as, it reads the current transaction and
generates all possible ordered combinations of
items in that transaction. These combinations are
verified for minimum support using intersection
method. All combinations that satisfy support
count are considered as frequent itemsets and are
stored in frequent itemset table. This process is
repeated for each transaction. Finally, the
algorithm constructs a 1-itemset table for 1-
itemset frequent sets and frequent itemset table
for k-itemsets where k>=2 in vertical form as
{itemset, Tid}.

 The proposed algorithm reads one transaction
at a time. While reading, the frequent 1-itemsets
alone are considered to fabricate ordered
combinations of k-itemsets, where k>=2. The
support value for each combination is calculated
using intersection method. The intersection is
performed using 1-itemset table. The intersection
process results TID-set for each combination
whose length is the absolute support count. The
combination which satisfies minimum support
threshold is considered as frequent set.

This algorithm requires only one scan of the
transaction database to generate the set of all
frequent itemsets without generating any
candidate sets and subsets. All infrequent itemsets
will be filtered on the fly. This qualifies the
efficiency of the proposed algorithm. The
algorithm works by calculating ordered
combination of items in each transaction Ti. The
proposed algorithm is given below.

Algorithm Direct_Vertical (D, min_Support)

Initialize i=1, support=0;
while (i<= n) do//for each transaction Ti in D & n
//is the total number of transactions in D
{
 read transaction Ti;

 for each item Ij ∈ Ti,
 //1<=j<=m, m is the number of different items
 append Ti in 1-itemset table against Ij and
increment support of Ij;
 count all Ij in Ti that have support >=
minSupport and move all Ij to frequent list S;
 if count<2 then {i=i+1; Break;}
 //eligibility to make combinations
 else { Ck = Produce_Combinations (S)
//Ck is the set of all possible ordered combinations
//of frequent 1-itemsets from S, where
//2<=k<=count. Refer Section 4.1

 for each C ∈Ck {
 if C already exist in frequent itemset

table, then append Ti against C;
 else { S1 = result of intersection of
 corresponding TID-set of individual item in C;
 if count(S1) >= minSupport then

 include C in frequent itemset table
 and append Ti against C;

 }
 }
 } i=i+1;
}

Figure 1: Direct Vertical Algorithm

Example: The Direct-vertical algorithm generates
all k-itemset frequent sets on the fly while reading
the transaction database. Figure 2 depicts some
steps in execution of the proposed algorithm.
Table 1 is a simple transaction database with
minimum support 43%. Read the first three
transactions T100, T200 and T300, enter into the
1-itemset table as given in table 2 which is 1-

itemset table. Here, there are two items B, E that
satisfy minimum support. So, the combination BE

TID Items

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

784

Items/

Transactions

T
1

0
0

T
2

0
0

T
3

0
0

A Y Y

B Y Y Y

C Y

D Y Y

E Y Y Y

 Table 1 Table 2

 Table 4 Table 3

Figure 2: Example For Execution Of Proposed Algorithm

goes to 2-itemset frequent set with the
transactions T100, T200 and T300. While reading
T400, there are four combinations for frequent
items which include three 2-itemsets and one 3-
itemset. After performing intersection for each
combination, include combinations that satisfy
the minimum support as given in table 3. If any k-
itemset already exists in the table, then its support
count alone is increased. When all transactions
are read, table 4, frequent itemset table, is
generated which shows all frequent k-itemsets.

4.1. Data Structures

 The algorithm reads one transaction at time
and generates all frequent itemsets from that
transaction. An extra field is attached with each
item in both 1-itemset table and frequent itemset
table to maintain and update the support count.
While reading each transaction, all combinations
are generated using frequent 1-itemsets alone in
that specific transaction. The algorithm generates
combinations using tree data structure which is
advantageous when compared to other ways. The
approach given by Shant Karakashian and Berthe
Y. choueiry [11] is implemented in this proposed
Direct-Vertical algorithm to improve the

efficiency. It uses the divide-and-conquer
technique to further reduce the complexity.

4.1.1 Generating k-Combinations

 The algorithm Produce_Combinations
generates all possible combinations for the
elements of given non-negative set S. This
algorithm in turn calls Produce_Combi_Tree on c
and s=|S| to generate the combination tree where
2 <= c <= s. The algorithms are given in Figure 3.
The elements of S are stored in an array and the
index values of the array are passed to generate
tree. The algorithm Poduce_Combi_Tree is a
divide-and-conquer algorithm that solves the
problem by generating a tree. Given a root node
and a non-negative integer s, it divides the
problem into (s – c - bal + 1) sub-problems. The
sub-problems are solved by making a recursive
call. The recursion ends when c=0. The final
solution is constructed by traversing the tree in
depth wise manner start from root through each
and every path. This solution set gives the
combinations of positions of elements. These
positions are mapped to the corresponding
element in the set S and the combinations of all
the elements are generated.

T100 A, B, E

T200 A, B, D, E

T300 B, C, D, E

T400 B, D, E

T500 A, B, D

T600 B, E

T700 A, E

Itemsets/

Transact

ions T
1

0
0

T
2

0
0

T
3

0
0

T
4

0
0

BE Y Y Y Y

BD Y Y Y

DE Y Y Y

BDE Y Y Y

Items/

Transactio

ns T
1

0
0

T
2

0
0

T
3

0
0

T
4

0
0

T
5

0
0

T
6

0
0

T
7

0
0

A Y Y Y Y
B Y Y Y Y Y Y
C Y
D Y Y Y Y
E Y Y Y Y Y Y

 BE Y Y Y Y Y
BD Y Y Y Y
DE Y Y Y
AB Y Y Y
AE Y Y Y

 BDE Y Y Y

After reading T300

After reading T400

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

785

Algorithm Produce_Combinations(S)

root←φ ;

s← |S|

for c ← 2 to s
 Produce_Combi_Tree(c, 0, root, s)
end

Combi_set ← Read_Tree_Depthwise(root)

Element_Combi_Mapping ←
Read_Element_Mapping(Combi_set)
return Element_Combi_Mapping

Algorithm Produce_Combi_Tree(c, bal, root, s)

if c = 0 then return

for x← bal to (s − c) do

new ← x
add new as a child to root

Produce_Combi_Tree((c − 1), (x + 1), new, s)
end

Figure 3: Algorithms to generate ordered combinations
using tree structure

 As an example, the execution of the above
said algorithms is explained using figure 4 with
the initial call of Produce_Combinations(2, S)
where S = {I1, I2, I3, I4}. The tree is generated
by lexicographical order of the labels specified
for nodes in the figure 4. The tree is traversed in
depth wise and set of combinations generated are
{I1, I2}, {I1, I3}, {I1, I4}, {I2, I3}, {I2, I4}, {I3,
I4}. The time and space complexity of the

algorithm Produce_Combinations are , where s

= |S|, 2 <= c <= s.

Figure 4: Tree Structure For 2-Itemset Combinations

4.2 Evaluation of Proposed Algorithm

For most of the existing algorithms, the
complexity can be defined based on the number
of levels (l), number of candidate sets generated

in each level (m) and the number of subsets of
each candidate set in all k-1 levels. The total
number of candidate sets and subsets generated
can be calculated as

, where p = Ckj (1)

 (Each candidate itemset)

 So, the complexity is about defined O(lm).
The AprioriHybrid in addition involves the cost
of intermediate method switching. But in the
proposed Direct-vertical algorithm, the
complexity can be defined based on number of
transaction and number of ordered combinations
generated. The total number of combinations
calculated as

 (2)

where Tn is number of transactions, ni is number
of frequent items in transaction Ti, Cj is the order
of combinations and j= 2,3,…|ni|. The above
formula produces totally 2ni-ni-1 * Tn.
combinations. So, the complexity of the proposed
algorithm can be defined as O(2ni * Tn). This is
less in count when compared to other methods
and hence the complexity is reduced. These
combinations are calculated using a tree data
structure.

5. PERFORMANCE

5.1 Proposed Algorithm Vs Algorithm Apriori

 The Apriori algorithm is the first and the
foremost association rule mining algorithm which
generates all frequent itemsets in first phase. The
basic concept of Apriori algorithm is to generate
frequent itemsets that satisfy minimum threshold
support value. There are n levels and in each kth
level, k-itemsets frequent sets (Lk) are generated.
Each Lk is used to generate candidate itemsets

Ck+1 in next level which is formed as Lk⋈ Lk. A
huge set of candidate sets are generated at each
level. For each candidate set, a number of subsets
are generated for pruning process. Each level
requires one database scan. The Apriori property
is used to reduce the search space which
eliminates some of the candidate itemsets by
pruning technique. Finally, all the frequent
itemsets L are found which are used to generate
association rules. The complexity of the algorithm

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

786

depends on the number of levels(n), number of
candidate sets generated in each level (Ck) and the
number of subsets generated in each level to
check Apriori property (Sk*Ck). So, variably the
complexity can be defined O(Sk*Ck), 1<=k<=n.

 The proposed Direct-Vertical algorithm does
not generate candidate sets and in turn subsets.
Instead, in generates combinations which is less
in count than set of candidate sets and subsets.

The complexity of the proposed algorithm is ,

where s is number of frequent items in each
transaction and 2 <= c <= s. The proposed
algorithm depends on the number of transactions
in the database (one time scan) and the maximum
length of the transactions.

5.2 Proposed Algorithm Vs ECLAT Algorithm

 In ECLAT algorithm, transaction database is
transformed to vertical data format as <item,
{TID}> where item is the name/id of the item and
{TID} is the set of transaction identifiers
containing the item. It requires only one scan of
transaction database for this transformation.
After, it follows the procedure of Apriori
algorithm by generating candidate sets and
subsets. The support value of each candidate
itemset is counted by intersecting the sets of
{TID} of every pair of frequent single items
instead of database scan. This requires much less
time compared to classical Apriori algorithm.
This algorithm produces a huge number of
candidate sets and subsets. So, the space
complexity remains equal to Apriori algorithm as
O(Sk*Ck), 1<=k<=n.

The proposed algorithm follows the vertical
data format representation and intersection
process as in ECLAT. But, it is totally different in
reading the input transaction database and
generation of ordered combinations instead of
candidate sets. ECLAT takes one scan of
transaction database initially for complete
transformation. The proposed algorithm reads one
transaction at a time for whole process. An
itemset combination is verified for support count
using intersection method at first occurrence. The
second occurrence of the combination is
considered as ‘exist’ combination which is not
required intersection process. In this case, the
current transaction id is appended to that existing
combination. This proves the reduced number of
intersections in proposed algorithm when
compared to ECLAT algorithm.

5.3 Proposed Algorithm Vs AprioriTid

The AprioriTid algorithm also generates
candidate itemsets in each level. It uses the same
function which is used in Apriori algorithm and
ECLAT algorithm to generate candidate itemsets.
The appreciated thing in AprioriTid algorithm is
it does not scan the database after the first level.
During first level, it reads the transactions and
transforms the individual items as separate set in

the same transaction. This form is known as k

This k is used in further levels for counting

support value of each candidate itemsets in Ck+1.
Each member of the set Ck is of the form < TID;
{Xk} >, where each Xk is a potentially large k-
itemset present in the transaction with identifier
TID. It also checks whether the candidate itemsets
in Ck+1 are contained in the transaction with
identifier TID. This verification is done by taking
subsets. Here, the sets that are generated by
eliminating individual item from the candidate set
each time are considered as subsets.

 While comparing this algorithm, the
proposed algorithm does not generate any
candidate sets and subsets and produces ordered
combinations which are less in count. There is no
dependency of previous level results in proposed
algorithm. For each transaction, it finishes
generation of all possible frequent itemsets. It
proves the better performance over AprioriTid
algorithm.

5.4 Proposed Algorithm Vs AprioriHybrid

 AprioriHybrid is an advanced algorithm
which mines the frequent itemsets. It is a
combination of Apriori algorithm and AprioriTid
algorithm. There are number of levels the
algorithm should pass over. AprioriHybrid
follows exactly Apriori algorithm for certain
passes after which it follows AprioriTid
algorithm. This is because during initial passes
Apriori algorithm takes much less time than
AprioriTid algorithm. In later passes, AprioriTid
beats Apriori algorithm. The reason for this is
Apriori and AprioriTid use the same candidate
generation procedure and therefore count the
same candidate itemsets. In the later passes, the
number of candidate itemsets reduces. However,
Apriori still examines every transaction in the
database. On the other hand, rather than scanning

the database, AprioriTid scans k for obtaining

support counts, and the size of k has become

smaller than the size of the database. So, it is a
good idea to use Apriori in initial passes and

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

787

AprioriTid in later passes. This new idea is
designed in a hybrid algorithm, which is called
AprioriHybrid. When to switch from Apriori to

AprioriTid is decided based on the size of k.

When the size of k is enough to fit in memory,

there the switching takes place. There is a cost
involved for this switching.

 In general, AprioriHybrid is advantageous
over Apriori based on the decrease in the size of

the k set in the later passes. If k remains large

until nearly the end, then there is no gain from
AprioriHybrid. On the other hand, if there is a
gradual decline in the size of Ck, a significant
improvement can be obtained in the execution
time. The cost of switching must also be
considered. While considering these constraints,
the proposed algorithm does not have any
uncertain situations and there is no extra cost
involved for any process.

6. RESULTS

 To make the comparison between the
algorithms based on the number of subsets,
number of candidate sets and number of
intersections, a real time surveyed numeric
database is used. The database consists of 5000
transactions includes 30 different items. The
algorithm is implemented in C++ and is designed
to specify the count of number of subsets,
candidates and interactions. The execution was
done with various support counts. The same input
dataset is given to the exiting implementations of
Apriori and other algorithms and the results are
compared. Figure 5 shows comparison between
number of subsets generated in Apriori, ECLAT,
AprioriTid and AprioriHybrid algorithms and the
equivalent number of ordered combinations
generated in the proposed algorithm. The
comparison between number of ordered
combinations generated in proposed method with
total number of subsets and candidate sets
generated in other methods is shown in Figure 6.

0

10000

20000

30000

40000

5 15

N
u

m
b

e
r

o
f

S
u

b
se

ts
+

C
a

n
d

id
a
te

S
e

ts
/

C
o

m
b

in
a

ti
o

n
s

Support Count

DV

ECLAT

Apriori

AprioriTid

AprioriHybrid

Figure 5: Count On Subsets Vs Combinations

0

10000

20000

30000

40000

50000

60000

5 15

N
u

m
b

e
r

o
f

S
u

b
se

ts
+

C
a

n
d

id
a

te

S
e

ts
/

C
o

m
b

in
a

ti
o

n
s

Support Count

DV

ECLAT

Apriori

AprioriTid

AprioriHybrid

Figure 6: Count On Subsets + Candidate Sets Vs

Combinations

 The intersection method is followed in
ECLAT and AprioriTid of above discussed
algorithms. It is followed in the proposed
algorithm. The proposed algorithm is completely
different in intersection process in terms of the
itemsets chosen for intersection. The number of
intersections is considerably reduced in proposed
method. It is shown in Figure 7 that direct vertical
algorithm performs less number of intersections
when compared to ECLAT algorithm. The same
can be compared with the subset verification in
AprioriTid technique.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

788

DV
0

10000

20000

30000

5 10 15 20

21010
185561754616730

22145
1952518762

16811

22145
1952518762

16811

N
u

m
b

e
r
 o

f
In

t
e

r
s
e

c
t
io

n
s

Support Count

DV

ECLAT

AprioriTid

Figure 7: Count On Intersections Vs Subset

Comparison

 It is analyzed and realized that execution time
is improved in ECLAT algorithm compared to
Apriori algorithm and AprioriTid and
AprioriHybrid. The proposed method consumes
less execution time when compared ECLAT
which is shown in figure 8. To compare the
performance of the algorithms, the experiments
were performed on the Adult dataset from UCI
machine learning database repository [2]. This
dataset contains 48842 records and 14 columns.
The relative performance of the new proposed
direct-vertical algorithm with Apriori, ECLAT,
AprioriTid and AprioriHybrid algorithms is
analyzed for complexity based on number of
combinations and number of subsets generated.

 The proposed algorithm generates equal
number of combinations as in ECLAT for some
support count threshold. Considering this as
limitation, it can be further improved by avoiding
scan of similar transactions from input database.

0

2

4

6

8

10

12

2030405060E
x

e
c
u

ti
o

n
 T

im
e
(S

e
c)

Support Count (%)

DV

ECLAT

Apriori

AprioriT
id

Figure 8: Execution Time For Various Support Count

7. CONCLUSIONS

 It is given the new proposed direct vertical
algorithm to mine the frequent patterns in a large
scale databases. The proposed algorithm is
effectively compared with some existing
legendary algorithms. It is proved that the
proposed algorithm outperforms other algorithms.
The experiments were conducted with many
synthetic datasets while only one dataset is used
to compare the performance in this paper. The
improvement in execution time increases with the
size of transaction database. It is observed that the
increase in execution time with the size of
transaction database is linear and gradual. The
experiments help to decide the feasibility of the
proposed algorithm to mine frequent patterns in
efficient manner by overcoming the bottlenecks in
existing algorithms. This algorithm can be further
improved by including the probability to find
maximum possible number of combinations. The
parallelized version of the algorithm can also be
developed as future improvement. The
comparative study shows the new algorithm is
efficient than existing algorithms in terms of
execution time and generation of candidate and
subsets.

REFERENCES

[1] Agrawal Rakesh and Srikant Ramakrishnan.
1994. Fast Algorithms for Mining
Association Rules. Proceedings of twentieth
International Conference on Very Large Data
Bases, pp: 487-499.

[2] UCI Repository of Machine Learning
Databases. 1998. Department of Information
and Computer Science. University of
California. Irvine. CA. USA.

[3] Christian Borglet. 2004. Efficient
implementation of Apriori and Eclat. FIMI
2004.

[4] Goswami. D.N., Chaturvedi Anshu and
Raghuvanshi. C.S. 2010. An Algorithm for
Frequent Pattern Mining Based on Apriori.
International Journal on Computer Science
and Engineering, 2: 942-947.

[5] G. Grahne, and J. Zhu. 2003. Efficiently

using prefix-trees in mining frequent

itemsets. FIMI ’03. Frequent Itemset Mining

Implementations. Proceedings of the ICDM

2003 Workshop on Frequent Itemset Mining

Implementations. Melbourne. Florida.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

789

[6] Ish Nath Jha and Samarjeet Borah. 2012.
Efficient Association Rule Mining Using
Improved Apriori Algorithm. International
Journal of Scientific and Engineering
Research, 3(11):1-4.

[7] Jaishree Singh, Hari Ram, Dr. J.S. Sodhi.
2013. Improving Efficiency of Apriori
Algorithm using Transaction Reduction.
International journal of Scientific and
Research Publications 3(1):1-4.

[8] Jiawei Han., Micheline Kamber and Jian Pei.
2012. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers.
USA.

[9] Jnanamurthy. H.K., Vishesh. H.V., Vishruth
Jain, Preetham Kumar and Radhika. M. Pai.
2013. Discovery of Maximal Frequent Item
sets using subset creation. International
journal of Data Mining and Knowledge
Management Process, 3(1):27-38.

[10] H.R. Nagesh., M. Bharath Kumar , B.
Ravinarayana 2013. Improved
implementation and performance analysis of
Association rule mining in large databases.
Springer book on Advances in Computing,
Communication and Control. Pp: 94-105.

[11] Shant Karakashian., Berthe Y. choueiry.
2010. Tree-based algorithms for computing
k-combinations and k-compositions.
Constraint Systems Laboratory, Department
of Computer and Engineering, University of
Nebraska, Lincoln.

[12] Sheila A. Abaya. 2012. Association rule
mining based on Apriori algorithm in
minimizing candidate generation.
International Journal of Scientific and
Engineering Research, 3:1-4.

[13] Sheng-Li Zhang. 2012. A new mining
algorithm of association rules and
applications. Springer book on Bio-inspired
computing and applications. pp: 123-128.

[14] Smythe and Goodman. 1992. An information
theoretic approach to rule induction from
databases. IEEE Transactions on KDE, IEEE
Computer Society Press.

[15] Sunil Joshi, Jadon. R.S., R.C. Jain. 2010. An
Implementation of Frequent Pattern Mining
Algorithm using Dynamic Function.
International Journal on Computer
Applications, 9(9):37-41.

[16] Sunil Kumar. S., Shyam Karanth. S.,
Akshay. K. C., Ananth Prabhu and
Bharathraj Kumar. M. 2012. Improved
Apriori Algorithm based on bottom up
approach using Probability and Matrix.

International journal of Computer Science,
9(2):242-246.

[17] N.Venkatesan and E.Ramraj. 2011. “High
Performance Bit Search Mining Technique”,
International journal of Computer
Applications, 14(2):15-21.

[18] Vijayarani. S. and Sathya. P, 2013. Mining
Frequent item sets over Data Streams using
Eclat Algorithm. International Conference on
Research Trends in Computer Technologie.
27-31.

