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ABSTRACT 

Frequent pattern mining is a process of extracting frequently occurring itemset patterns from very large 
data storages. These frequent patterns are used to generate Association Rules. Association rules define the 
relationship among items. The strength of the relationship can be measured using two different units 
namely support value and confidence level. Any relationship that satisfies minimum threshold of support 
value is known as frequent pattern. There are several methods and algorithms suggested to mine frequent 
patterns from large databases. Most of the methods can be assessed for its complexity based on the number 
of processing levels and number of candidate sets with subsets that are generated in each level. In this 
paper, the combinatorial approach which automatically filters infrequent itemsets and mine only frequent 
patterns is suggested. The complexity is based on the number of transactions and the maximum length of 
transactions. The new approach purely depends on the size of input transaction database. The combinatorial 
approach does not depend on the unknown number of processing levels and does not generate unnecessary 
candidate sets and subsets. The method is compared with number of existing legendary methods for its 
performance. 
 

Keywords: Association Rule Mining, Frequent Item Set Mining, Combinatorial Approach, Tree Structure 

Based Combinations. 

 

1. INTRODUCTION 

 In recent years, extracting interesting patterns 
from a huge volume of data is necessary since the 
new technologies such as cloud computing, 
mobile applications, social networks cause a huge 
amount of data generation in many ways. These 
data are to be stored, maintained and integrated to 
get useful information from them by analyzing in 
various ways. This extraction process is an 
essential part of knowledge discovery which is 
also known as data mining. Association rule 
mining is a key technique which defines the 
dependency between any two itemsets. 
Association rules are generated using algorithms 
by finding frequent patterns as an initial step. The 
frequent patterns are mined using minimum 
support threshold. Mining frequent patterns from 
large scale databases is a hot research area in 
which Apriori algorithm is the most widely used 
oldest algorithm to find frequent patterns and 
association rules. Many improvements have been 
achieved to increase the efficiency of Apriori 
algorithm and most of the available algorithms 

generates too may candidate sets and subsets 
which takes much time to complete the process 
and occupies more memory. After careful 
analysis, it is found that the main deficiencies in 
almost all Apriori-based algorithms suffered are, 
too many scans of the transaction database, large 
amount of unnecessary candidate itemsets and 
subsets generation and pruning process. Many 
methods have been suggested which scan the 
database only once, still they have the drawback 
of large set of candidate sets and subsets in 
pruning process.   

 It is absolute necessary to reduce the 
execution time and memory usage as much as 
possible. It is achieved by new ideas that can 
reduce the number of scans, number of candidate 
sets and subsets generation in pruning process. In 
this paper, a new method is suggested that scans 
the database only once. It also avoids pruning 
process and hence candidate sets and subsets 
generation. Instead, it uses combinatorial method 
to generate combinations of itemsets which is less 
in number when comparing to pruning process.  
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2. RELATED WORKS 

 The Apriori algorithm is the first and 
foremost method to mine frequent patterns. The 
limitations of Apriori algorithm are suggested as 
the number of scans and generation of huge 
quantity of candidate sets. The algorithm takes a 
stretched duration to generate candidate sets and 
pruning process. The pruning process generates in 
turn a large quantity of subsets for each candidate 
set in every kth level and compared with the 
candidate sets in k-1th level. This also extends the 
execution time of the algorithm. The ECLAT 
algorithm is suggested with only one database 
scan and transforms the input database into 
{Itemset, Tid} form. It does intersection with the 
{Itemset, Tid} sets. It is a monotonous task in 
vast databases to prune the candidate sets using 
apriori property at each level. Sheng-Li Zhang  
proposed a method that reduces the number of 
scans and hence the candidate set generation [13].  

Following that many methods and techniques 
have been suggested with improvements. Among 
them, frequent pattern tree growth algorithm 
eliminates candidate large itemset generation. But 
the process of generating tree data structure and 
the pruning process using the tree structure is 
considered as lacking part. Agrawal Rakesh and 
Srikant Ramakrishnan [1] developed AprioriTid 

algorithm which uses the set k-1 (frequent sets in 

k-1th level) to prune candidate sets in Ck 

(candidate sets in kth level) and produces k 

(frequent sets in kth level). In this algorithm scans 
the database once but the huge candidate sets are 
generated as in Apriori method. The 
AprioriHybrid method is suggested by same 
authors that combines the Apriori algorithm and 
AprioriTid algorithm. In AprioriHybrid, during 
the initial passes, the method follows Apriori 
algorithm and AprioriTid method is followed in 
latter passes. This further reduces execution time 
since Apriori takes more time in latter passes and 
AprioriTid takes the same through initial passes. 

 As further improvements, Goswami et al. 
proposed a new algorithm using record filter 
approach [4]. In this approach the transactions 
that are not having number of items that is equal 
to or greater than k (k-itemset) are rejected for 
scanning. The probability concept is used in 
Apriori algorithm by Sunil Kumar et al. [16]. 
Jaishree et al. explained transaction reduction 
method to improve efficiency [7]. Jnanamurthy et 
al. discussed mining maximal frequent item sets 
using subset creation [9]. In all the above said and 

new improvements, the thing which cannot be 
avoided is the generation of huge volume of 
candidate sets. Any algorithm that avoids or 
reduces the generation of candidate sets will 
further improves the performance of frequent 
pattern mining. The ECLAT algorithm 
implemented by Christian Borglet avoids 
candidate sets generation but Apriori property is 
used for pruning [3]. Vijayarani and Sathya 
proposed the implementation of ECLAT 
algorithm over data streams[18].  

The implementation of prefix tree to mine 
frequent sets was given by Grahne and Zhu [5]. 
Venkatesan and Ramraj proposed a Bit search 
method instead of depth first and breadth first 
search techniques [17]. To improve the 
performance of Apriori algorithm, sorting and 
clustering technique was used by Ish Nath Jha 
and Samarjeet Borah [6]. Another improvement 
was done by Nagesh et al. using fully organized 
candidate generation and viper algorithm [10]. 
The candidate set size is considered for 
improvement in the work proposed by Sheila A 
Abaya [12]. The probability theory is used by 
Smythe and Goodman [14]. Sunil joshi et al. 
suggested a method with dynamic function 
applied on transposition of the database in [15]. 
While comparing all the above Apriori-based 
algorithms, ECLAT algorithm best performs in 
the aspect of time and memory efficiency to 
generate frequent itemsets. This paper suggests a 
new algorithm which outperforms ECLAT in a 
way of using combinatorial method to mine 
frequent patterns which avoids generation of 
candidate sets and pruning process.  

3. FREQUENT PATTERNS 

 Association Rules are generated in two steps. 
As first step, frequent patterns are generated. The 
frequent patterns are those itemsets whose 
occurrences exceed a predefined threshold 
support value in the database. The second step is 
to generate association rules from those large 
frequent itemsets with the constraints of minimal 
confidence. The first step can be done in turn two 
sub-steps. They are, candidate itemsets generation 
and frequent itemsets generation by pruning 
process. Here, the generation of candidate large 
itemsets and pruning process are focused for 
improvement. Formally, Jiawei Han et al. [8] 
defined Association rule mining problem as 
follows. D={T1, T2, ….,TN} is a database of N 
transactions. Each transaction consists of subset 
of I, where I = {i1, i2,….,im} is a set of all items. 
An association rule is an implication of the form 
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A ⇒ B, where A and B are itemsets, A ⊆  I, B ⊆ 

I, A  ∩ B = ∅. In support-confidence framework, 
each association rule has support and confidence 
to confirm the validity of the rule. The support 
denotes the occurrence rate of an itemset in D, 
and the confidence denotes proportion of data 
items containing B in all items containing A in D. 
Defined in terms of equations, 

Sup(I) = Count(I) / Count(D) 

Sup(A ⇒ B) = Sup (A ∪ B)  

Conf(A ⇒ B) = Sup (A ∪ B) / Sup(A). 

An itemset is frequent if its support is greater 
than a support threshold, originally denoted by 
min_support. The frequent itemset mining 
problem is to find all frequent k-itemset, 
1<=k<=m, in a given transaction database D. 
Assume that the items are from an ordered set and 
the transactions in D contain sorted itemsets. 

4. PROPOSED ALGORITHM 

The proposed Direct-vertical algorithm mines 
the frequent patterns in a different way using 
combinatorial method. It generates all possible k-
itemset frequent patterns corresponding to each 
transaction on the fly while the transaction is read 
from the input database. The algorithm works in 
stages as, it reads the current transaction and 
generates all possible ordered combinations of 
items in that transaction. These combinations are 
verified for minimum support using intersection 
method. All combinations that satisfy support 
count are considered as frequent itemsets and are 
stored in frequent itemset table. This process is 
repeated for each transaction. Finally, the 
algorithm constructs a 1-itemset table for 1-
itemset frequent sets and frequent itemset table 
for k-itemsets where k>=2 in vertical form as 
{itemset, Tid}.  

 The proposed algorithm reads one transaction 
at a time. While reading, the frequent 1-itemsets 
alone are considered to fabricate ordered 
combinations of k-itemsets, where k>=2. The 
support value for each combination is calculated 
using intersection method. The intersection is 
performed using 1-itemset table. The intersection 
process results TID-set for each combination 
whose length is the absolute support count. The 
combination which satisfies minimum support 
threshold is considered as frequent set.    

This algorithm requires only one scan of the 
transaction database to generate the set of all 
frequent itemsets without generating any 
candidate sets and subsets. All infrequent itemsets 
will be filtered on the fly. This qualifies the 
efficiency of the proposed algorithm. The 
algorithm works by calculating ordered 
combination of items in each transaction Ti. The 
proposed algorithm is given below.    
 
Algorithm Direct_Vertical (D, min_Support) 

Initialize i=1, support=0; 
while (i<= n) do//for each transaction Ti in D & n 
//is the total number of transactions in D 
{ 
    read transaction Ti; 

    for each item Ij ∈ Ti,     
      //1<=j<=m, m is the number of different items  
      append Ti in 1-itemset table against Ij and 
increment support of Ij;  
      count all Ij in Ti that have support >= 
minSupport and  move all Ij to frequent list S; 
      if count<2 then  {i=i+1; Break;}    
 //eligibility to make combinations 
      else { Ck = Produce_Combinations (S)  
//Ck is the set of all possible ordered combinations 
//of frequent 1-itemsets from S, where 
//2<=k<=count.  Refer Section 4.1 

              for each C ∈Ck   { 
                 if C already exist in  frequent itemset 

table, then append Ti against C;  
              else { S1 = result of intersection of  
   corresponding TID-set of individual item in C; 
              if count(S1) >= minSupport then  

     include C in  frequent itemset table  
                  and append Ti against C;  

                    } 
            } 
        } i=i+1; 
} 

Figure 1: Direct Vertical Algorithm 

 
Example: The Direct-vertical algorithm generates 
all k-itemset frequent sets on the fly while reading 
the transaction database. Figure 2 depicts some 
steps in execution of the proposed algorithm. 
Table 1 is a simple transaction database with 
minimum support 43%. Read the first three 
transactions T100, T200 and T300, enter into the 
1-itemset table as given in table 2 which is 1-

itemset table. Here, there are two items B, E that 
satisfy minimum support. So, the combination BE 

 
 

TID Items 
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Items/ 

Transactions 

T
1

0
0

 

T
2

0
0

 

T
3

0
0

 

A Y Y  

B Y Y Y 

C   Y 

D  Y Y 

E Y Y Y 

                       Table 1                     Table 2     

 

               Table 4                             Table 3  

Figure 2: Example For Execution Of Proposed Algorithm 

goes to 2-itemset frequent set with the 
transactions T100, T200 and T300. While reading 
T400, there are four combinations for frequent 
items which include three 2-itemsets and one 3-
itemset. After performing intersection for each 
combination, include combinations that satisfy 
the minimum support as given in table 3. If any k-
itemset already exists in the table, then its support 
count alone is increased. When all transactions 
are read, table 4, frequent itemset table, is 
generated which shows all frequent k-itemsets.  

4.1. Data Structures  

 The algorithm reads one transaction at time 
and generates all frequent itemsets from that 
transaction. An extra field is attached with each 
item in both 1-itemset table and frequent itemset 
table to maintain and update the support count. 
While reading each transaction, all combinations 
are generated using frequent 1-itemsets alone in 
that specific transaction. The algorithm generates 
combinations using tree data structure which is 
advantageous when compared to other ways. The 
approach given by Shant Karakashian and Berthe 
Y. choueiry [11] is implemented in this proposed 
Direct-Vertical algorithm to improve the 

efficiency. It uses the divide-and-conquer 
technique to further reduce the complexity.  

4.1.1 Generating k-Combinations 

 The algorithm Produce_Combinations 
generates all possible combinations for the 
elements of given non-negative set S. This 
algorithm in turn calls Produce_Combi_Tree  on c 
and s=|S| to generate the combination tree where  
2 <= c <= s. The algorithms are given in Figure 3. 
The elements of S are stored in an array and the 
index values of the array are passed to generate 
tree. The algorithm Poduce_Combi_Tree is a 
divide-and-conquer algorithm that solves the 
problem by generating a tree. Given a root node 
and a non-negative integer s, it divides the 
problem into (s – c - bal + 1) sub-problems. The 
sub-problems are solved by making a recursive 
call. The recursion ends when c=0.  The final 
solution is constructed by traversing the tree in 
depth wise manner start from root through each 
and every path. This solution set gives the 
combinations of positions of elements. These 
positions are mapped to the corresponding 
element in the set S and the combinations of all 
the elements are generated. 

T100 A, B, E 

T200 A, B, D, E 

T300 B, C, D, E 

T400 B, D, E 

T500 A, B, D 
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Algorithm Produce_Combinations(S) 

root←φ ; 

s← |S| 

for c ← 2 to s 
       Produce_Combi_Tree(c, 0, root, s) 
end 

Combi_set ← Read_Tree_Depthwise(root) 

Element_Combi_Mapping ← 
Read_Element_Mapping(Combi_set) 
return Element_Combi_Mapping 
 
Algorithm Produce_Combi_Tree(c, bal, root, s) 

if c = 0 then return 

for  x← bal to (s − c) do 

new ←  x 
add new as a child to root 

Produce_Combi_Tree((c − 1), (x + 1), new, s) 
end 

Figure 3: Algorithms to generate ordered combinations 
using tree structure 

 

 As an example, the execution of the above 
said algorithms is explained using figure 4 with 
the initial call of Produce_Combinations(2, S) 
where S = {I1, I2, I3, I4}. The tree is generated 
by lexicographical order of the labels specified 
for nodes in the figure 4. The tree is traversed in 
depth wise and set of combinations generated are 
{I1, I2}, {I1, I3}, {I1, I4}, {I2, I3}, {I2, I4}, {I3, 
I4}. The time and space complexity of the 

algorithm Produce_Combinations are , where s 

= |S|,   2 <= c <= s. 
 

 

Figure 4: Tree Structure For 2-Itemset Combinations 

 

4.2 Evaluation of Proposed Algorithm 

For most of the existing algorithms, the 
complexity can be defined based on the number 
of levels (l), number of candidate sets generated 

in each level (m) and the number of subsets of 
each candidate set in all k-1 levels. The total 
number of candidate sets and subsets generated 
can be calculated as  

 

, where p = Ckj              (1) 

                                   (Each candidate itemset) 

 
 So, the complexity is about defined O(lm). 
The AprioriHybrid in addition involves the cost 
of intermediate method switching. But in the 
proposed Direct-vertical algorithm, the 
complexity can be defined based on number of 
transaction and number of ordered combinations 
generated. The total number of combinations 
calculated as   
 

       (2) 
 
where Tn is number of transactions, ni is number 
of frequent items in transaction Ti, Cj is the order 
of combinations and j= 2,3,…|ni|. The above 
formula produces totally 2ni-ni-1 * Tn. 
combinations. So, the complexity of the proposed 
algorithm can be defined as O(2ni * Tn). This is 
less in count when compared to other methods 
and hence the complexity is reduced. These 
combinations are calculated using a tree data 
structure. 

5. PERFORMANCE 

5.1 Proposed Algorithm Vs Algorithm Apriori 

 The Apriori algorithm is the first and the 
foremost association rule mining algorithm which 
generates all frequent itemsets in first phase. The 
basic concept of Apriori algorithm is to generate 
frequent itemsets that satisfy minimum threshold 
support value. There are n levels and in each kth 
level, k-itemsets frequent sets (Lk) are generated. 
Each Lk is used to generate candidate itemsets 

Ck+1 in next level which is formed as Lk⋈ Lk. A 
huge set of candidate sets are generated at each 
level. For each candidate set, a number of subsets 
are generated for pruning process. Each level 
requires one database scan. The Apriori property 
is used to reduce the search space which 
eliminates some of the candidate itemsets by 
pruning technique. Finally, all the frequent 
itemsets L are found which are used to generate 
association rules. The complexity of the algorithm 
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depends on the number of levels(n), number of 
candidate sets generated in each level (Ck) and the 
number of subsets generated in each level to 
check Apriori property (Sk*Ck). So, variably the 
complexity can be defined O(Sk*Ck), 1<=k<=n.  

 The proposed Direct-Vertical algorithm does 
not generate candidate sets and in turn subsets. 
Instead, in generates combinations which is less 
in count than set of candidate sets and subsets. 

The complexity of the proposed algorithm is , 

where s  is number of frequent items in each 
transaction and 2 <= c <= s. The proposed 
algorithm depends on the number of transactions 
in the database (one time scan) and the maximum 
length of the transactions.  

5.2 Proposed Algorithm Vs ECLAT Algorithm 

 In ECLAT algorithm, transaction database is 
transformed to vertical data format as <item, 
{TID}> where item is the name/id of the item and 
{TID} is the set of transaction identifiers 
containing the item. It requires only one scan of 
transaction database for this transformation. 
After, it follows the procedure of Apriori 
algorithm by generating candidate sets and 
subsets. The support value of each candidate 
itemset is counted by intersecting the sets of 
{TID} of every pair of frequent single items 
instead of database scan. This requires much less 
time compared to classical Apriori algorithm. 
This algorithm produces a huge number of 
candidate sets and subsets. So, the space 
complexity remains equal to Apriori algorithm as 
O(Sk*Ck), 1<=k<=n. 

The proposed algorithm follows the vertical 
data format representation and intersection 
process as in ECLAT. But, it is totally different in 
reading the input transaction database and 
generation of ordered combinations instead of 
candidate sets. ECLAT takes one scan of 
transaction database initially for complete 
transformation. The proposed algorithm reads one 
transaction at a time for whole process. An 
itemset combination is verified for support count 
using intersection method at first occurrence. The 
second occurrence of the combination is 
considered as ‘exist’ combination which is not 
required intersection process. In this case, the 
current transaction id is appended to that existing 
combination. This proves the reduced number of 
intersections in proposed algorithm when 
compared to ECLAT algorithm. 

 

5.3 Proposed Algorithm Vs AprioriTid 

The AprioriTid algorithm also generates 
candidate itemsets in each level. It uses the same 
function which is used in Apriori algorithm and 
ECLAT algorithm to generate candidate itemsets. 
The appreciated thing in AprioriTid algorithm is 
it does not scan the database after the first level. 
During first level, it reads the transactions and 
transforms the individual items as separate set in 

the same transaction. This form is known as k  

This k is used in further levels for counting 

support value of each candidate itemsets in Ck+1. 
Each member of the set Ck is of the form < TID; 
{Xk} >, where each Xk is a potentially large k-
itemset present in the transaction with identifier 
TID. It also checks whether the candidate itemsets 
in Ck+1 are contained in the transaction with 
identifier TID. This verification is done by taking 
subsets. Here, the sets that are generated by 
eliminating individual item from the candidate set 
each time are considered as subsets.   

 While comparing this algorithm, the 
proposed algorithm does not generate any 
candidate sets and subsets and produces ordered 
combinations which are less in count. There is no 
dependency of previous level results in proposed 
algorithm. For each transaction, it finishes 
generation of all possible frequent itemsets. It 
proves the better performance over AprioriTid 
algorithm. 

5.4 Proposed Algorithm Vs AprioriHybrid 

 AprioriHybrid is an advanced algorithm 
which mines the frequent itemsets. It is a 
combination of Apriori algorithm and AprioriTid 
algorithm. There are number of levels the 
algorithm should pass over. AprioriHybrid 
follows exactly Apriori algorithm for certain 
passes after which it follows AprioriTid 
algorithm. This is because during initial passes 
Apriori algorithm takes much less time than 
AprioriTid algorithm. In later passes, AprioriTid 
beats Apriori algorithm. The reason for this is 
Apriori and AprioriTid use the same candidate 
generation procedure and therefore count the 
same candidate itemsets. In the later passes, the 
number of candidate itemsets reduces. However, 
Apriori still examines every transaction in the 
database. On the other hand, rather than scanning 

the database, AprioriTid scans k for obtaining 

support counts, and the size of k has become 

smaller than the size of the database. So, it is a 
good idea to use Apriori in initial passes and 
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AprioriTid in later passes. This new idea is 
designed in a hybrid algorithm, which is called 
AprioriHybrid. When to switch from Apriori to 

AprioriTid is decided based on the size of k. 

When the size of k is enough to fit in memory, 

there the switching takes place. There is a cost 
involved for this switching.  

 In general, AprioriHybrid is advantageous 
over Apriori based on the decrease in the size of 

the k set in the later passes. If k remains large 

until nearly the end, then there is no gain from 
AprioriHybrid. On the other hand, if there is a 
gradual decline in the size of Ck, a significant 
improvement can be obtained in the execution 
time. The cost of switching must also be 
considered. While considering these constraints, 
the proposed algorithm does not have any 
uncertain situations and there is no extra cost 
involved for any process.  

6. RESULTS  

 To make the comparison between the 
algorithms based on the number of subsets, 
number of candidate sets and number of 
intersections, a real time surveyed numeric 
database is used. The database consists of 5000 
transactions includes 30 different items. The 
algorithm is implemented in C++ and is designed 
to specify the count of number of subsets, 
candidates and interactions. The execution was 
done with various support counts. The same input 
dataset is given to the exiting implementations of 
Apriori and other algorithms and the results are 
compared. Figure 5 shows comparison between 
number of subsets generated in Apriori, ECLAT, 
AprioriTid and AprioriHybrid algorithms and the 
equivalent number of ordered combinations 
generated in the proposed algorithm. The 
comparison between number of ordered 
combinations generated in proposed method with 
total number of subsets and candidate sets 
generated in other methods is shown in Figure 6. 
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Combinations 

 
 The intersection method is followed in 
ECLAT and AprioriTid of above discussed 
algorithms. It is followed in the proposed 
algorithm. The proposed algorithm is completely 
different in intersection process in terms of the 
itemsets chosen for intersection. The number of 
intersections is considerably reduced in proposed 
method. It is shown in Figure 7 that direct vertical 
algorithm performs less number of intersections 
when compared to ECLAT algorithm. The same 
can be compared with the subset verification in 
AprioriTid technique. 
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Comparison 

 

 It is analyzed and realized that execution time 
is improved in ECLAT algorithm compared to 
Apriori algorithm and AprioriTid and 
AprioriHybrid. The proposed method consumes 
less execution time when compared ECLAT 
which is shown in figure 8. To compare the 
performance of the algorithms, the experiments 
were performed on the Adult dataset from UCI 
machine learning database repository [2]. This 
dataset contains 48842 records and 14 columns. 
The relative performance of the new proposed 
direct-vertical algorithm with Apriori, ECLAT, 
AprioriTid and AprioriHybrid algorithms is 
analyzed for complexity based on number of 
combinations and number of subsets generated.  

 The proposed algorithm generates equal 
number of combinations as in ECLAT for some 
support count threshold. Considering this as 
limitation, it can be further improved by avoiding 
scan of similar transactions from input database.  
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7. CONCLUSIONS 

 It is given the new proposed direct vertical 
algorithm to mine the frequent patterns in a large 
scale databases. The proposed algorithm is 
effectively compared with some existing 
legendary algorithms. It is proved that the 
proposed algorithm outperforms other algorithms. 
The experiments were conducted with many 
synthetic datasets while only one dataset is used 
to compare the performance in this paper. The 
improvement in execution time increases with the 
size of transaction database. It is observed that the 
increase in execution time with the size of 
transaction database is linear and gradual. The 
experiments help to decide the feasibility of the 
proposed algorithm to mine frequent patterns in 
efficient manner by overcoming the bottlenecks in 
existing algorithms. This algorithm can be further 
improved by including the probability to find 
maximum possible number of combinations. The 
parallelized version of the algorithm can also be 
developed as future improvement. The 
comparative study shows the new algorithm is 
efficient than existing algorithms in terms of 
execution time and generation of candidate and 
subsets.  
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