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ABSTRACT 

 
One of the most important tasks for IT professionals is software development cost estimation. This critical 
task affects the firm's software investment decisions before bidding for a contract or committing required 
resources to that project. Under-estimation may lead to unexpected increase in budget, delay of project 
completion or its low quality, while over-estimation may lead to losing business opportunities. In this work 
authors investigate possibility of building a software cost estimation model by using multi-agent system to 
collect software cost data from distributed predefined project cost databases. The developed model 
implements Case-Based Reasoning (CBR) to find similar projects in historical data retrieved from 
measured software projects developed by different organizations, which will assist the project managers to 
perform an appropriate cost estimation of a software project. 

Keywords: Analogy, Case-Based Reasoning, Agent Technology, Magnitude of Relative Error. 
 
1. INTRODUCTION  

 
Accurate software cost estimation is critical task 

for every firm’s software investment decision. The 
accuracy of estimation of software project cost has 
a direct and significant impact on the quality of 
such decisions.  Management carefully considers 
costs and benefits of software before committing 
the required resources to that project or bidding for 
a contract. Sometimes wrong estimation is very 
high; in fact it could be 150-200% higher than the 
actual cost [1].  

A lot of software projects cost estimation models 
have been developed during the last four decades 
[1], [2]. But until now there is no perfect model that 
can give an estimation close enough to the actual 
cost. Over-estimation may lead to using the 
resources inefficiently and losing a lot of business 
opportunities, while under-estimation may lead to 
delaying the final software product delivery, 
unexpected increase in budget, or low quality of 
software projects. As a result no accurate decision 
can be made due to the lack of consistency, so the 
senior project managers become depended on their 
experience to reach the final decision to proceed or 
cancel the project. 

Using data on projects of single organization for 
cost estimation has its benefits, such as ease of 

understanding and controlling collected data.  But 
there have been multiple reports on contradictory 
results for different software cost estimation 
modeling techniques using such data. Myrtveit [3] 
concluded that generalization of the obtained results 
is difficult due to the characteristics of the datasets 
being used and their small size. Results of the 
studies that rely on using organization-specific 
datasets makes them more biased because the data 
at hand are specific to a given organization. 
Characteristics of the datasets being used play a 
major role. 

Boehm [2] and Mendes [4] suggested that relying 
on organization-specific datasets leads to poor 
software cost predictions due to the following 
problems: collection of data on previous projects 
from single organization could be too expensive; 
information on older projects may outdated and no 
longer be valid or appropriate due to the new 
technologies that organization is using; and 
difficulty to ensure consistency of the collected 
data. 

The authors focus on usage of a large number of 
datasets and the issues of the dataset characteristics 
in very large collected data. Datasets are selected 
from distributed software project databases of 
different organizations of comparable domains. 
Organizations that do not have their own data or 
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expertise to build their own cost estimation models 
will be able to do so using this approach.  

Using artificial intelligence (AI) methodologies 
in software cost estimation provides consistency 
and better accuracy of estimation. This paper 
presents an alternative approach of software cost 
estimation based on Case Based Reasoning (CBR), 
similar to the one applied by Shepperd [5],  
combined with mobile agent technology.  CBR 
makes use of previous experience to solve newly 
encountered problems. The past experience is 
recorded as cases in a CBR’s case base. When a 
new problem emerges, the system retrieves projects 
from the database to find similar cases to the 
current problem, and the closest match is modified 
to fit the new problem. New solution will be stored 
in the case base as a learned case to preserve the 
experience and can be reused in the future. 

In CBR problem-solving is seen as a process, 
which involves the retrieval of similar prior cases 
from case bases using mobile agent methodology 
and the adaptation of retrieved cases’ solutions to fit 
the new problem’s requirements. CBR systems is 
acting as project managers experts when they 
applying analogical reasoning for making an 
estimation or prediction. 

In analogy based systems, the similarity between 
two cases depends on the Euclidean distance 
between the corresponding features. The smaller the 
distance the more similar they are. In algorithmic 
models the cost estimation depends on 
mathematical models as a function of a number of 
variables, and can be calculated using the formula 
Effort = f(x1, x2, …, xn), where x is a cost factor 
(attribute). Each model may have different factors 
and different functions. 

The rest of the paper is organized as follows. 
Section 2 briefly reviews the major cost estimation 
models. Sections 3 and 4 describe the major 
features of CBR and mobile agent technology 
respectively.  Section 5 discusses how to implement 
mobile agent technology integrated with CBR in 
order to build the software cost estimation model. 
Section 6 discusses the experimental data set and 
the findings. Section 7 summarizes the discussions 
and suggests direction for future work. 

2. RELATED WORK  

Some potential solutions of the above problem 
have been developed based on algorithmic models 
(e.g. Constructive Cost Model (COCOMO, 
COCOMO II [6], Function Points, Price-to-Win, 
and SLIM [7]. Most of the algorithmic software 

estimation models are based on analytical methods 
and derived from the statistical or numerical 
analysis of historical projects data. 

The general form of equation used by COCOMO 
and Function Points methods can be represented as  

y
xSE = ,     (1) 

where E is effort, S is size measured as number of 
lines of code or function points, x is a productivity 
parameter and y is economics of scale parameter. 
COCOMO model provides three equations 
according to the project development mode 
(embedded, semi-detached, and organic). Their 
parameters need to be adjusted to local 
circumstances. 

COCOMO II provides tool for conducting 
empirical analysis of the model.  The general form 
of equation used by COCOMO II is: 

∏×
∑×=

+

EMSXE
SFB

][
,    (2) 

where X is baseline multiplicative constant, B is 
baseline exponential constant, SF are scale factors 
(understanding product objectives, flexibility, team 
coherence, etc.), EM are effort multipliers (software 
reliability, database size, reusability, complexity, 
etc.) 

Later, Vinaykumar [8] used wavelet neural 
networks for the prediction of software cost 
estimation. Unfortunately the accuracy of these 
models is not satisfactory so there is always a place 
for more accurate software cost estimation 
techniques. Lefley and Shepperd [9] applied genetic 
programming to improve software cost estimation 
on public datasets with great success. 

Kumari [10] provide a comparative study on 
support vector regression, Intermediate COCOMO 
and Multiple Objective Particle Swarm 
Optimization model for estimation of software 
project effort, based on the size of the code and set 
of cost drivers. 

The common problem with methods mentioned 
above - none of them can be considered convincing 
or consistent in solving the cost estimation 
problems [11]. Some of these algorithmic methods 
may lead to relative errors as high as 600% [12]. 

Due to the shortcomings of the above mentioned 
methods researchers turn their attention to non-
algorithmic methods, and, in particular, to a set of 
approaches based on expert judgment, neural 
networks, rule based and case based reasoning. 
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Expert judgment methods rely on the use of 
human expertise to estimate software cost [13] and 
can be used when no quantified empirical data is 
available. Estimators rely on their past experiences 
and understanding of the problem. They search for 
previous cases similar to the new project and adapt 
old estimations to fit the new situation. This 
approach however lacks a consistent and systematic 
procedure for cost estimation and can result in over- 
or under-estimation of the cost of the software 
project. The major drawback of this method is that 
an estimate is only as good as the expert’s opinion. 

Other AI techniques also have been used for 
estimation. Kellner [14] developed a rule based 
system to estimate the cost of software. This 
technique has been adopted from the AI domain 
where a known fact fires up rules, which in turn 
may assert new facts. 

A lot of effort has been put into development of 
neural network based software estimation models 
[15]. Neural network estimation models have to be 
trained on historical data from older projects that 
used as input values (project size, complexity, skill 
levels, etc). Model’s algorithmic parameter values 
are automatically adjusted until they are acceptable 
for predicting results for the training data set. As for 
any algorithmic technique, these models require 
very large data sets in order to accurately train 
neural networks.  

Jørgensen et al [16] built a new model called 
BEST to assist project managers in their estimation 
of effort involved in software projects. An empirical 
evaluation of the analogy based and regression 
based approaches were conducted using 9 different 
datasets [17]. The results demonstrated superiority 
of the analogy based prediction system over the 
regression approaches in all sets. That's does not 
mean the estimation by algorithmic approaches 
must be rejected, so searching for additional and 
more accurate methods of software project effort 
prediction still running even so the estimation by 
analogy appears to be more accurate now [19]. 

CBR method is rated among the best methods in 
a variety of circumstances [20]. Experiments 
showed that this approach provides better accuracy 
than algorithmic methods. Algorithmic are capable 
of handling different types of problems in 
comparison with CBR where solutions are derived 
from historical cases and use a form of reasoning 
close to the human problem solving as opposed to 
rule based reasoning or neural nets. CBR can when 
generation of an algorithmic model is difficult or 

impossible (no statistically significant relationships 
could be found).  

3. MOBILE AGENTS 

Mobile agents can be defined as autonomous 
computational entities capable of effectively 
performing operations in dynamic environments 
that are known as multi-agent systems. Agents are 
capable of exercising control over their actions, and 
can interact and/or cooperate with other agents.  

The proposed system is based on authors’ 
previous works [21], [22]. The system supports 
multiple intelligent agents that search distributed 
databases for most similar cases. Agents access case 
bases to retrieve the best matches. There is no 
guarantee that any agent may find the best similar 
case. It will retrieve the most similar local case, and 
cooperation among agents may lead to achievement 
of the final goal of finding the best match. This way 
the cost prediction of a project does not just rely on 
few projects stored locally, but affected by data 
retrieved from distributed databases (distributed 
datasets). 

Intelligent agents can possess some or all of the 
following characteristics: autonomy, mobility, 
reacting to changes in the environment; ability to 
cooperate, learn from experience and communicate 
with other agents. 

4. CASE BASED REASONING 

Case Based Reasoning (CBR) has been attracting 
much attention recently as a paradigm with a wide 
variety of applications. This paper discusses issues 
related to construction of a cost estimation model 
and composition of a case, where sub cases are 
distributed across different distributed databases.  

CBR approach is based on re-using past 
experience or occurrence [23], where a reasoner 
recalls previous cases similar to the current one and 
uses them to solve the current problem. The CBR 
repository stores numerous cases related to the 
matters under consideration. Often the past 
experiences provide important clues or direct 
answers to the current problem. 

Aamodt et al [18] described CBR technique as 
combination of the following four processes and 
shown on figure 1: 

− Retrieve of the most similar previous case 
related to the current problem.  

− Re-use this or these case(s) to solve the current 
problem. 
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− Revise the solution based on re-using previous 
cases in order to adapt to the current problem. 

− Retain the new solution (as a new case) in the 
case-base. Such a way, a CBR system will 
gradually grow larger and become a precious 
resource. 

 
The adaptation process in most cases is a must 

because each project has its own metrics and scope. 
Case-based reasoning has quite a few advantages:  

− According to many studies CBR shows better 
prediction accuracy than other models. 

− Applying analogical reasoning for making 
estimations CBR is acting as human experts.  

− CBR can deal with qualitative and quantitative 
data. 

− CBR is capable of using an existing solution 
and revising it to adapt the current problem. 

− Implementation of a CBR system is easy. 
− Compared to algorithmic models, CBR shows 

flexibility and simplicity in use.  
− It is easy to update the CBR data base with a 

new case; it is a cumulative way of historical 
cases. 

− CBR is a comprehensive system that 
encompasses all the software cost estimation 
steps, retrieve, reuse, revise, and adapt the 
retrieved case to current case. 

− CBR depends on expert prior knowledge for 
solving a current problem. 

− CBR systems have the ability to deal with 
failed cases. 

Establishing similarity of cases is the basis of 
CBR and case searching. It depends on a set of 
attributes which make the case different from 
others. These attributes are the key attributes of a 
case. The cases which have one or more similar key 
attributes are similar. Each key attribute represents 
a specific characteristic of this case. Examples of 
the key attributes are project size, target platform, 
quality of system requirements. Project size, one of 
the more likely used key attributes that represents 
the number of lines of code of the project, can be 
estimated using different techniques such as 
Genetic Programming and Neural Networks [24]  

Other attributes, such as development environment, 
application type, business area type, etc., can act as 
sub-key attributes.  

Case searching model is used to compare and 
filter the cases from the case base to find the similar 
ones. It is based on the key and sub-key attributes. 
To make the case searching model more effective, 
case index reflecting the main feature of the cases is 
build. This index is recommended especially when 
the volume of the case base is large. 

4.1    Similarity Measures. 

Similarity between a current case with a set of 
features and other cases (historical cases) in the 
CBR database depends on a matching function such 
as k-NN (K-Nearest Neighbor) [21], which already 
is implemented in WEKA tool [25].The above 
mentioned function uses the most common 
similarity measure which is the Euclidean distance 
metric among cases. Features can be categorical, 
discrete, and continuous by nature [6], therefore the 
Euclidean distance measure is more suitable for 
features that have a continuous nature. Furthermore 
k-NN shows the best results in addressing the 
missing values [26]. Assuming there are two cases 
with n features, P = (p1, p2… pn) and Q = (q1, 
q2…qn) the Euclidean distance without features’ 
weights can be computed as: 

,   (3)

 

and with features’ weights: 
 

,  (4) 

where the smaller the distance the more similar the 
two cases are. In [19] the authors state a formula (5) 
and (6) to measure the similarity between two cases 
for different categories. 

, (5) 

where P is the set of n features, C1 and C2 are cases, 
C1j is the feature j of the case C1, and 

(6) 
The main disadvantage of similarity measures is 

high computational requirements, and this can 
degrade the efficiency of CBR system, but if you 
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Figure 1: CBR cycle 
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deal with less than 100 cases, the efficiency will be 
not an issue [19].  

4.2    ANGEL Tool 

ANGEL is a software tool for estimation by 
analogy (case-based reasoning) approach for 
software project cost prediction; it provides a lot of 
functionalities [7], [17]. Furthermore ANGEL 
estimation proved to be one of the most accurate of 
all methods in different cases, and considered the 
dominant automated software effort estimation 
[26]. The main phases of the process of ANGEL 
tool consist of re-processing of cases and then 
features’ selection to bring up a final features set to 
be used in the prediction process. The reduced case 
base is used then for prediction of the effort 
required for a new problem. Adaptation may be 
required before final effort estimation. 

5. INTEGRATION OF CBR AND MOBILE 

AGENT APPROACHES INTO COST 

ESTIMATION MODEL  

The overall framework of the proposed system is 
presented in figure 2. It is composed of three 
different major components: front end user 
machine, back end server, and the software cost 
estimation servers on the web. The system has a 
number of agents. Each agent is designed to 
represent a specific functional unit. This requires 
three different agent types, one mobile and two 
static (interface agent (IA), task agent (TM), and 
mobile information agent MIA). 

A client at the front end user machine 
communicates with the system through a web 
browser. The TM agent on the back end server 
generates multiple MIAs which search the web for 
the required information.  Each agent visits a 
software cost estimation server on the web. It 
carries a searching criteria generated at the back 
end server every time a client conduct search. 
When an agent finds the most similar according to 
the similarity metric project will send it back to the 
task agent at the back end server where it will be 
filtered and then presented to the user.  

The steps of the cost estimation process: 

− A client communicates with the system 
through interface agent. The task agent 
generates MIA that should do the following: 

− Each mobile information agent should select 
projects of the same types, similar application 
domains, size, etc. (to be defined by the client) 
from CBR database. 

− The task agent RECEIVE candidate projects 
from each mobile agent; MERGE candidate 

projects; and CHOOSE best project(s) using 
ANGEL tool as explained above. 

− When a project is retrieved, its attributes are 
match against those of the current project. If it 
is a perfect match then solution is found, else 
unmatched attributes are extracted and grouped 
as a new project. These unmatched attributes 
are used again to retrieve the most similar 
project, and so on as long as any unmatched 
attributes remain. The task manager will merge 
all collected projects. If retrieval procedure has 
resulted in large number of projects with the 
same attributes, then similarity function is 
computed and compared to find the closest 
match.  

 
6. EXPERIMENTAL DATASET 

6.1 Dataset 

The dataset used in this work contains 126 
software project cases selected from three different 
application domains (communication, finance, and 
games) of C# projects. Initially the dataset was 
extracted by a mobile agent that was injected by the 
software metrics tool as proposed in [13], [17], 
[20].  

6.2   Features Selection 

Features selection is very important for 
improving the accuracy of estimations and 
minimizing the complexity and time needed to 
come up with certain estimation, thus most of 
estimation methods depend on the project 
characteristics and features for deriving cost 
estimation from the cost drivers. Among these 
features are the ones used by COCOMO II model 
(refer to table 1).  

In this study authors used the same software 
metrics (measurements of the source code of 
software projects), as in [13]. The description of 
these metrics presented in table 2. Information gain 
value has been used for selection of metrics subset, 
where the metric having the highest information 
gain was considered the best metric for labeling a 
tuple in the dataset. This study depends on the 
information gains presented in table 3 of the 
metrics used to assign their weights. Authors 
associate the metrics in the CBR system with a 
priority levels (High = 4, Mid = 3, Fair = 2, Low = 
1) only for the ones that appeared in (Table 3).  The 
rest of metrics in table 2 will be assigned by default 
the lowest priority which is 1. For example LOC 
has been assigned a priority of 3 depending on its 
information gain value table 3 which is 0.336.  
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Table 1: Cost Factors In COCOMO II Model. 

Table 2: Software Metrics 

Software Metric Description 

Lines Total lines of Code  

LOC 
Lines of Codes without comments 

or empty lines 

SLOC Statements Line of Codes 

SLOCmath Counting all math operators 

MCDC 
Modified Condition/Decision 

Coverage 

MaxNest Maximum Nesting 

CComplexity Cyclomatic complexity 

AvgMethod Average Methods per class 

MethodCComplex
ity 

Methods  Cyclomatic complexity 

MaxInheritanceD

epth 
Maximum inheritance depth 

AvgDependency Average dependency  

ChildNumber 
average or max number of 

children per class 

CBO Coupling Between Object Classes 

 

6.3  Accuracy and Prediction 

The accuracy is defined as the mean magnitude 
of relative error (MMRE), which is the mean of 
percentage errors as in equation (7) [19] 

,     (7) 

Table 3: Metrics information gain  

 
where n is the number of projects (i.e. cases), E is 
the actual effort, and Ȇ is the predicted effort. If the 
value of MMRE is a large positive value, then the 
model over-estimates the cost, while a large 
negative would indicate that the model under-
estimates the software cost. The MMRE is not 
always appropriate indicator of the prediction, 
where extreme deviations from the mean can affect 
the final prediction, so the percentage of predictions 
that fall within 25 percent of the actual value 
Pred25 (eq. 8) has been calculated for comparison, 
so both MMRE and Pred25 have been studied as a 
performance measures.  

 ,    (8) 

where P is the number of projects (cases) and rp = 
(êp - ep) / ep, where êp is the predicted effort and ep 
is the actual effort [13]. 
 
6.4 Results 

Authors work with three different domains 
(Communications, Finance, Games) of projects in 
the dataset used. In these experiments each domain 
has been used as a different data set for two 
reasons:  

− Each of the three domains used in this study 
possess various software metrics. For example 
finance applications require larger number of 
code lines, game applications have a higher 
value of object oriented metrics, while the 
communications projects complexity is higher 
than that the financial projects. It should be 
noted that these aspects are based on the 
personal point of view and to some extent 
depend on the experience of the programmer.  

− The efficiency is not an issue if the number of 
dataset cases is less than 100 cases [19]. 

Cost Factor Description 
 Product 

RELY required software reliability 

DATA database size 

CPLX product complexity 

 Computer 

TIME execution time constraint 

STOR main storage constraint 

VIRT virtual machine volatility 

TURN computer turnaround time 

 Project 

MODP modern programming practice 

TOOL software tools 

SCED development schedule 

 Personnel 

ACAP analyst capability 

AEXP application experience 

PCAP programmer capability 

VEXP virtual machine experience 

LEXP language experience 

Software Metric Information Gain Value 

MCDC 0.479 

CComplexity 0.45 

CBO 0.363 

LOC 0.336 

SLOCmath 0.322 

MaxNest 0.299 

avgMethod per class 0.151 

Children 0.147 
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The research target feature is MCDC because it 
has the highest information gain value which is 
0.479 as shown in table 3. K in the tables above is 
the number of analogues. The Jack knifing 
validation technique was used in which each case 
removed from the dataset and the rest used to 
predict the removed one. After that the removed 
returned back to the dataset and another one is 
picked to be predicted until all cases finished.  

The results MMRE and Pred25 (refer to tables 4 
and 5) are computed using the ANGEL analogy 
based tool, where both the higher Pred25 and the 
smaller MMRE scores mean better predictive 
accuracy, and have been plotted on figures 3 and 4 
respectively.  

Table 4: MMRE As Function Of Dataset Size And 

Number Of Analogies. 

 

Table 5: Pred25 as function of Dataset Size and Number 
of Analogies. 

 
 

 
Figure 3. MMRE performance indicator. 

Computing the MMRE and Pred25 needs a 
considerable time. For attributes represented in 
table 1 and table 2, about 4 hours have been needed 
to compute the results. Calculation time depends on 
the number of cases being tested. The more cases 
you have the more computations time you need.   

 

Figure 4. Pred25 performance indicator. 

As for MMRE and Pred25 measures, the more 
cases means the more accurate measures. While 
Pred25 is more accurate than MMRE, both of them 
give interesting results for the different datasets, the 
average of MMRE measure for communication, 
finance, and game datasets are 37.38, 23.7, and 
22.16 percent respectively while the average of 
Pred25 measure for communication, finance, and 
game datasets are 56.3636, 74.222, and 72.9168 
percent respectively. 

6.5 Discussion  

In this work, authors introduced efficient 
software projects cost estimation approach where 
the code metrics are extracted then compared to the 
historical ones in the database. Its main goal is to 
let project managers estimate the cost per releases 
or stages, i.e. they can extract the metrics of code 
implemented for a certain stage, predict the cost of 
the next stage of the project such giving additional 
knowledge to help making a proper decision in the 
stage agreement of certain projects. It also can be 
considered as a support step to further estimate the 
cost of development process after finishing each 
release. Even more, project managers can get 
information about risks that may pops up depending 
on the analysis or comparison of the code metrics 
of different stages. This could be one of the main 
documents that the project manager should pay 
attention before establishing a new stage.  

A task of extracting features from the 
implemented code, estimation of the effort and 
deciding what can be done in the next stage can be 
assigned to an IT project manager. He should 
decide if project should be continued or abandoned 
depending on situation. This technique allows a 
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manager to predict the effort for a project releases 
or stages more accurate, if he is dealing with the 
same team; or provide better knowledge about the 
code in previous releases. Furthermore this work is 
the first study that applies the CBR on software 
projects metrics, to predict the cost per releases or 
stages of a certain project.     

 
7. CONCLUSION  

Predicting the cost of software projects is a big 
challenge to the project managers. Experienced 
managers can depend on their expertise to make to 
some extent correct estimation, while others depend 
on the algorithmic based models like COCOMO. 
Most research papers that apply the non-
algorithmic approach such as estimation by analogy 
show the power of analogy based reasoning in 
predicting the cost of software projects, in which 
picking the most similar solutions from historical 
cases. In this paper authors used the software 
metrics of software projects to predict more precise 
solution to the current problem. Results show 
interesting performance indicators for different 
number of analogues. This work provided decision 
making support to the project manager decision in 
order to choose the most appropriate case to his 
current problem depending on the code metrics. 
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