
Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

754

AN EFFICIENT APPROACH TO DEVELOP SOFTWARE

COST ESTIMATION MODEL USING CASE-BASED

REASONING AND AGENT TECHNOLOGY

1
 HASAN AL-SAKRAN,

 2 HASSAN Y. A. ABU TAIR
1Assoc. Prof., Department of Management Information Systems, King Saud University, Saudi Arabia

2Department of Computer Science, King Saud University, King Saud University, Saudi Arabia
E-mail: 1halsakran@ksu.edu.sa, 2habutair@gmail.com

ABSTRACT

One of the most important tasks for IT professionals is software development cost estimation. This critical
task affects the firm's software investment decisions before bidding for a contract or committing required
resources to that project. Under-estimation may lead to unexpected increase in budget, delay of project
completion or its low quality, while over-estimation may lead to losing business opportunities. In this work
authors investigate possibility of building a software cost estimation model by using multi-agent system to
collect software cost data from distributed predefined project cost databases. The developed model
implements Case-Based Reasoning (CBR) to find similar projects in historical data retrieved from
measured software projects developed by different organizations, which will assist the project managers to
perform an appropriate cost estimation of a software project.

Keywords: Analogy, Case-Based Reasoning, Agent Technology, Magnitude of Relative Error.

1. INTRODUCTION

Accurate software cost estimation is critical task

for every firm’s software investment decision. The
accuracy of estimation of software project cost has
a direct and significant impact on the quality of
such decisions. Management carefully considers
costs and benefits of software before committing
the required resources to that project or bidding for
a contract. Sometimes wrong estimation is very
high; in fact it could be 150-200% higher than the
actual cost [1].

A lot of software projects cost estimation models
have been developed during the last four decades
[1], [2]. But until now there is no perfect model that
can give an estimation close enough to the actual
cost. Over-estimation may lead to using the
resources inefficiently and losing a lot of business
opportunities, while under-estimation may lead to
delaying the final software product delivery,
unexpected increase in budget, or low quality of
software projects. As a result no accurate decision
can be made due to the lack of consistency, so the
senior project managers become depended on their
experience to reach the final decision to proceed or
cancel the project.

Using data on projects of single organization for
cost estimation has its benefits, such as ease of

understanding and controlling collected data. But
there have been multiple reports on contradictory
results for different software cost estimation
modeling techniques using such data. Myrtveit [3]
concluded that generalization of the obtained results
is difficult due to the characteristics of the datasets
being used and their small size. Results of the
studies that rely on using organization-specific
datasets makes them more biased because the data
at hand are specific to a given organization.
Characteristics of the datasets being used play a
major role.

Boehm [2] and Mendes [4] suggested that relying
on organization-specific datasets leads to poor
software cost predictions due to the following
problems: collection of data on previous projects
from single organization could be too expensive;
information on older projects may outdated and no
longer be valid or appropriate due to the new
technologies that organization is using; and
difficulty to ensure consistency of the collected
data.

The authors focus on usage of a large number of
datasets and the issues of the dataset characteristics
in very large collected data. Datasets are selected
from distributed software project databases of
different organizations of comparable domains.
Organizations that do not have their own data or

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

755

expertise to build their own cost estimation models
will be able to do so using this approach.

Using artificial intelligence (AI) methodologies
in software cost estimation provides consistency
and better accuracy of estimation. This paper
presents an alternative approach of software cost
estimation based on Case Based Reasoning (CBR),
similar to the one applied by Shepperd [5],
combined with mobile agent technology. CBR
makes use of previous experience to solve newly
encountered problems. The past experience is
recorded as cases in a CBR’s case base. When a
new problem emerges, the system retrieves projects
from the database to find similar cases to the
current problem, and the closest match is modified
to fit the new problem. New solution will be stored
in the case base as a learned case to preserve the
experience and can be reused in the future.

In CBR problem-solving is seen as a process,
which involves the retrieval of similar prior cases
from case bases using mobile agent methodology
and the adaptation of retrieved cases’ solutions to fit
the new problem’s requirements. CBR systems is
acting as project managers experts when they
applying analogical reasoning for making an
estimation or prediction.

In analogy based systems, the similarity between
two cases depends on the Euclidean distance
between the corresponding features. The smaller the
distance the more similar they are. In algorithmic
models the cost estimation depends on
mathematical models as a function of a number of
variables, and can be calculated using the formula
Effort = f(x1, x2, …, xn), where x is a cost factor
(attribute). Each model may have different factors
and different functions.

The rest of the paper is organized as follows.
Section 2 briefly reviews the major cost estimation
models. Sections 3 and 4 describe the major
features of CBR and mobile agent technology
respectively. Section 5 discusses how to implement
mobile agent technology integrated with CBR in
order to build the software cost estimation model.
Section 6 discusses the experimental data set and
the findings. Section 7 summarizes the discussions
and suggests direction for future work.

2. RELATED WORK

Some potential solutions of the above problem
have been developed based on algorithmic models
(e.g. Constructive Cost Model (COCOMO,
COCOMO II [6], Function Points, Price-to-Win,
and SLIM [7]. Most of the algorithmic software

estimation models are based on analytical methods
and derived from the statistical or numerical
analysis of historical projects data.

The general form of equation used by COCOMO
and Function Points methods can be represented as

y
xSE = , (1)

where E is effort, S is size measured as number of
lines of code or function points, x is a productivity
parameter and y is economics of scale parameter.
COCOMO model provides three equations
according to the project development mode
(embedded, semi-detached, and organic). Their
parameters need to be adjusted to local
circumstances.

COCOMO II provides tool for conducting
empirical analysis of the model. The general form
of equation used by COCOMO II is:

∏×
∑×=

+

EMSXE
SFB

][
, (2)

where X is baseline multiplicative constant, B is
baseline exponential constant, SF are scale factors
(understanding product objectives, flexibility, team
coherence, etc.), EM are effort multipliers (software
reliability, database size, reusability, complexity,
etc.)

Later, Vinaykumar [8] used wavelet neural
networks for the prediction of software cost
estimation. Unfortunately the accuracy of these
models is not satisfactory so there is always a place
for more accurate software cost estimation
techniques. Lefley and Shepperd [9] applied genetic
programming to improve software cost estimation
on public datasets with great success.

Kumari [10] provide a comparative study on
support vector regression, Intermediate COCOMO
and Multiple Objective Particle Swarm
Optimization model for estimation of software
project effort, based on the size of the code and set
of cost drivers.

The common problem with methods mentioned
above - none of them can be considered convincing
or consistent in solving the cost estimation
problems [11]. Some of these algorithmic methods
may lead to relative errors as high as 600% [12].

Due to the shortcomings of the above mentioned
methods researchers turn their attention to non-
algorithmic methods, and, in particular, to a set of
approaches based on expert judgment, neural
networks, rule based and case based reasoning.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

756

Expert judgment methods rely on the use of
human expertise to estimate software cost [13] and
can be used when no quantified empirical data is
available. Estimators rely on their past experiences
and understanding of the problem. They search for
previous cases similar to the new project and adapt
old estimations to fit the new situation. This
approach however lacks a consistent and systematic
procedure for cost estimation and can result in over-
or under-estimation of the cost of the software
project. The major drawback of this method is that
an estimate is only as good as the expert’s opinion.

Other AI techniques also have been used for
estimation. Kellner [14] developed a rule based
system to estimate the cost of software. This
technique has been adopted from the AI domain
where a known fact fires up rules, which in turn
may assert new facts.

A lot of effort has been put into development of
neural network based software estimation models
[15]. Neural network estimation models have to be
trained on historical data from older projects that
used as input values (project size, complexity, skill
levels, etc). Model’s algorithmic parameter values
are automatically adjusted until they are acceptable
for predicting results for the training data set. As for
any algorithmic technique, these models require
very large data sets in order to accurately train
neural networks.

Jørgensen et al [16] built a new model called
BEST to assist project managers in their estimation
of effort involved in software projects. An empirical
evaluation of the analogy based and regression
based approaches were conducted using 9 different
datasets [17]. The results demonstrated superiority
of the analogy based prediction system over the
regression approaches in all sets. That's does not
mean the estimation by algorithmic approaches
must be rejected, so searching for additional and
more accurate methods of software project effort
prediction still running even so the estimation by
analogy appears to be more accurate now [19].

CBR method is rated among the best methods in
a variety of circumstances [20]. Experiments
showed that this approach provides better accuracy
than algorithmic methods. Algorithmic are capable
of handling different types of problems in
comparison with CBR where solutions are derived
from historical cases and use a form of reasoning
close to the human problem solving as opposed to
rule based reasoning or neural nets. CBR can when
generation of an algorithmic model is difficult or

impossible (no statistically significant relationships
could be found).

3. MOBILE AGENTS

Mobile agents can be defined as autonomous
computational entities capable of effectively
performing operations in dynamic environments
that are known as multi-agent systems. Agents are
capable of exercising control over their actions, and
can interact and/or cooperate with other agents.

The proposed system is based on authors’
previous works [21], [22]. The system supports
multiple intelligent agents that search distributed
databases for most similar cases. Agents access case
bases to retrieve the best matches. There is no
guarantee that any agent may find the best similar
case. It will retrieve the most similar local case, and
cooperation among agents may lead to achievement
of the final goal of finding the best match. This way
the cost prediction of a project does not just rely on
few projects stored locally, but affected by data
retrieved from distributed databases (distributed
datasets).

Intelligent agents can possess some or all of the
following characteristics: autonomy, mobility,
reacting to changes in the environment; ability to
cooperate, learn from experience and communicate
with other agents.

4. CASE BASED REASONING

Case Based Reasoning (CBR) has been attracting
much attention recently as a paradigm with a wide
variety of applications. This paper discusses issues
related to construction of a cost estimation model
and composition of a case, where sub cases are
distributed across different distributed databases.

CBR approach is based on re-using past
experience or occurrence [23], where a reasoner
recalls previous cases similar to the current one and
uses them to solve the current problem. The CBR
repository stores numerous cases related to the
matters under consideration. Often the past
experiences provide important clues or direct
answers to the current problem.

Aamodt et al [18] described CBR technique as
combination of the following four processes and
shown on figure 1:

− Retrieve of the most similar previous case
related to the current problem.

− Re-use this or these case(s) to solve the current
problem.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

757

− Revise the solution based on re-using previous
cases in order to adapt to the current problem.

− Retain the new solution (as a new case) in the
case-base. Such a way, a CBR system will
gradually grow larger and become a precious
resource.

The adaptation process in most cases is a must

because each project has its own metrics and scope.
Case-based reasoning has quite a few advantages:

− According to many studies CBR shows better
prediction accuracy than other models.

− Applying analogical reasoning for making
estimations CBR is acting as human experts.

− CBR can deal with qualitative and quantitative
data.

− CBR is capable of using an existing solution
and revising it to adapt the current problem.

− Implementation of a CBR system is easy.
− Compared to algorithmic models, CBR shows

flexibility and simplicity in use.
− It is easy to update the CBR data base with a

new case; it is a cumulative way of historical
cases.

− CBR is a comprehensive system that
encompasses all the software cost estimation
steps, retrieve, reuse, revise, and adapt the
retrieved case to current case.

− CBR depends on expert prior knowledge for
solving a current problem.

− CBR systems have the ability to deal with
failed cases.

Establishing similarity of cases is the basis of
CBR and case searching. It depends on a set of
attributes which make the case different from
others. These attributes are the key attributes of a
case. The cases which have one or more similar key
attributes are similar. Each key attribute represents
a specific characteristic of this case. Examples of
the key attributes are project size, target platform,
quality of system requirements. Project size, one of
the more likely used key attributes that represents
the number of lines of code of the project, can be
estimated using different techniques such as
Genetic Programming and Neural Networks [24]

Other attributes, such as development environment,
application type, business area type, etc., can act as
sub-key attributes.

Case searching model is used to compare and
filter the cases from the case base to find the similar
ones. It is based on the key and sub-key attributes.
To make the case searching model more effective,
case index reflecting the main feature of the cases is
build. This index is recommended especially when
the volume of the case base is large.

4.1 Similarity Measures.

Similarity between a current case with a set of
features and other cases (historical cases) in the
CBR database depends on a matching function such
as k-NN (K-Nearest Neighbor) [21], which already
is implemented in WEKA tool [25].The above
mentioned function uses the most common
similarity measure which is the Euclidean distance
metric among cases. Features can be categorical,
discrete, and continuous by nature [6], therefore the
Euclidean distance measure is more suitable for
features that have a continuous nature. Furthermore
k-NN shows the best results in addressing the
missing values [26]. Assuming there are two cases
with n features, P = (p1, p2… pn) and Q = (q1,
q2…qn) the Euclidean distance without features’
weights can be computed as:

, (3)

and with features’ weights:

, (4)

where the smaller the distance the more similar the
two cases are. In [19] the authors state a formula (5)
and (6) to measure the similarity between two cases
for different categories.

, (5)

where P is the set of n features, C1 and C2 are cases,
C1j is the feature j of the case C1, and

(6)
The main disadvantage of similarity measures is

high computational requirements, and this can
degrade the efficiency of CBR system, but if you

Given

Problem

New Case CB

R

Most Similar
Case

New Case

Approved
 Case

Ma

p

Retrieve

Adapt Revise

Test Add

Figure 1: CBR cycle

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

758

deal with less than 100 cases, the efficiency will be
not an issue [19].

4.2 ANGEL Tool

ANGEL is a software tool for estimation by
analogy (case-based reasoning) approach for
software project cost prediction; it provides a lot of
functionalities [7], [17]. Furthermore ANGEL
estimation proved to be one of the most accurate of
all methods in different cases, and considered the
dominant automated software effort estimation
[26]. The main phases of the process of ANGEL
tool consist of re-processing of cases and then
features’ selection to bring up a final features set to
be used in the prediction process. The reduced case
base is used then for prediction of the effort
required for a new problem. Adaptation may be
required before final effort estimation.

5. INTEGRATION OF CBR AND MOBILE

AGENT APPROACHES INTO COST

ESTIMATION MODEL

The overall framework of the proposed system is
presented in figure 2. It is composed of three
different major components: front end user
machine, back end server, and the software cost
estimation servers on the web. The system has a
number of agents. Each agent is designed to
represent a specific functional unit. This requires
three different agent types, one mobile and two
static (interface agent (IA), task agent (TM), and
mobile information agent MIA).

A client at the front end user machine
communicates with the system through a web
browser. The TM agent on the back end server
generates multiple MIAs which search the web for
the required information. Each agent visits a
software cost estimation server on the web. It
carries a searching criteria generated at the back
end server every time a client conduct search.
When an agent finds the most similar according to
the similarity metric project will send it back to the
task agent at the back end server where it will be
filtered and then presented to the user.

The steps of the cost estimation process:

− A client communicates with the system
through interface agent. The task agent
generates MIA that should do the following:

− Each mobile information agent should select
projects of the same types, similar application
domains, size, etc. (to be defined by the client)
from CBR database.

− The task agent RECEIVE candidate projects
from each mobile agent; MERGE candidate

projects; and CHOOSE best project(s) using
ANGEL tool as explained above.

− When a project is retrieved, its attributes are
match against those of the current project. If it
is a perfect match then solution is found, else
unmatched attributes are extracted and grouped
as a new project. These unmatched attributes
are used again to retrieve the most similar
project, and so on as long as any unmatched
attributes remain. The task manager will merge
all collected projects. If retrieval procedure has
resulted in large number of projects with the
same attributes, then similarity function is
computed and compared to find the closest
match.

6. EXPERIMENTAL DATASET

6.1 Dataset

The dataset used in this work contains 126
software project cases selected from three different
application domains (communication, finance, and
games) of C# projects. Initially the dataset was
extracted by a mobile agent that was injected by the
software metrics tool as proposed in [13], [17],
[20].

6.2 Features Selection

Features selection is very important for
improving the accuracy of estimations and
minimizing the complexity and time needed to
come up with certain estimation, thus most of
estimation methods depend on the project
characteristics and features for deriving cost
estimation from the cost drivers. Among these
features are the ones used by COCOMO II model
(refer to table 1).

In this study authors used the same software
metrics (measurements of the source code of
software projects), as in [13]. The description of
these metrics presented in table 2. Information gain
value has been used for selection of metrics subset,
where the metric having the highest information
gain was considered the best metric for labeling a
tuple in the dataset. This study depends on the
information gains presented in table 3 of the
metrics used to assign their weights. Authors
associate the metrics in the CBR system with a
priority levels (High = 4, Mid = 3, Fair = 2, Low =
1) only for the ones that appeared in (Table 3). The
rest of metrics in table 2 will be assigned by default
the lowest priority which is 1. For example LOC
has been assigned a priority of 3 depending on its
information gain value table 3 which is 0.336.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

759

Table 1: Cost Factors In COCOMO II Model.

Table 2: Software Metrics

Software Metric Description

Lines Total lines of Code

LOC
Lines of Codes without comments

or empty lines

SLOC Statements Line of Codes

SLOCmath Counting all math operators

MCDC
Modified Condition/Decision

Coverage

MaxNest Maximum Nesting

CComplexity Cyclomatic complexity

AvgMethod Average Methods per class

MethodCComplex
ity

Methods Cyclomatic complexity

MaxInheritanceD

epth
Maximum inheritance depth

AvgDependency Average dependency

ChildNumber
average or max number of

children per class

CBO Coupling Between Object Classes

6.3 Accuracy and Prediction

The accuracy is defined as the mean magnitude
of relative error (MMRE), which is the mean of
percentage errors as in equation (7) [19]

, (7)

Table 3: Metrics information gain

where n is the number of projects (i.e. cases), E is
the actual effort, and Ȇ is the predicted effort. If the
value of MMRE is a large positive value, then the
model over-estimates the cost, while a large
negative would indicate that the model under-
estimates the software cost. The MMRE is not
always appropriate indicator of the prediction,
where extreme deviations from the mean can affect
the final prediction, so the percentage of predictions
that fall within 25 percent of the actual value
Pred25 (eq. 8) has been calculated for comparison,
so both MMRE and Pred25 have been studied as a
performance measures.

 , (8)

where P is the number of projects (cases) and rp =
(êp - ep) / ep, where êp is the predicted effort and ep
is the actual effort [13].

6.4 Results

Authors work with three different domains
(Communications, Finance, Games) of projects in
the dataset used. In these experiments each domain
has been used as a different data set for two
reasons:

− Each of the three domains used in this study
possess various software metrics. For example
finance applications require larger number of
code lines, game applications have a higher
value of object oriented metrics, while the
communications projects complexity is higher
than that the financial projects. It should be
noted that these aspects are based on the
personal point of view and to some extent
depend on the experience of the programmer.

− The efficiency is not an issue if the number of
dataset cases is less than 100 cases [19].

Cost Factor Description
 Product

RELY required software reliability

DATA database size

CPLX product complexity

 Computer

TIME execution time constraint

STOR main storage constraint

VIRT virtual machine volatility

TURN computer turnaround time

 Project

MODP modern programming practice

TOOL software tools

SCED development schedule

 Personnel

ACAP analyst capability

AEXP application experience

PCAP programmer capability

VEXP virtual machine experience

LEXP language experience

Software Metric Information Gain Value

MCDC 0.479

CComplexity 0.45

CBO 0.363

LOC 0.336

SLOCmath 0.322

MaxNest 0.299

avgMethod per class 0.151

Children 0.147

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

760

The research target feature is MCDC because it
has the highest information gain value which is
0.479 as shown in table 3. K in the tables above is
the number of analogues. The Jack knifing
validation technique was used in which each case
removed from the dataset and the rest used to
predict the removed one. After that the removed
returned back to the dataset and another one is
picked to be predicted until all cases finished.

The results MMRE and Pred25 (refer to tables 4
and 5) are computed using the ANGEL analogy
based tool, where both the higher Pred25 and the
smaller MMRE scores mean better predictive
accuracy, and have been plotted on figures 3 and 4
respectively.

Table 4: MMRE As Function Of Dataset Size And

Number Of Analogies.

Table 5: Pred25 as function of Dataset Size and Number
of Analogies.

Figure 3. MMRE performance indicator.

Computing the MMRE and Pred25 needs a
considerable time. For attributes represented in
table 1 and table 2, about 4 hours have been needed
to compute the results. Calculation time depends on
the number of cases being tested. The more cases
you have the more computations time you need.

Figure 4. Pred25 performance indicator.

As for MMRE and Pred25 measures, the more
cases means the more accurate measures. While
Pred25 is more accurate than MMRE, both of them
give interesting results for the different datasets, the
average of MMRE measure for communication,
finance, and game datasets are 37.38, 23.7, and
22.16 percent respectively while the average of
Pred25 measure for communication, finance, and
game datasets are 56.3636, 74.222, and 72.9168
percent respectively.

6.5 Discussion

In this work, authors introduced efficient
software projects cost estimation approach where
the code metrics are extracted then compared to the
historical ones in the database. Its main goal is to
let project managers estimate the cost per releases
or stages, i.e. they can extract the metrics of code
implemented for a certain stage, predict the cost of
the next stage of the project such giving additional
knowledge to help making a proper decision in the
stage agreement of certain projects. It also can be
considered as a support step to further estimate the
cost of development process after finishing each
release. Even more, project managers can get
information about risks that may pops up depending
on the analysis or comparison of the code metrics
of different stages. This could be one of the main
documents that the project manager should pay
attention before establishing a new stage.

A task of extracting features from the
implemented code, estimation of the effort and
deciding what can be done in the next stage can be
assigned to an IT project manager. He should
decide if project should be continued or abandoned
depending on situation. This technique allows a

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

761

manager to predict the effort for a project releases
or stages more accurate, if he is dealing with the
same team; or provide better knowledge about the
code in previous releases. Furthermore this work is
the first study that applies the CBR on software
projects metrics, to predict the cost per releases or
stages of a certain project.

7. CONCLUSION

Predicting the cost of software projects is a big
challenge to the project managers. Experienced
managers can depend on their expertise to make to
some extent correct estimation, while others depend
on the algorithmic based models like COCOMO.
Most research papers that apply the non-
algorithmic approach such as estimation by analogy
show the power of analogy based reasoning in
predicting the cost of software projects, in which
picking the most similar solutions from historical
cases. In this paper authors used the software
metrics of software projects to predict more precise
solution to the current problem. Results show
interesting performance indicators for different
number of analogues. This work provided decision
making support to the project manager decision in
order to choose the most appropriate case to his
current problem depending on the code metrics.

REFRENCES:

[1] Putnam, L.H. “A general empirical solution to

the macro software sizing and estimating
problem. IEEE Trans. on Softw. Eng., Volume
4, No 4, pp 345-61, April 1978.

[2] Boehm, B., Clark, B., Horowitz, E., Madachy,
R., Shelby, R., and Westland, C. “Cost models
for future software life cycle process:
COCOMO 2.0”. In Annals of Software
Engineering Special Volume on Software
Process and Product Measurement. J. D. Arther
and S. M. Henry, Eds., vol. 1, pp. 45–60, J.C.
Baltzer AG, Science Publishers, Amsterdam,
The Netherlands, 1995.

[3] Myrtveit and Srensrud E. “A controlled
experiment to assess the benefits of estimating
with analogy and regression models”. IEEE
Trans. on Software Engineering, 1999, 25(4):
510 – 525.

[4] Mendes, E. and Kitchenham, B. “Further
Comparison of Cross-company and Within-
company Effort Estimation Models for Web
Applications”. Proc. of the 10th Int’l. Symp. on

Software Metrics (METRICS’04), 2004, pp:
348-357.

[5] Shepperd, M., Schofield, C. and Kitchenham, B.
"Effort estimation using analogy." Proceedings
of the 18th international conference on Software
engineering. IEEE Computer Society, 1996.

[6] Kirsopp, C., Shepperd, M., Hart, J. “Search
Heuristics, Case-Based Reasoning and Software
Project Effort Prediction,” Empirical Software
Engineering Research Group School of Design,
Engineering and Computing Bournemouth
University, 2002.

[7] ArchANGEL software tool for project
prediction,
http://dec.bmth.ac.uk/ESERG/ANGEL, last
visited October 2012.

[8] Vinaykumar, K., Ravi, V., Carr, M. and
Rajkiran, N. “Software cost estimation using
wavelet neural networks,” Journal of Systems
and Software, 2008, pp. 1853-1867.

[9] Lefley, M. and Shepperd, M. “Using Genetic
Programming to Improve Software Effort
Estimation Based on General Data Sets”,
LNCS, Genetic and Evolutionary Computation
— GECCO 2003, ISBN: 978-3-540-40603-7,
page-208.

[10] Kumari, S. and Pushkar, S. “Comparison and
Analysis of Different Software Cost Estimation
Methods”, International Journal of Advanced
Computer Science and Applications, Vol. 4,
No.1, 2013.

[11] Auer, M., et al. "Optimal project feature
weights in analogy-based cost estimation:
Improvement and limitations." Software
Engineering, IEEE Transactions on 32.2, 2006,
pp: 83-92

[12] Shepperd, M. and Schofield, C. “Estimating
Software Project Effort Using Analogies”, IEEE
Transactions On Software Engineering, Vol. 23,
No. 12, Nov. 1997.

[13] Najadat, H., Alsmadi, I. and Shboul, Y.
“Predicting Software Projects Cost Estimation
Based on Mining Historical Data”, International
Scholarly Research Network, ISRN Software
Engineering, Vol. 2012, Article ID 823437, 8
pages.

[14] Kellner, M., Madachy, R. and Raffo, D.
“Software Process Modeling and Simulation:
Why, What, How.” Journal of Systems and
Software, 1999.

[15] Leung, H. and Fan, Z. “Software Cost
Estimation, H Leung, Z Fan”, Handbook
of Software Engineering, Hong Kong, 2002.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2014. Vol. 63 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

762

[16] Jørgensen, M. and Grimstad, S. “Software
Development Effort Estimation: Demystifying
and Improving Expert Estimation”, In: Simula
Research Laboratory - by thinking constantly
about it, ed. by AslakTveito, Are Magnus
Bruaset, OlavLysne. Springer, Heidelberg,
chap. 26, pp. 381-404, 2009.

[17] Keung, J. "Software Development Cost
Estimation Using Analogy: A
Review." Software Engineering Conference,
2009. ASWEC'09. Australian IEEE.

[18] Aamodt, A., Plaza, E. “Case-Based Reasoning:
Foundational Issues, Methodological
Variations, and System Approaches.” AI
Communications. IOS Press, (1994) Vol. 7: 1,
pp. 39-59.

 [19] Papatheocharous, E., Papadopoulos, H. and
Andreou, A. "Feature Subset Selection for
Software Cost Modeling and Estimation." arXiv
preprint arXiv:1210.1161 (2012).

 [20] Alsmadi, I. and Magel, K. “Open source
evolution analysis,” in Proceedings of the 22nd
IEEE International Conference on Software
Maintenance (ICSM ’06), Philadelphia, Pa,
USA, 2006.

[21] Al-Sakran, H. “Software Cost Estimation

Model Based on Integration of Multi-agent and
Case-Based Reasoning,” in Journal of
Computer Science 2 (3): 276-282, 2006.

 [22] Abu Tair, H. “Predicting The Cost Estimation
Of Software Projects Using Case-Based
Reasoning, ICIT 2013 The 6th International
Conference on Information Technology May 8,
2013

[23] Collin Dictionary.

[24] Regolin, E., de Souza, G., etc,”Exploring
Machine Learning Techniques for Software
Size Estimation”. Proc. of the XXIII Int’l Conf.
of the Chilean Computer Science Society,
IEEE, pp: 130 – 136, 2003.

[25] Weka: A Data Mining Software,
http://www.cs.waikato.ac.nz/ml/weka, last
visited October 2012.

[26] Walkerden, F. and Jeffery, R."An empirical
study of analogy-based software effort
estimation." Empirical Software
Engineering 4.2, 1999: 135-158.

[27] Sharma, N. and Litoriya, R. “Incorporating
Data Mining Techniques on Software Cost
Estimation: Validation and Improvement,”
International Journal of Emerging Technology
and Advanced Engineering, 2012, vol. 2.

Web Browser

End User Computer

Interface Agent

Task Agent

CBR

Cost Estimation Server

Agent Server
CBR

Server

CBR

Cost Estimation Server

Agent Server

INTERNET

Mobile Agent

Back End Server

Figure 2: Architecture Of The Software Cost Estimation Model

 CBR

