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ABSTRACT 

 
Scene classification, the classification of images into semantic categories is a challenging and important 
problem nowadays. We present a procedure to classify real world scenes in eight semantic groups of coast, 
forest, mountain, open country, street, tall building, highway and inside city using support vector machines. 
Traditional classification approaches generalize poorly on image classification tasks, when the classes are 
non-separable. In this paper we used Support Vector Machine (SVM) for scene classification. SVM is a 
supervised classification technique, has its roots in Statistical Learning Theory and have gained prominence 
because they are robust, accurate and are effective even when using a small training sample. By their nature 
SVMs are essentially binary classifiers, however, they can be adapted to handle the multiple classification 
tasks common in scene classification. This paper shows that support vector machines (SVM’s) can 
generalize well on difficult scene classification problems. SVMs can efficiently perform a non-linear 
classification using kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. In 
this paper 4 types of kernels (linear, polynomial, gaussian and sigmoidal kernels) are used with support 
vector machines. It is observed that Gaussian kernel outperform other types of kernels.  Moreover, we 
observed that a simple remapping of the input x to x' improves the performance of linear SVM’s to such an 
extent that it makes them, for this problem, a valid alternative to RBF kernels. 
 

Keywords: Support vector machine, Kernel, cross validation, dimensionality reduction, linear kernel, 

polynomial kernel, gaussian kernel and sigmoidal kernel. 

 

1. INTRODUCTION 

 
The statement “Machines shall rule the world” is 

no more a mere figment of imagination, for it’s the 
promise of Machine learning. In our quest to design 
and manufacture robotic replicates of humans we 
haven’t come a long way, yet we have with us a set 
of techniques, algorithms and models which serve 
as a good starting point.  
 

We consider here a fundamental problem of 
computer vision, i.e. enabling computers to see the 
way we see things. We in future wish our machines 
would match the capabilities of human vision. Its 
interesting to note that, every second we receive 
tremendous amount of visual data and almost 
unconsciously we process this information very 
quickly. Classifying an object as table, a ball, or a 
scene as mountain or river is pretty trivial for us. 
We can in fact process amazingly more complex 
information. It is a well-known fact that robotic 

vision compares miserably with our eyes. Here, we 
intend to make a start towards our goal by 
considering a very trivial problem by the standard 
of human vision and that is scene classification. 
Given an image of the scene we wish to classify it 
as say a mountain, forest, city, street etc. 
 

In classic pattern recognition problems, classes 
are mutually exclusive by definition. When the 
classes are mutually exclusive (linearly separable) 
then classification task is trivial. Classification 
errors occur if the classes overlap that is when the 
classes are non-separable then classification 
becomes non trivial and classic methods for 
classification may not yield better performance. 
Classes are by definition non separable (not 
mutually exclusive) in semantic scene and in 
medical diagnosis. Such a problem poses 
challenges to the classic pattern recognition 
paradigm and demands a different treatment. 
Experiments show that our methods are suitable for 
scene classification; furthermore, our work appears 
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to generalize to other classification problems of the 
same. 

 
The theory of linear discriminants dates back to 

the 1930s, when Fisher proposed a procedure for 
classification. In the field of artificial intelligence 
attention was drawn to this problem by the work of 
Frank Rosenblatt, who starting from 1956 
introduced the perceptron learning rule. Perceptron 
uses simple learning algorithm which can find 
linear patterns in data. A more powerful idea, 
multilayer perceptrons (MLP) are introduced in 
1980s. MLP is a network of perceptrons with 
continuous activation functions and is very slow in 
learning. 

 
In, a SVM based scene classification system is 

described. This approach from is compared with 
the Linear discriminant Analysis (LDA) system and 
the results favor the SVM model with higher 
percentage of accuracy. In experiments pertaining 
to our paper show results that, the SVM model 
consistently surpasses the other models in terms of 
efficiency and accuracy. 

 

2. SUPPORT VECTOR MACHINES 

 
SVMs are among the best (and many believe 

are indeed the best) “off-the-shelf” supervised 
learning algorithm. Support Vector Machines are 
based on the concept of decision planes that define 
decision boundaries. A decision plane is one that 
separates between a set of objects having different 
class memberships. A schematic example is shown 
in the illustration below. In this example, the 
objects belong either to class GREEN or RED. The 
separating line defines a boundary on the right side 
of which all objects are GREEN and to the left of 
which all objects are RED. This is a classic 
example of a linear classifier, i.e., a classifier that 
separates a set of objects into their respective 
groups (GREEN and RED in this case) with a line. 

Figure 1: Linearly Separable Data 

 
The SVM is a learning algorithm for 

classification. It tries to find the optimal separating 

hyper plane such that the expected classification 
error for unseen patterns is minimized. Thus, the 
SVM has very good generalization performance. 
More precisely, given a set of training samples xi 
and the corresponding decision values yi ∈ {−1, 1}, 
the SVM aims at finding the best separating hyper 
plane given by the equation wTx + b that 
maximizes the distance between the two classes. 
The set of points for which wTx + b ≥ 1 are set to 
belong to one class and those points for which wT x 
+ b ≤ −1 are classified into another. The goal of the 
optimizing function is to maximize the distance 
between the two hyper-planes given by 
 1/wTw. This problem can be equivalently 
formulated of the form minimize wTw subject to 
the constraint that 

yi (xi
Tw + b) ≥ 1,         ∀i 

The solution to this optimization problem can be 
easily obtained when the data are linearly sepa- 
rable. However, complications arise when the data 
are non-separable.  
 

Most classification tasks, however, are not that 
simple, and often more complex structures are 
needed in order to make an optimal separation, i.e., 
correctly classify new objects (test cases) on the 
basis of the examples that are available (train 
cases). This situation is depicted in the illustration 
below. Compared to the previous schematic, it is 
clear that a full separation of the GREEN and RED 
objects would require a curve (which is more 
complex than a line). Classification tasks based on 
drawing separating lines to distinguish between 
objects of different class memberships are known 
as hyper-plane classifiers. Support Vector Machines 
are particularly suited to handle such tasks.   

 
 
 
 

 
 
 
 

  
Figure 2: Non-Linearly Separable Data 

 
In this case, the SVM handles non-separable data 
by introducing slack variables ξi. In this case, the 
optimization problem can be reformulated of the 
form minimize (||w||2)/2 + C(Σξi )

k 
subject to the constraint that 

xi
Tw + b ≥ 1 − ξi , ∀yi = 1 

xi
Tw + b ≥ −1 + ξi , ∀yi = −1 

ξi ≥ 0 
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The primal problem as stated above can be 
converted to its equivalent dual form maximize  Σαi 
– (½)* ΣαiΣ αj yi yj xi

Txj subject to 0 ≤ αi ≤ C and 
Σαi yi = 0. 
 
 In general, the term xi

Txj can be rewritten in terms 
of the kernel functions as K(xi, xj ). 
 

2.1 Kernel Methods: 

 
When the data is non linearly separable in the 

original space it can be tranformed to a higher 
dimensional in which it can be linearly separable. 
Nonlinear transformation of data to a higher 
dimensional feature space is achieved by a Mercer 
kernel. Pattern analysis methods are implemented 
such that the kernel feature space representation is 
not explicitly required. They involve computation 
of pair-wise inner-products only. The pair-wise 
inner-products are computed efficiently directly 
from the original representation of data using a 
kernel function (Kernel trick). In this case, the 
problem can be equivalently understood in terms of 
projecting the input data into a higher dimensional 
space where they are separated using parallel hyper 
planes. The same is illustrated in the following 
figure. The original input data in two dimensional 
space is non linearly separable. It is transformed to 
three dimensional space using the following kernel 
function.  

F(x) = {x
2, y2,√2xy};  Z = {z1, z2, z3} 

After the transformation the data is linearly 
separable in three dimensional space. 
 

 
Figure 3: Transformation Of Data To Higher  

Dimensional Space 

 

3. METHODOLOGY  

 
3.1 Scene Categories Dataset as Input:  

 

In this paper we used scene image 
category dataset for experimental results. This 
dataset contains 8 outdoor scene categories: Coast, 
mountain, forest, open country, street, inside city, 
tall buildings and highways. There are 3600 colour 

images each of size 256 X 256 pixels. All the 
images are labelled.  
 

 
Figure  4: Sample Scenes Of All Classes 

 

3.2 Feature Extraction: 

 
      Each image is divided into 36 blocks and then 
23 features are extracted from each block of the 
image. For each image 36 X 23 dimensional 
features are available. The 23 dimensional features 
include color histogram, edge directed histograms 
and entropy of wavelet coefficients extracted for 
local blocks of an image for a particular scene.  
 

3.3 Normalization  

 

Since the range of values of raw data varies 
widely, in some machine learning algorithms, 
objective functions will not work properly without 
normalization. For example, the majority of 
classifiers calculate the distance between two 
points by the distance. If one of the features has a 
broad range of values, the distance will be 
governed by this particular feature. Therefore, the 
range of all features should be normalized so that 
each feature contributes approximately 
proportionately to the final distance. 
 

Feature standardization makes the values of each 
feature in the data have zero-mean and unit-
variance. This method is widely used for 
normalization in many machine learning algorithms 
(e.g., support vector machines, logistic regression, 
and neural networks). In general, we first calculate 
the mean and standard deviation for each feature, 
and then, subtract the mean in each feature. Then, 
we divide the values (mean is already subtracted) 
of each feature by its standard deviation. 

X'=(X-µ)/σ 
 

Where ‘µ’ is the mean and σ is the standard 
deviation. 
 

3.4 N-Fold Cross validation: 

 

 Cross validation is a model evaluation method 
that is better than residuals. The problem with 
residual evaluations is that they do not give an 
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indication of how well the learner will do when it is 
asked to make new predictions for data it has not 
already seen. One way to overcome this problem is 
to not use the entire data set when training a learner. 
Some of the data is removed before training begins. 
Then when training is done, the data that was 
removed can be used to test the performance of the 
learned model on ``new'' data. This is the basic idea 
for a whole class of model evaluation methods 
called cross validation. 
  

K-fold cross validation is one way to improve 
over the holdout method. The data set is divided 
into k subsets, and the holdout method is repeated k 
times. Each time, one of the k subsets is used as the 
test set and the other k-1 subsets are put together to 
form a training set. Then the average error across 
all k trials is computed. The advantage of this 
method is that it matters less how the data gets 
divided. Every data point gets to be in a test set 
exactly once, and gets to be in a training set k-1 
times. The variance of the resulting estimate is 
reduced as k is increased. The disadvantage of this 
method is that the training algorithm has to be 
rerun from scratch k times, which means it takes k 
times as much computation to make an evaluation. 
A variant of this method is to randomly divide the 
data into a test and training set k different times. 
The advantage of doing this is that you can 
independently choose how large each test set is and 
how many trials you average over. In our paper we 
experimented with 10-fold cross validation. Each 
time 75% data of the each class is used for training 
and remaining data is used for testing. 

 
3.5 LDA: 

 

 Linear discriminant analysis (LDA) and the 
related Fisher's linear discriminant are methods 
used in statistics, pattern recognition and machine 
learning to find a linear combination of features 
which separates two or more classes of objects or 
events. The resulting combination may be used as a 
linear classifier, or, more commonly, for 
dimensionality reduction before later classification. 
 

Fisher's linear discriminant is a classification 
method that projects high-dimensional data onto a 
line and performs classification in this one-
dimensional space. The projection maximizes the 
distance between the means of the two classes 
while minimizing the variance within each class. 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 

Figure 5: Original Data With 2 Features 

 
If there are two classes transform the d- 

dimensional data onto 1 dimensional space (that is 
project onto a line). If there are c classes the data 
need to be projected from d-dimensional space to 
c-1 dimensional space. In our scene dataset we 
have 8 classes so the data is projected onto 7 
dimensional space. 

 

 
Figure 6: Original Data Projected Onto 7 

Dimensional Space 

 
3.6 SVM Training:  

 
The output of LDA is passed for the training 

using SVM. By using different kernel functions, 
SVM can implement a wide variety of learning 
algorithms. It is well known that the SVM has a 
great potential to perform well. However, the 
performance of the SVM is very closely tied to the 
choice of the optimal kernel functions. There has 
been a lot of research over the last few years on 
algorithms to help choose the exact type of kernel 
for a given problem with a certain set of features. 
Most of these methods are based on simple 
heuristics based on the knowledge of the input data 
and there has not been any standardized method to 
obtain the best kernel. Hence, the choice of the 
optimal kernel has reduced to a trial and error 
procedure in most scenarios. 
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There exist many popular kernel functions that 
have been widely used for classification.  
 
3.6.1 Linear Kernel:  
 
      The Linear kernel function is of the form 

K(xi , xj ) = (xi
T xj) 

 

3.6.2 Polynomial kernel:  

 
The polynomial kernel function is of the form 

K(xi , xj ) = (1 + xi
T xj)

p 

 

3.6.3 Gaussian kernel:  
 

This kernel is also known as Radial basis 
function kernel. This is a reasonable measure of xi 
and xj’s similarity, and is close to 1 when xi and xj 
are close, and near 0 when xi and xj are far apart. 
This Gaussian kernel corresponds to an infinite 
dimensional feature mapping.  The radial basis 
function is given by 

 
K(xi , xj ) = exp(−γ||xj − xi ||

2 ) 
 

3.6.4 Sigmoidal kernel:  
 

The sigmoidal kernel function is of the form 
 

K(xi , xj ) = tanh(γ xi
Txj+C) 

 
3.7  Testing: 

 

There are number of kernels that can be used in 
Support Vector Machines models. These include 
linear, polynomial, radial basis function (RBF) and 
sigmoid: 

 
 
 

 
 

Where: 
 
 
 
 
that is, the kernel function, represents a dot product 
of input data points mapped into the higher 

dimensional feature space by transformation  Φ. 
All the four types of kernels are used for SVM 
modelling. 
 

3.7.1 Test Results using Linear kernel 

 

 Co
ast 

For
est 

High
way 

Insi
de  

city 

mou
ntain 

Open 
countr

y 

str
eet 

Tall 
buildi

ng 
Coast 54 1 7 2 4 20 1 1 
Forest 0 75 0 0 5 2 0 0 

Highway 9 0 36 1 8 6 4 1 
Inside 
city 

1 1 3 54 3 1 5 9 

mountain 1 10 2 4 52 12 6 7 
Open 

country 
8 12 4 0 10 66 2 1 

Street 1 0 3 8 6 0 53 2 
Tall 

building 
5 1 1 13 8 2 3 56 

 
Accuracy: 66.27 

 

3.7.2 Test Results using Polynomial kernel, 

degree-2 

 
 Co

ast 
For
est 

High
way 

Insi
de  

city 

mou
ntain 

Open 
countr

y 

str
eet 

Tall 
buildi

ng 
Coast 56 0 2 2 19 11 0 0 
Forest 2 67 1 0 8 2 0 2 

Highway 5 2 23 1 22 12 0 0 
Inside 
city 

0 10 1 32 19 8 1 6 

mountain 2 0 0 1 84 7 0 0 
Open 

country 
3 4 0 1 84 7 0 0 

Street 1 0 1 1 27 13 30 0 
Tall 

building 
3 2 0 3 40 5 1 35 

 
Accuracy: 58.26 

 

3.7.3 Test results using Gaussian (RBF) kernel 

 
 Co

ast 
For
est 

High
way 

Insi
de  

city 

mou
ntain 

Open 
countr

y 

str
eet 

Tall 
buildi

ng 
Coast 62 1 4 1 5 13 1 3 
Forest 0 72 0 0 5 1 0 4 

Highway 5 0 32 3 9 11 4 1 
Inside 1 1 2 54 0 2 4 13 
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city 
mountain 1 3 0 5 67 7 4 7 

Open 
country 

2 5 1 0 15 78 0 2 

Street 0 0 2 8 7 1 48 7 
Tall 

building 
6 0 1 6 8 1 2 65 

 
Accuracy: 71.03 

 

3.7.4 Test Results using Sigmoidal kernel 

 

 Co
ast 

For
est 

High
way 

Insi
de  

city 

mou
ntain 

Open 
countr

y 

str
eet 

Tall 
buildi

ng 
Coast 57 1 5 4 5 17 1 0 
Forest 0 75 0 0 5 2 0 0 

Highway 7 0 34 3 10 8 3 0 
Inside 
city 

1 2 3 52 1 2 6 10 

mountain 2 6 0 4 62 8 8 4 
Open 

country 
2 8 1 0 11 79 1 1 

Street 0 0 4 9 6 1 51 2 
Tall 

building 
6 1 1 12 6 2 4 57 

 

Accuracy: 69.39 

4. COMPARATIVE ANALYSIS 

 
The PCA takes advantage of the fact that, under 

admittedly idealized conditions, the variation 
within class lies in a linear subspace of the image 
space. Hence, the classes are convex, and, therefore, 
linearly separable. One can perform dimensionality 
reduction using linear projection and still preserve 
linear separability.  

 
LDA seeks to reduce dimensionality while 

preserving as much of the class discriminatory 
information as possible.  Let the set of D-
dimensional samples x1 , x2 , ... xN , N1 of which 
belong to class ω1, and N2 to class ω2. We seek to 
obtain a scalar y by projecting the samples x onto a 
line   y= wTx 

 
Among all the possible lines we would like to 

select the one that maximizes the separability of the 
scalars. The basic idea behind Fisher Linear 
discriminant analysis is to find the best set of 
vectors that can minimize the intra cluster 
variability while maximizing the inter cluster 

distances FLD was able to achieve a much better 
performance even under a highly reduced 
dimensional space. Results without applying LDA 
and with using LDA 

 
Following are the average Accuracies for SVM 
classifier with different kernels and different 
features 
 

Features Kernel type Accuracy 

Image pixels Linear 52.27 

 Polynomial 50.68 

 RBF 65.76 

 Sigmoidal 62.13 

LDA coefficients Linear 66.27 

 Polynomial 58.26 

 RBF 71.03 

 Sigmoidal 69.39 

5. CONCLUSION 

 
In this paper, we consider the problem of scene 

classification and use the Support vector machines 
for classification. Initially we extracted the features, 
we normalized the scene images. These are then 
fed into the SVM with different types of kernel 
functions and the classification error and accuracy 
are noted in each case.  We explored the use of four 
different kernels namely linear, polynomial, radial 
basis function and sigmoid. The performance under 
different types of parameters was studied and 
tabulated. Our results indicate that RBF kernel 
gives the best performance compared to all the 
other kernels (with different parameter settings). 
Next, we consider feature dimension reduction 
methods. More specifically, we test the 
performance of the SVM classifier when the FLD 
with RBF kernel gives the best results. 
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