
Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

A FRAMEWORK FOR SAFE COMPOSABLE TESTING

MODEL FOR MULTIPLE APPLICATIONS TESTING

ENVIRONMENT

1
Ms.SMITHA.P.S,

 2
Dr.N.SANKARRAM

1Anna University, Department of Computer Science and Engineering,VEC,Chennai,Tamil Nadu,India
2Anna University,Department of Computer Science and Engineering,RMKCET,Chennai,Tamil Nadu,India

E-mail: 1 smithaps.ap@gmail.com , 2n_sankarram@yahoo.com

ABSTRACT

The objective of the work is to propose a safe composable and Stable Testing Model when multiple

software components are to be integrated .The functionalities, interface, platforms are heterogeneous and

hence the composition may give a correct outcome but not safe. In case of safety critical application and

dynamic business transaction framework, a safe composable and stable execution of components is needed.

In order to ensure Software Safety, A model is proposed where verification assist validation in ensuring

complete Safeness across multiple product lines .This paper proposes a safe composable Testing Model

which ensures the safe composability of components by constructing a Finite State Machine and thereby

checking for safety by computational tree logic which assist in interface testing and generation of test cases

for ensuring the complete coverage of test cases.

Keywords : Safe , Composable , Finite State Machine, Coverage, Safety

1. INTRODUCTION

The software safety becomes a challenge not only
in the case of designing critical applications like
Signaling Systems but also in the verification and
validation of complex scientific systems. Software
Safety should be compositional, compatible and
should be able to model both hardware and
software behaviour. The safety feature of the
application software can be enhanced through a
detailed safety requirement analysis that should
specify the safety constraints whether they are
implicitly time sensitive and or process sensitive.
One of the essential criteria in any application is
checking for Safety consideration. Safety
requirements cover not only human safety, but also
equipment and data safety. Human safety
considerations include protecting the operator from
moving parts, electrical circuitry and other physical
dangers. There may be special operating
procedures, which if ignored my lead to a
hazardous or dangerous condition occurring.
Equipment safety includes safeguarding the
software system from unauthorised access either
electronically or physically. An example of a safety
requirement may be that a monitor used in the

system will conform to certain screen emission
standards. Safety Requirement are non functional
requirement where faults are identified based on
response time. For the system without a safety
strategy implemented, the potential risk is high,
because an unintended event may occur. The
starting point for the development of any program
is the expression of requirements and (or)
specification of requirements placed by the
customer or potential user upon the program to be
created. The expression of requirements and (or)
requirements specification must include the
composition, content, and values of the results that
are expected by the user, object, or system under
certain conditions and initial data. Any deviation of
these results from the requirements and reference
values should be classified as an error in the
program[6]. Seamless composability implies that a
composition will have the desired beneficial
properties, with no uncontrollable or unpredictable
side effects. That is, the composed system will do
exactly what it is expected to do —no more and no
less. Composable system are more trustworthy than
non-composable System[1]. Composability is the
capability to select and assemble simulation
components in various combinations into

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

simulation systems to satisfy specific user
requirements[2]. The defining characteristic of
composability is the ability to combine and
recombine components into different simulation
systems for different purposes. The software
components are self-checked based on the
criticality of the information and data using
temporal and computation tree logic[3][4]. The
safety features may be different for different
operational environment of a control application
and so it is the limitation of the work to arrive a
generic safety Testing model. It is impossible to
create a complete model for testing many of the
complex system, instead many of the methods
which interact with each other can be considered.
Model checking is a technique for automatically
verifying correctness properties of finite state
system. Model checking is done for checking
logical properties of component coordination
including deadlock, safety and liveness. An
example of model checking is the formal
specification of the system in propositional calculus
and verifying it with the structure of the system.
Temporal logic in model checking has the ability of
reasoning with time constraints. Nowadays, testing
is by far the most used technique for software
verification in industry: it is easy to use and even
when no error is found , it can release a set of tests
certifying the (partial) correctness of the compiled
system. In the case of safety critical software, in
order to increase the confidence of the correctness
of the compiled system, it is often required that the
provided set of tests covers 100% of the
code[3].The rest of the paper is organised as follow
apart from Section 1 as Introduction, Section 2
specifies Safe Composable Testing
Model(SCTM),Section 3 specifies Safe
composition, Section 4 specifies Scenario for
SCTM ,Section 5 specifies Model Checking,
Section 6 specifies Incremental Integration Testing
with FSM, Section 7 specifies Conclusion and
Section 8 specifies Future Work.

2. SAFE COMPOSABLE TESTING

MODEL(SCTM)

Fig1 illustrates the sequence of steps in

framing a SCTM(Safe Composable Testing

Model).If faults has to be avoided especially in

ensuring Safety, measures have to be taken starting

from requirement specification. Requirement in

non-functional terms includes Composition and

Compatibility. Verifying the requirements

minimizes faults as well as cost, if proper checking

is done at the initial phase. Nearly 60% of the faults

emerges from the process of gathering and

documenting requirement specification. There is a

need especially in ensuring safety that there should

be zero tolerance in propogation of any faults to

later stages.

Fig 1: Safe Composable Testing Model

Hence, Verification ensures the Requirements have

to be Correct, Complete, Consistent and

Unambiguous. Composition of components and

their interoperability depend on the correct

specification of requirement. The composition of

requirements can be expressed as FSM (Finite State

Machine) Model. The finite State Machine can be

expressed as nodes representing components and

the edge representing the transition of the nodes to

the next state based on the functional parameter.

Model Checking is done to verify the safety

property with FSM by mathematical representation

of the temporal logics and computational tree logic

of the model. Once the above steps are done, the

requirements gathered are verified for safety

property. Integration testing in the above model

ensures the checking of interfaces between

components in an timed distributed system. The

interface between components is specified using

FSM. Model Checker for the component interaction

ensures the complete coverage of their interaction.

Testing and Bounded model checking are two

different methods used to verify the software or

hardware system for finding faults. Testing is the

process of identifying bugs in common behaviour

Model

Checking

Composable

Requirements

Compatible

Requirements

Design with

Finite State

Machine

Model

Incremental

Integration

Testing

Complete

Coverage

Use

Bounded

Model

checking

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

of the system, whereas Bounded Model

Checking(BMC) is the process of identifying bugs

in uncommon behavior of the system. BMC is used

here along with testing for the fact that if safety has

to be ensured in the system then all of the faults

related to it should be identified and this definitely

ensures complete coverage of code.BMC

Technique is used to achieve 100% Code Coverage.

3. SAFE COMPOSITION

The initial phase in the development of

any Software Project activity is the establishment of

requirements which is to be correct, complete and

consistent. The requirements should include

composition with values and results for the system

or object under consideration.

Component C1 can be considered as a triple of C1

= (F, I, P, Ta) and it can be represented

diagrammatically as in Fig 2.

Fig 2: A Component

Where C1 is the component

F is the set of function in the component

P is the set of parameter passed to the component

Ta is the activation time.

C = < (f1,f2,....fi), I/O , (p1,p2...pj), (Ta) >

A component is considered as safe if it is composed

towards expected functionality with the other

needed components for the task submitted at that

time. A component is considered unsafe, if it were

composed with components of unexpected

functionality. The composition activity is based on

many read and selection techniques across the

available interfaces during the point of time. It can

also be seen that the untimely activation of the

necessary component via its interfaces and idle time

when a critical activity is being performed lead to

unsafe not only for the software but also to the

system where it is being activated. Composability

can be viewed as the adherence or acceptance of the

software module with other modules in or other

platforms for effective parameter passing.

Composability is dealt with both

synchronous(Synchronous components is one in

which all components in the system change their

state variables simultaneously) and asynchronous

components(In Asynchronous one component

changes its state at each time point).Composition of

its components can be expressed as timed automata

which is used in real time application with timing

requirements. Composability is represented as

discrete timed automata (DTA) in which clocks

take integer values. Formally, A clock constraint is

a Boolean combination of atomic clock constraints

in the following form : x~c,x-y~c, where ~ denotes

≤ , ≥ ,< , > or = , c is an integer and x,y are integer

valued clocks. Let N be the set of integers with N+

for non negative integers. Let Lx be the set of all

clock constraints on clock X.A discrete timed

automata A is a tuple (Q, ∑, X, T), where Q is a

finite set of states, ∑ is the input alphabet ,

X={x1,x2…..xn} is a finite set of integer valued

clocks[2].

3.1 Composability And Compatibility of

Requirements

Components are composed and if the

interface of the components cannot be properly

established then it adequately specifies the flaws in

the requirement specification leading to

1)inadequate requirements 2) identification of

inappropriate requirements and non-available

requirements 3)Missing requirement. Compatibility

with the composed components exposes the

problem of 1)Multivendor Incompatability

2)Security Issues.

4. A SCENARIO FOR SCTM

Component which are interactable are

represented as a graph and in the figure C1

component interactable with C2 and C3 with its

functional elements. The component interaction is

represented as a Finite Automata Model with its

functional parameters deciding on the transition to

C1

Ta

I

F(P)

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

the next state. With the Transition Model and

Temporal Logic, a computational tree is drawn

based on the assessment of safeness of Components

as illustrated in Fig 3. If a function element f1 of

C1 and function element f3 of C2 is compatible

then the order of Composability can be represented

as the Combinatorial equation as, f1.O.C1 &&

f3.I.C2 where O is the output interface and I is the

input interface are considered to be safe, otherwise

it is unsafe. The graph representation of

Components can be used for incremental interface

testing which promote reusability and hence saving

time and resources. Bounded Model checking is

done with branch testing(BT) and statement

testing(ST) and their coverage metrics(BC,SC)

gives an indication of the Coverage of Test.

C

Safe Unsaf

C C

C C

T

I

f1(p

)1)

C
T

I

f2(p

)

C

T

I

f3(p

)3)

C

C1 C2

f1(p f2(p f3(p

p1,p

p1,p

p2,p

C3

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

 Fig 3: Scenario for SCTM

5. MODEL CHECKING

For verification of safety properties, a
model checker is used, and properties to be checked
are usually expressed in computation tree logic
(CTL) [10,11]. CTL is a branching time temporal
logic, extending propositional logic with temporal
operators that express how propositions change
their truth values over time. Model checking is
done for the verification of properties in the
System. The property which is to be checked in the
system is Safety property. The safety critical
product should satisfy its safety properties in all
allowable configurations. The employed model
checking approach can also be used to generate
interesting scenarios for more detailed inspection
with traditional testing and simulation[13].

6. INCREMENTAL INTEGRATION

TESTING WITH FSM

Software for testing consist of several
black-box components and which can be
represented as state-based models of each
component. These models are in the form of timed
interface automata [7]. In general, an automatic test
generation technique works by pursuing a set of test
objectives identified after some (machine-readable)
description of the software under test. Model-based
test generators refer to models formalized out of the
software specification,and devise test cases to
exercise the behaviors represented in the models.
For example, for a software system specified as a
state machine, a test generator may attempt to
generate test cases that execute all the state
transitions of the state-machine model[12].Testing
from timed interface automata identifies the
communication between components. A set of test
sequences is generated which checks
communication between components by a
predefined test criteria and Model checker. The
number of states in the system grows as the number
of components keep increasing. A partial model is
generated which can be integrated with other
components to form a complete model which
emphasizes Incremental Integration Testing. The
use of a model checker resolves timing and
feasibility problems both on the component and on
the inter-component level. A model checker has
been used for both coverage analysis [8] and test
sequence generation and use a subset of the
Computational Tree Logic (CTL) [9].

7. CONCLUSION

A Stable Safety Testing Model has been

suggested which ensures Safety requirements are

met. Verification starts at the initial phase of

development in devising a Composable and

Compatible model reducing safety faults and hence

reducing the cost of development. Verification

assists Validation in fault reduction reducing the

tolerance towards safety negligence.

8. FUTURE WORK

One of the problems that arise in safety

system is the changes and updation in the system

and the adaptation to new external environment.

The dependence between components changes and

hence its compatibility. Hence the verification and

Checking for Reachability and Safety with

Temporal Logic using Computational Tree and

incremental Integration testing with Finite State

Machine

Bounded Model Checking

% Coverage=BT/BCx100 ^ST/SCx100

Where BT is the branch condition test cases

BC is the branch coverage , ST is the Statement

Test cases, SC is the statement coverage

Verification assist Validation in ensuring Safety

with Complete Coverage

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

validation of safety properties poses a challenge

driving more research.

REFERENCES

[1].Peter G. Neumann (2004). 'Principled Assuredly

Trustworthy Composable Architectures'

(Report).

[2]. Zhe Dang, Oscar H. Ibarra, Jianwen

Su.Composability of Infinite-State Activity

Automata.Algorithms and computational

Lectures notes in computer science, Volume

3341,2005, pp 377-388

[3]. Damiano Angeletti , Enrico Giunchiglia
,Massimo Narizzano , Alessandra Puddu
,Salvatore Sabina. Using Bounded Model
Checking for Coverage Analysis of Safety-
Critical Software in an Industrial Setting.
Springer Journal, 2010,45:397–414.

[4]. Linear Temporal Logic.http://
www.voronkov.com/lics_Chapter14.pdf

[5] FormalVerification:Computation
TreeLogic,http://www.inf.unibz.it/~artale/FM
/slide4.pdf

[6] V. V. Lipaev. A Methodology of Verification
and Testing of Large Software Systems
Programming and Computer Software, Vol.
29, No. 6, 2003, pp. 298–309.

[7] De Alfaro, L., Henzinger, T. A., & Stroelinga,
M., Timed interfaces. Proceedings of the
Second International Conference on
Embedded Software, (EMSOFT 2002), 2491,
LNCS. Springer.2002, pp. 108–122.

[8] Robinson-Mallett, C., Hierons, R. M., &
Liggesmeyer, P.,Achieving Communication
Coverage Criteria in Testing, Workshop on
Advances in Model-Based Testing,Raleigh,
NC,2006

[9] Clarke, E. M., & Emerson, E. A. Design and
synthesis of synchronization skeletons using
branching time temporal logic. Proceedings of
the Workshop on Logic of Programs.
Yorktown Heights, NY,LNCS 131, Springer
Press,1981,pp. 52–71.

[10] Clarke EM, Emerson EA, Sistla AP.

Automatic verification of finite-state

concurrent systems using temporal logic

specifications. ACM Trans Program

Languages Syst ;8(2),1986,pp:244–63.

[11] Gluch PD, Brockway J. An introduction to

software engineering practices using model-

based verification. CMU/SEI-99-TR-005,

1999.

[12] Pietro Braione , Giovanni Denaro •,Andrea
Mattavelli ,Mattia Vivanti •,Ali Muhammad,”
Software testing with code-based test
generators: data and lessons learned from a
case study with an industrial software
component” Software Qual J,Springer(2013),
DOI 10.1007/s11219-013-9207-1

[13] J. Lahtinen , J.Valkonen , K.Bjorkman , J.Frits
, I.Niemela , K.Heljanko , Model checking of
safety-critical software in the nuclear
engineering domain, Reliability Engineering
and System Safety 105 (2012) ,pp 104–113

