
Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

PARALLEL MODEL AND SCHEDULING TECHNIQUE FOR

SPACES COMPLEXITY AND SYNCHRONIZATION
PROBLEMS IN SEQUENCES ALIGNMENT

1
MANHAL ELFADIL ELTAYEEB,

2
MUHAMMAD SHAFIE ABD LATIF,

3
ISMAIL FAUZI

ISNIN
1,2,3Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor,

Malaysia
E-mail: 1manhalus@gmail.com, 2shafie@utm.my, 3ismailfauzi@utm.my

ABSTRACT

Biologists are confusing with the huge amount of data resulting from conformations of DNA and protein
sequences. In an earlier stage, a dot-plot method is used to identify new sequences. It is based on comparing
sequences in a level of graphical illustration to detect similar locations of sequences. However, for long
sequences this method is impractical. Furthermore, Improvement method using sequential machine adopted
by Needleman-Wunsch (NW) and Smith-Waterman (SW) algorithms, where sequences set in a matrix with
scoring system and optimal alignment via dynamic programming method is achieved. Unfortunately, these
algorithms suffer from time and space complexity. An alternative approach is necessary to compare long
sequences in a reasonable time with respect to memory restrictions. In this paper, we developed a new
parallel model with implementing scheduler-worker paradigm and a scheduling technique. Our model is
based on Bulk Synchronous Parallelism (BSP) model, where each worker has its own distributed memory
and accomplish selected number of blocks. Using X86-based PC with eight logical processors we are able

to compare sequences range from 411 KBP to 4 MBP in ��
��

�

�

�
� space and linear communication

complexity.

Keywords: DNA and Protein, Sequences Comparisons, Parallel Model, Memory and Communications

Complexities

1. INTRODUCTION

In recent years, there had been an increasing
interest in computational biology problems such as
predicting the structure and functions of newly
DNA or proteins. However, the fundamental issue
in computational biology is aligning similar DNA
or protein sequences in order to reveal or predict
functional, structural, and evolutionary analogies
between sequences. Sequence alignment is a
problem of matching similar regions between
biological sequences. Pairwise sequence alignment
is dedicated to aligning two sequences, while, in
multiple sequences more than two sequences are
aligned. Global sequence alignment is used to
compare sequences as a whole, while local
alignments is appropriate for detecting specifically
conserved regions.

A central problem of sequence alignment is a
memory restriction in comparing long sequences.
Numerous experiments have been established for
solving space complexity in the sequence
alignment. [1], used Dynamic Programming (DP)

techniques to search for optimal alignment in global
sequence alignment. It is extended to local sequence
alignment by [2]. DP algorithms guarantee an
accurate result with optimal alignment. However,
for long sequences length these methods tend to be
very slow and expensive. Heuristic algorithms such
as FASTA [3] and BLAST [4] were developed to
accelerate sequences comparisons while striving to
keep sensitivity as best as possible. Both FASTA
and BLAST are much faster but produce inaccurate
results [5]. Furthermore, the computational
complexity of both FASTA and BLAST is O(MN),
while the space complexity for FASTA is O(MN)
and for BLAST is slightly higher than all other
algorithms, it is O(20w+MN), see Table 1. This
paper focuses on implementing space complexity
with scheduling techniques for local sequence
alignment.

For a number of years, numerous investigations
proposed to address the lack of computing power in
space complexity problems ranging from
incorporating inventing new algorithms into the
ROM of a specialized chip to adopting parallel
computing model. Parallel platforms represent an

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

252

efficient way to tackle sequences alignment
problems. In parallel computing platforms, two or
more processors can be using simultaneously for
distributed workload, which represent a solution
overwhelm a single sequential processor dilemma.
Restricted memory space in sequence comparison
problems is a challenging area in parallel
computing. There is remain a need for an algorithm
to harness additional processing power. The scaling
of distributed memory enables considering larger
sequences than any other possibility. Distributing
data between multi-processors are a core concern in
parallel platforms, where all processors apply the
same workload on a different portion of the data.
Resource sharing in parallel platforms improves
performance parameters, while workload
distribution, memory management, and
communications represent curricular issues in order
to minimize computing cost. In this paper, these
obstacles studied with emphasis on the
implementations of local sequence alignment using
the SW algorithm.

Table 1. Time and space complexity for DP an HM in
sequences alignment [6].

Author Algorithm Approach Time
Complexity

[1] Global Dynamic
Programming

O(MN)

[2] Local Dynamic

Programming

O(MN)

[3] FASTA Heuristic O(MN)

[4] BLAST Heuristic O(MN)

The rest of this paper organized as follows.
Section 2 explained related work written on the
scope of the subject. In the section 3, we briefly
introduced local sequence alignment using SW
algorithm, while, in section 4, the BWP model and
scheduling technique are described in details.
Results and discussion are presented in section 5.
Section 6 concludes the paper with an outlook to
future work.

2. RELATED WORK

The first serious discussions and analyses of long
sequences emerged during space complexity in
sequence comparisons. Memory constraint in long
sequences is a prohibitive and compelling biologist
to lose valuable information from newly discovered
sequences. Few researchers have addressed the
problem of space complexity in a long sequence.
Linear space offers a mean of enhancing and
improving space complexity in similarity detections
for homologies sequences. [7], a pioneered in linear

space implementation for sequences alignment
problems proposed an exact algorithm to calculate
global alignment between two sequences M and N
in quadratic time. The proposed approach splits
sequence M in the middle and generate
subsequences M1 and M2, then calculate
corresponding place for sequence N and finally,
generate subsequences N1 and N2. This recursion
roughly doubles execution time when compared
with the original algorithm.[8], proposed z-align, a
parallel strategy in limited memory space to reduce
time and space needed in local alignments for
comparing large sequences. However, the proposed
strategy fails to compare more sequences length
than any other known techniques. In an another
attempts, many hardware accelerators are used to
solve space complexity in long sequences such as
Graphics Processing Units (GPU) [9-12], Field
Programmable Gate Arrays (FPGA) [13-15], and
Network-on-Chip (NoC) [16, 17]. Unfortunately,
these methods do not always guarantee in
comparing long sequences, because of memory
limitations. Furthermore, high costs of these devices
could hinder using such solutions; therefore, an
alternative approach is necessary.

Most recent studies in sequence alignment
problem have only been carried out using shared
memory architecture [18-27]. However, a serious
weakness with this architecture is the limitation and
constraint of fixed sizes of memory available for all
shared processors. This major drawback makes any
algorithms and/or techniques for long sequences
comparisons based on shared memory is
unreasonable and impractical. Multicore platforms
designed to work on shared memory architectures; a
constraint for memory size would be a normal
corollary in these platforms. Distributed Memory
(DM) and Shared Distributed Memory (SDM) are
prominent platforms tackle long sequences
comparisons problems. A variety of algorithms is
used to implement sequences alignment problems in
DM and SDM [28-30]. Each has its advantages and
drawbacks. Applicable parallel platform for DM
and SDM uses multiprocessor’s architecture, where
each processor has it is own memory. However, one
of the major drawbacks of multiprocessor platforms
is communication complexity in shared processor.

One of the most current discussions in parallel
computing is the task distribution between shared
processors. However, difficulties arising when an
attempt made to distribute tasks as well the system
performance would increase significantly. To date
various methods have been developed and
introduced in workload and/or task distribution in

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

253

sequence alignment problems. In most recent
studies, workload distribution for parallelization of
similarity the matrix in sequence alignment
problems has been implemented in four different
ways: substring of character [22, 24, 27, 28], rows
and column [19, 23, 25], partitioning into segments
[21, 26, 29, 30], and stages of distribution [18, 20,
31]. In substring of three or four characters,
algorithms tend to distribute the workload between
shared processors into groups of characters or
substrings. Since sizes of these groups are too small
compared to sequence length, thus a fine-grain
parallelism is applied. Traditionally, fine-grain is
very complex in communications; these can be
time-consuming and are often technically difficult
to perform. Row and column methods are
distributing a workload as a matrix of rows and
columns to every shared processor. Unfortunately,
these methods do not always guarantee passing
dependent cells for other processors. Furthermore,
there are no clearly techniques adopting for
controlling shared variables in memory. Partitioning
into segments methods, always distribute workload
dynamically into k parts with different sizes based
on the machine identification number, program
setting, and a number of register elements in the
SIMD. However, normally dynamicity is a source
of waiting time, which for long sequences is
unreasonable and impractical. Finally, stages of
distribution methods will assign workload in every
stage according to periodic processing progress
notifications or in super-master and producer
model. Communications cost in these methods is
always higher than others, which may cause delays
in calculating results.

The previously mentioned studies reviewed so
far, however, suffer from the fact that they ignoring
or overlooking space complexity and scheduling
technique between shared processors in order to
accelerate long sequences comparisons.

3. LOCAL SEQUENCE ALIGNMENT

USING THE SW ALGORITHM

Consider two sequences Ai = (A1,.., Am) and Bj =

(B1,..,Bn), local sequence alignment calculated using
the following equation:

To obtain the scores s(i,j), the partial alignment is
divided into three cases occurred: (1) Ai matches to
Bj, (2) Ai is alignment to gap, and (3) Bj is
alignment to gap. At this stage, three values are

evaluated i.e. s(i-1,j), s(i,j-1), s(i-1,j-1).
Furthermore, substitution matrix S(Ai,Bj) must
consider in order to predict biological relationship
between two sequences, as well as a gap penalty g.
In the first case the scores s(i,j) is the sum of the
score for the alignment of the substring (A1,..,Ai-1)
and the substring (B1,..,Bj-1) in accordance with the
substitution matrix S(Ai,Bj). In the second case the
gap open penalty is deducted from the score of the
alignment of substrings (A1,..,Ai-1) and (B1,..,Bj-1).
The third case is analogous to the second case.
Finally, a zero case ignores negative alignment
score in recursion way.

4. BLOCK WISE PARADIGM FOR SPACE

COMPLEXITY IN SEQUENCE

ALIGNMENT USING SCHEDULING

TECHNIQUE FOR COMMUNICATION

Usually SW costs O(mn) space and times, which
for long sequence’s length is prohibitive and
impractical. A key aspect for parallelizing SW is
time and space complexity, which will reduce
through distributing workload to multi-processors,
that able to calculate small portion of data with
other shared processors. Usually, data dependency
in filling matrix stage is achieved using Wavefront
method [32]. However, this method leads to flood
the communications between shared processors. An
acceptable way is to distribute the matrix S in
blocks. Blocks method is suitable for Single
Program Multiple Data (SPMD) architecture where
every processor has its own memory. In this
architecture, every shared processor executes the
same program and has its own private data, L = (L0,

…, Ln). Furthermore, every processor produces an
output U = (U0, …, Un). In this paper an extension
of Bulk Synchronous Parallelism (BSP) model [33]
called Block Wise Paradigm (BWP) is adopted,
which represent a coarse grain parallelism. In BWP,
each processor accomplishes selected number of
blocks. It is mainly proposed by [34] for string
matching and editing with target to minimize the
complexity of searching for matching in parallel
platform. However, with some amendment of
adding scoring scheme, the model can also be used
on sequence similarity detection. Coarser
granularities provide less communication between
processor than finer granularity [35]. In every
block, a number of consecutive rows are attached to
every processor. The number of rows depends on
the query sequence size. The first row R11 in the
first block K1 is computed by the first process P1,
then the first row R12 in the second block K2 is
computed by the second process P2, while the first

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

254

process P1 calculate the second row R21 in the first
block K1 and so on. After each process finish, one
row R1n a scheduling technique is adopted to send
the result to the next process Pi+1 in the next block
Ki+1 (0=<i=<n). The process Pi+1 starts after the
process Pi sends the last row of the block, which
urgently needed for calculating the block of process
Pi+1. Figure 1 depicts a comparison of two
sequences using similarity matrix S, to allocate an
optimal result. It shows the distribution of blocks
for every processor, where a column of similar
color is assigned to one process for computation.
When each processor Pi is finished every row Ri at
every time, it moved to the next row Ri+1 and sent
the last element Ri to the next process Pi+1. The
elements in yellow color with a graphic arrow are
the ones sent by the previous process Pi to the next
process Pi+1. The first process P0 does not receive
any element from any process and the last process
P3 do not send any element to any process.

Figure 1. Blocks of sub-sequences in BWP

BWP is applicable to be executed in scheduler-
worker architecture, using cluster of computers,
where the scheduler shares in the matrix
calculations and has the responsibility for
controlling shared workers. In the next section,
fully details on using this architecture are explained.

4.1 A cluster architecture for similarity

detection between two sequences using BWP

The dominant of High Performance Computing
(HPC) architectures currently and for the
foreseeable future comprise clusters of nodes
interconnected through a high-speed network [36].
The two key reasons for using clusters are
performance and scalability. Cluster consists of
many different hardware and software components
with complex interactions between various
components. This architecture is suitable for

sequence alignment problem, where each shared
processor performs independent task and/or job.
The main process farm employed in this paper is
using one processor as a scheduler or a manager,
while other processors act as workers. The
Scheduler-Workers model is a widely used in
parallel computing to implement dynamic
programming algorithm. The model is ideally suited
to parallel computation of large numbers of
identical and independent tasks each of which
constitutes a relatively small fraction of the total
work. The scheduler processor reads a query and
reference sequences with some other parameters
and divides the reference sequence between
workers into P blocks, where P is the number of the
shared processors in the model. After performing
SW algorithm, all workers send the results to the
scheduler.

4.1.1 Scheduler side algorithm

On scheduler side algorithm, one processor P0
acts as a scheduler managing and sending a query
sequence and the blocks Ki of a reference sequence
to every worker Pi, which in turn, perform Pairwise
Local Sequence Alignment (PLSA) using an SW
algorithm with the query sequence. The distribution
of the blocks Ki of a reference sequence is invoked
by the scheduler. When the Scheduler finishes
alignment for one row in assigned block, it sends
the last cell to the neighbor worker. This process
will be continued until all rows in the block are
processed. Finally, the scheduler outputs the
optimal result of an SW algorithm after gathering
all blocks from all workers. The following pseudo
code for describing gathering blocks from all
workers.
Algorithm 1: /* Gathering results from workers

by scheduler */

Gather_From_Workers()
1: Begin
2: Reserve_Memory_Allocating_Every_Worker_

Matrix;
3: For (Worker_Rank = 1; Worker_Rank <

Total_Workers; Worker_Rank ++)
4: {
5: Scheduler_Receive(Worker_Block_Matrix);
6: }
7: For (k = 0; k < Sequence_A; k++)
8: For (l = 0; l < Sequence_B; l++)
9: {
10: Fill_ Rows and Column_in_Scheduler_Matrix;
11: }
12: End

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

In accordance with the set theory, for every
Ai and Bj, is a subset from Ck, where Ai ≠ Bj, then
Ai ∪ Bj has also been a subset from Ck

Ck = Ai ∪ Bj (2)
Corollary: f : S → {1, …, n} and S = {X1, X2, …,Xn}

then
S = X1 ∪ X2 …,∪ Xn (3)
 (2) and (3) conclude this observation:
Observation: For every two sequences Ai = (A1,..,

Am) and Bj = (B1,..,Bn), Suppose C○ = (C○1,.., C○u),
and CΔ = (CΔ 1,.., CΔ z), are aligned for Ai and Bj,
then
C○ ∪ CΔ is also an alignment for Ai and Bj (4)

The observation and proof (4) imply that in
scheduler-worker model if any worker sends the
optimal alignment to the scheduler then the final
output from scheduler after gathering of all workers
will be an optimal alignment for the comparison
between any two sequences. The following pseudo
code describes the scheduler side algorithm.

Algorithm 2: /*Scheduler Side Algorithm*/

1: Begin
2: Declare arguments of the program;
3: Reserve_Memory_for_SequenceA =

SequenceA_Length+1;
4: Reserve_Memory_for_SequenceB =

SequenceB_Length+1;
5: Initiate_Array H[A][B] = 0;
6: Broadcast(&Gap, &Match/Mis,

Sequences_Size_A_B);
7: Distribute (Blocks_A, Blocks_Size,

Displacement, A_partition);
8: Scheduler_Size = Get_My_Columns(MyId,

Total_Workers, N_b + 1);
9: Smith-Waterman_Algorithm();
10: Send_Block_Cell_To_Worker_Neighbor

(&H[Row][MyBlock], Rank+1);
11: Get Algorithm 1: Gather_From_Workers();
12: Smith-Waterman_Algorithm();
13: for(i=0;i<N_b;i++)

for(j=0;j<N_a;j++)
Print (Smith-Waterman_Result);

14: End

4.1.2 Worker side algorithm

On the other hand, every worker receives from
the scheduler a query sequence and one block of the
reference sequence. Neighbor worker of the
scheduler receives the last cell and performs SW
algorithm. When every worker finishes in filling
one row of a assigned block, it sends the last cell to
the neighbor. This process will continue until all
rows in the block are processed. The results

generated by workers is sent to the scheduler. The
following pseudo code describes the worker side
algorithm.

Algorithm 3: /*Workers Side Algorithm*/

1: Begin
2: Declare variables;
3: My_Columns = GetNoColumns(MyId,

Total_Workers, N_a + 1);
4: Block (N_a+1) memory for sequence A;
5: Block (N_b+1) memory for sequence B;
6: Initiate_Array H[Rows][Columns] = 0;
7: for (i = 1; i < Rows; i++)
8: {
9: Current_Worker_Receive(&Last_Cell_Value,

MyId-1);
10: Smith-Waterman_Algorithm();
11: for (j = 1; j < Columns; j++)
12: {
13: Smith-Waterman_Algorithm();
14: } // For_Columns_End
15: Send_Block_Cell_To_Worker_Neighbor

(&Max_Value, MyId + 1);
16: } // For_Rows_End
17: Send_Matrix_To_Sceduler

(H[Rows][Columns], Scheduler);
18: End

4.2 Space complexity in BWP

Memory architecture becomes a key issue in
parallel platform, which it frequently determines the
optimal programming model. In BWP, any
processor has it is own local memory; addresses in
one processor do not map to another processor.
Blocking is an efficient way to exploit local
memory and fine grain parallelism [37]. Figure 2
depicts a real image from program execution and
describes the overall memory consumption in
Scheduler-Worker model in both sides when
scheduler scattering blocks to every worker and
sizes of blocks in every worker. However,
estimation of memory consumptions through
analysis improves results extracts and determines
the weaknesses in the model.

Proposition: Given Wj workers and partitions of
aligned sequences Qi from Ai with	|��| � ��, an
optimal alignment between Ai and Bj is found in

��
��

�

�

�
� space, where m length of query sequence

Bj, n length of reference sequence Ai, and w are the
number of shared workers.
Proof: Suppose Wj are workers W1, W2, …, Wj, to
solve the sequence alignment problem for two
sequences Ai = (A1,.., Am) and Bj = (B1,..,Bn), also

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

assume that A` and B` partitions of Ai and Bj
�	` � 	�	�
�	�` � ��� is distributed across
workers, then each worker hold A`+B` data. Using
equation 1 with respect to space complexity for SW
algorithm shown in Table 1, an alignment of
partitions A` and B` is achieved in the sequential
machine on O(rs) space �� �
	�
�	� � ��, where

r and s are sequence’s length of A` and B`

respectively. Using parallel technique discussed in
section 4, every worker thus executes SW in	��� �
�

�
�	. Using equation 2, 3, and 4 are then an optimal

alignment of SW achieves in in ��
��

�

�

�
� space.

H[0] = hptr

H[1] = hptr + (N+1)

H[2] = hptr + 2(N+1)

...

H[n] = hptr + n(N+1)

Sequence B

Sequence A

Reference Sequence = A

Query Sequence = B

Scheduler_Scatter (A, Sendcnts, displacement , A_Partition , Sendcnts[MyId], Scheduler)

 Sendcnts[n]

(A
/To

t_W
rkr

s)+
(N

%T
ot_

Wr
krs

>M
yId

)

 Sendcnts[2]

(A
/To

t_W
rkr

s)+
(N

%T
ot_

Wr
krs

>M
yId

)

 Sendcnts[1]

(A
/To

t_W
rkr

s)+
(N

%T
ot_

Wr
krs

>M
yId

)

 Sendcnts[0]

(A
/To

t_W
rkr

s)+
(N

%T
ot_

Wr
krs

>M
yId

)

…..

…..

Di
spl

ace
me

nt[
0]

Di
spl

ace
me

nt[
1]

Di
spl

ace
me

nt[
2]

Di
spl

ace
me

nt[
n]

ComputeSendArray()

{

offset = 0;

for (i = 0; i < Tot_Wrkrs; i++)

{

Sendcnts[i] = Get_Blks(i, Tot_Wrkrs, N_a+1);

displs[i] = offset;

offset += Sendcnts[i];

}

H[0] H[1] H[2] H[n]

Workers

 Scheduler

Figure 2. Scheduler Scatter Evenly Blocks To Every Worker.

4.3 Communications costs in BWP

In large data system, the cost of communications
is very high due to the tremendous data travelling
through nodes in any requests and/or data
exchanges. Time delays occur in data
communication between processors represents a
crucial concern for parallel computation efficiency.
One of the solutions for minimizing
communications between nodes in parallel
platforms is to adopt a coarse-grain parallelism.
Block Wise Paradigm (BWP), the model adopted in
this paper for distributing reference and query
sequences between workers sustain in the reduction
of communication between workers substantially.
Communication between workers and scheduler
occurs only in two cases, when the scheduler sends
a query sequence and block of the reference
sequence, and when the workers send results back
to the scheduler. Another communication takes
place between shared workers when every worker
sends the last cell to the neighbor, in this case the
communication is iterated until all rows in every
block finish. This section analyzes the
communication complexity of BWP including
synchronizations overhead.

The Block Wise Paradigm (BWP) abstracts the
communications operations in a sequential
synthesis of global Supersteps [33, 34]. These
Supersteps conceptually occupy the full width of
the executing architecture, it includes the following
operations:

� Local computation.
� Communications.
� Synchronization barrier.
Abstraction of operations in Supersteps appears in
the following pseudo code:
Superstep1: Local computation phase [n/w]. For all
worker Wi hold a local partition A[i] of Ai, m=Max

(A[i]), where m is the last cell in each block.

Superstep2: Communication phase [gh, with h <

Ai], where h defined sends and receives at h data
letters, h = max{hs, hr}, g measures ability of the
network to continuous traffic, and gh is the
communication time per data letters.
If my PID !=0 send (m)

Else
for each i in {1… p-1} recv (m, i)

If my PID=0 for each i in {1… p-1} m=max (m, mi)

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

Superstep3: Synchronization barrier l, identifying
waiting state for workers until reach barrier. Barrier
is due to fixed overhead, such as start-up costs of
sending data and costs of checking whether all data
arrived at their destination.
Superstep2 and 3 lead to calculating the
communication cost which includes
synchronization. Thus, the total cost is defined by
the following equation:
T(h) = hg + l (5)
Communication cost of BWP in an abbreviate
formula is an expression of the following
T = W + L (6)
W is the maximum number of Floating-
point Operations per Second (FLOPS) of the
processor in the Superstep. To measure T, a wall
clock needed to give the elapsed time. Because
barriers make circularities in data dependency
impossible, L value must near to zero [38].

5. RESULTS AND DISCUSSION

The main intention of this section is to evaluate
and test BWP model and communication
complexity as well as synchronization. Analyzing
parallel models requires evaluating the performance
of resources involved such as the number of shared
processors, space, and communication. This section
measures space and communication complexity of
BWP using scheduler-worker paradigm. The
experiments are conducted on a dedicated X86-
based PC with Intel(R) Core(TM) i7-2670QM CPU
2.20 GHz, 2201 MHz, 4 Core(s) 8 Logical
Processor(s). Installed physical memory (RAM) is
8.00 GB, running over MS Windows 7 Service
Pack 1. The proposed algorithm is implemented
using C++ while the parallel version is executed
using Message Passing Interface (MPI). The
standard library is based on unanimity of the MPI
forum to establish portable and efficient standard
for writing message-passing programs. MPICH2, a
high-performance and portable implementation of
the MPI is used to manage communications
between shared processors. Real datasets of DNA
and Protein sequences are obtained from National
Center for Biotechnology Information [39] using
CLC Sequence Viewer, a GUI bioinformatics
software environment. For comparing the results,
different sizes of twenty sequences are obtained in
the range of 411 KBP to 4 MBP.

5.1 Estimation of space complexity in BWP

model

An optimal alignment between two sequences

can be found in ��
��

�

�

�
� space, where m and n are

the lengths of the query and reference sequences,
respectively, w is the number of shared workers. To
measure memory consumption in BWP model, two
sequences with length 411120 BP and 418695 BP
of nucleotides are calculated using cluster of 8
workers.

In Figure 3, it is clearly shown that memory sizes
dropdown during the numbers of workers increase,
which is normally due to decreasing of block sizes
in BWP when using multiple workers. However, as
an evident result when using one worker the amount
of memory needed is 830 K, while in case of two
workers only 310 K is needed; this surprising
results, in fact, shows the complication of executing
SW in serial machines, which is more than the
tendency of implementing SW in parallel machines.
Another observation form Figure 3 is that once
applying two or more workers in implementing the
SW algorithm using BWP model the complexity in
memory is closely related such that using 3, 4, 5, 6,
7, and 8 workers imply 184, 129, 99, 80, 67, and 58
K respectively. An important relation displayed in
Figure 4 as an exponential growth when reducing
the numbers of workers memories sizes increase
conversely.

Figure 3. Amount of memory sizes involves in BWP

using 8 workers. The results observed and recorded when
calculating 400×400 KBP nucleotides.

Figure 4. Exponential Forecasting Of Memory

Consumption Using 8 Workers

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

M
e
m

o
ry

 S
iz

e
(K

)

Numbers of Workers

Memory

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

M
em

o
ry

 S
iz

e
(K

)

Numbers of Workers

Memory

Expon…

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

5.2 Estimation of communications costs using

BWP model

BWP consists of a sequence of supersteps. In
each superstep, every worker performs local
computations, initiates communication to another
worker, and synchronizes it at the end. Running
workers defined earlier remain constant during the
execution time. Average time T of the proposed

algorithm runs on
�

	
 time, where W is the number of

shared workers. However, the cost of
communications determined by equation (5) is as
follows:

T(h) = hg + l
Where, h defined max sends and receives
operations on data, the g measured ability of the
network to deliver data, l is the cost of a barrier
synchronization of data, and hg is the
communication time per data letters.

In order to predict BWP performance, values for
parameters h, g and l must be identified. However,
estimating values for these parameters relies on
different dependencies based on the parallel
architecture which used for running algorithm. In
cluster architecture, length of a message travelled
through shared workers sometimes effecting the
performance of an overall system. However, the
BWP model is an extension of BSP model, where
there is no distinction between different messages
lengths [38]. Oxford BSPLIB [40], is a parallel
programming library substitutional to MPI and
PVM. It offers a toolset including profiling tools
and implementations of the library for many
different machines and focuses on providing easiest
portable implementations with accurate predictions
of performance parameters using the BSP model.
BSP machine parameters g and l are calculated on
BSP cluster similar to the proposed experiment
architecture in this paper. BSP cluster includes eight
400Mhz Pentium IIs with 128Mbytes of memory
connected by a 100Mbps Ethernet switch. Worst-
case results are obtained by using g and l

parameters from BSPLIB toolset with known
sequence length. Therefore, output results measure
a highest communications cost, which is then used
as a benchmark for evaluating the performance of
the proposed algorithm in this paper. The values of
the g and l parameters listed in the Table 2 with a
total communication cost T(h), while illustrating
graph appears in Figure 5. For more accurate
measurement parameters are calculated in Floating-
point Operations Per Second (FLOPS).

Table 2. Values For Parameters L (Flops) And G

(Flops/Word) As Estimated By Oxford BSP Toolset [40].

However T(H) Calculated By Equation 5.4 Using Tested

Sequence With Length 100 BP Residues

w (No. of
workers)

l
(flops)

g
(flops/word)

T(h)Second

1 128 1.3 4.30
2 5654 33.5 150.07
4 11759 31.5 248.48
8 18347 30.9 357.28

As can be seen in Figure 5, the implementation of
the proposed algorithm is measured by 100 BP
nucleotides over 8 workers which increases the cost
of communication as the number of workers
increases. As a normal corollary in parallel
computing execution times decrease, during the
cost of communication increase in large data system
[37, 41]. However, the proposed algorithm in this
paper still keeps competitive results in a cost of
communications bottleneck. Using one worker
cause 4.30 communications complexities, which is
very less than using other workers; this cause by
less communication required by the proposed
algorithm. Linear relation between parameters
appears clearly in Figure (5); also linear growth
forecasting continues ascending indirectly
proportional between the cost of the
communications and the number of workers.

Figure 5. The Communication Cost Of 8 Workers With

Linear Growth Forecasting

6. CONCLUSION

This paper has gone some way towards
enhancing our understanding of DNA and protein
conformations by considering a parallel model to
detect similar regions in the comparisons of long
sequences with some applicable algorithms. One of
the more significant findings to emerge from this
paper is the evolutionary relationship that can be
detected between compared sequences, as well as
similar proprieties and structure. This work
contributes to the existing knowledge by providing

1 2 4 8 4.30

150.07

248.48

357.28

0

200

400

600

800

C
o

s
t
 o

f

C
o

m
m

u
n

ic
a

ti
o

n
s

No. of Workers

w

T(h)

Linear

(T(h))

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

a complete solution to implement SW algorithm in
a parallel architecture using Block Wise Paradigm
(BWP). Furthermore, this paper has given an
account of the reasons for the widespread use of
Scheduler-Worker model as well as cluster of
workers. Finally, mathematically and statically
analysis of space complexity and communications
costs in BWP is done in order to prove competitor
results. More research needed to better understands
the impact of adopting load-balancing techniques
on the communication costs and/or space
complexity. Future research should, therefore,
concentrate on applicable parallel platforms for DM
and SDM with multiprocessor’s architecture.

REFRENCES:

[1] S. B. Needleman and C. D. Wunsch, "A
general method applicable to the search for
similarities in the amino acid sequence of two
proteins," Journal of molecular biology, vol.
48, pp. 443-453, 1970.

[2] T. Smith and M. Waterman, "Identification of
common molecular subsequences," J. Mol.

Bwl, vol. 147, pp. 195-197, 1981.
[3] W. R. Pearson and D. J. Lipman, "Improved

tools for biological sequence comparison,"
Proceedings of the National Academy of

Sciences, vol. 85, p. 2444, 1988.
[4] S. F. Altschul, W. Gish, W. Miller, E. W.

Myers, and D. J. Lipman, "Basic local
alignment search tool," Journal of molecular

biology, vol. 215, pp. 403-410, 1990.
[5] W. Haque, A. Aravind, and B. Reddy,

"Pairwise sequence alignment algorithms: a
survey," in Proceedings of the 2009

conference on Information Science,

Technology and Applications, 2009, pp. 96-
103.

[6] L. Hasan, Z. Al-Ars, and S. Vassiliadis,
"Hardware acceleration of sequence
alignment algorithms-an overview," 2007, pp.
92-97.

[7] D. S. Hirschberg, "A linear space algorithm
for computing maximal common
subsequences," Communications of the ACM,

vol. 18, pp. 341-343, 1975.
[8] R. B. Batista, A. Boukerche, and A. C. M. A.

de Melo, "A parallel strategy for biological
sequence alignment in restricted memory
space," Journal of Parallel and Distributed

Computing, vol. 68, pp. 548-561, 2008.
[9] M. Schatz, C. Trapnell, A. Delcher, and A.

Varshney, "High-throughput sequence

alignment using Graphics Processing Units,"
BMC bioinformatics, vol. 8, p. 474, 2007.

[10] S. Manavski and G. Valle, "CUDA
compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence
alignment," BMC bioinformatics, vol. 9, p.
S10, 2008.

[11] Y. Zhang, S. Misra, D. Honbo, A. Agrawal,
W. Liao, and A. Choudhary, "Efficient
pairwise statistical significance estimation for
local sequence alignment using GPU," 2011,
pp. 226-231.

[12] P. Borovska and M. Lazarova, "Parallel
models for sequence alignment on CPU and
GPU," 2011, pp. 210-215.

[13] X. Meng and V. Chaudhary, "Boosting data
throughput for sequence database similarity
searches on FPGAs using an adaptive
buffering scheme," Parallel Computing, vol.
35, pp. 1-11, Jan 2009.

[14] J. Allred, J. Coyne, W. Lynch, V. Natoli, J.
Grecco, and J. Morrissette, "Smith-Waterman
implementation on a FSB-FPGA module
using the Intel Accelerator Abstraction
Layer," in Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International

Symposium on, 2009, pp. 1-4.
[15] C. YILMAZ and M. GÖK, "System designs

to perform bioinformatics sequence
alignment," Turkish Journal of Electrical

Engineering & Computer Sciences, vol. 21,
pp. 246-262, 2013.

[16] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A.
Kalyanaraman, "Network-on-chip hardware
accelerators for biological sequence
alignment," Computers, IEEE Transactions

on, vol. 59, pp. 29-41, 2010.
[17] D. Díaz, F. J. Esteban, P. Hernández, J. A.

Caballero, G. Dorado, and S. Gálvez,
"Parallelizing and optimizing a bioinformatics
pairwise sequence alignment algorithm for
many-core architecture," Parallel Computing,

2011.
[18] F. M. Mendonca and A. C. M. A. d. Melo,

"Biological Sequence Comparison on Hybrid
Platforms with Dynamic Workload
Adjustment," in Parallel and Distributed

Processing Symposium Workshops & PhD

Forum (IPDPSW), 2013 IEEE 27th

International, 2013, pp. 501-509.
[19] N. Alachiotis, S. Berger, T. Flouri, S. P.

Pissis, and A. Stamatakis, "libgapmis:
extending short-read alignments," BMC

Bioinformatics, vol. 14, p. S4, 2013.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

[20] H. Martínez Pérez, J. Tárraga, I. Medina, S.
Barrachina, M. I. Castillo Catalán, J. Dopazo,

et al., "Concurrent and Accurate RNA
Sequencing on Multicore Platforms," 2013.

[21] N. Neves, N. Sebastiao, A. Patricio, D. Matos,
P. Tomás, P. Flores, et al., "BioBlaze: Multi-
core SIMD ASIP for DNA sequence
alignment," in Application-Specific Systems,

Architectures and Processors (ASAP), 2013

IEEE 24th International Conference on, 2013,
pp. 241-244.

[22] D. Satyanvesh, K. Balleda, and P. Baruah,
"Genalign—A high performance
implementation for aligning the compressed
DNA sequences," in Advanced Computing

Technologies (ICACT), 2013 15th

International Conference on, 2013, pp. 1-6.
[23] N. Sebastião, G. Encarnação, and N. Roma,

"Implementation and performance analysis of
efficient index structures for DNA search
algorithms in parallel platforms,"
Concurrency and Computation: Practice and

Experience, 2012.
[24] D. Satyanvesh, K. Balleda, A. Padyana, and

P. Baruah, "GenCodex-A Novel Algorithm
for Compressing DNA sequences on Multi-
cores and GPUs," in 19th IEEE International

conference on High Performance Computing.,

December 2012., 2012.
[25] G. Delgado and C. Aporntewan, "Data

dependency reduction in Dynamic
Programming matrix," in Computer Science

and Software Engineering (JCSSE), 2011

Eighth International Joint Conference on,
2011, pp. 234-236.

[26] P. Borovska, V. Gancheva, G. Dimitrov, and
K. Chintov, "Parallel performance evaluation
of multithreaded local sequence alignment,"
2011, pp. 247-252.

[27] S. Bandyopadhyay and R. Mitra, "A parallel
pairwise local sequence alignment algorithm,"
NanoBioscience, IEEE Transactions on, vol.
8, pp. 139-146, 2009.

[28] A. Montanola, C. Roig, and P. Hernandez,
"Pairwise sequence alignment method for
distributed shared memory systems," in
Parallel, Distributed and Network-Based

Processing (PDP), 2013 21st Euromicro

International Conference on, 2013, pp. 432-
436.

[29] A. Nordin, M. Yazid, A. Aziz, and M. Osman,
"Parallel Guided Dynamic Programming
Approach for DNA Sequence Similarity
Search," 2009.

[30] M. Nordin and A. Rahman, "Utilizing MPJ
Express Software in Parallel DNA Sequence
Alignment," 2009, pp. 567-571.

[31] C. Wu, A. Kalyanaraman, and W. R. Cannon,
"A scalable parallel algorithm for large-scale
protein sequence homology detection," in
Parallel Processing (ICPP), 2010 39th

International Conference on, 2010, pp. 333-
342.

[32] A. Wozniak, "Using video-oriented
instructions to speed up sequence
comparison," Computer applications in the

biosciences: CABIOS, vol. 13, pp. 145-150,
1997.

[33] L. G. Valiant, "A Bridging Model for Parallel
Computation," Communications of the Acm,

vol. 33, pp. 103-111, Aug 1990.
[34] C. E. Alves, E. N. Cáceres, and F. Dehne,

"Parallel dynamic programming for solving
the string editing problem on a CGM/BSP," in
Proceedings of the fourteenth annual ACM

symposium on Parallel algorithms and

architectures, 2002, pp. 275-281.
[35] K. Hamidouche, F. M. Mendonca, J. Falcou,

A. C. M. A. de Melo, and D. Etiemble,
"Parallel Smith-Waterman Comparison on
Multicore and Manycore Computing
Platforms with BSP++," International Journal

of Parallel Programming, pp. 1-26, 2012.
[36] H. Q. Jin, D. Jespersen, P. Mehrotra, R.

Biswas, L. Huang, and B. Chapman, "High
performance computing using MPI and
OpenMP on multi-core parallel systems,"
Parallel Computing, vol. 37, pp. 562-575, Sep
2011.

[37] F. Yu and C. Coarfa, "Sequence Alignment,
Analysis, and Bioinformatic Pipelines," in
Next Generation Sequencing, ed: Springer,
2013, pp. 59-77.

[38] D. B. Skillicorn, J. M. Hill, and W. F.
McColl, "Questions and answers about BSP,"
Scientific Programming, vol. 6, pp. 249-274,
1997.

[39] NCBI. (2014, 15 Feb). National Center for

Biotechnology Information. Available:
http://www.ncbi.nlm.nih.gov/

[40] Oxford BSPLIB. (2014, 25 Feb). Oxford

Parallel. Available: http://www.bsp-
worldwide.org/implmnts/oxtool/

[41] J. T. Dudley and A. J. Butte, "A quick guide
for developing effective bioinformatics
programming skills," PLoS Comput Biol, vol.
5, p. e1000589, Dec 2009.

