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ABSTRACT 

 

The Hadoop Distributed File System is constructed to store profoundly and immensely colossal data sets 
accurately and to send those data sets at huge bandwidth to end user applications. Hadoop gives a 
distributed file system and a structure for the analysis and conversion of profoundly and astronomically 
immense data sets utilizing the MapReduce paradigm. A paramount characteristic of Hadoop is the 
partitioning of data and computation across many of hosts and the execution of application computations in 
parallel proximate to their data. This paper recommends an enhanced partitioning algorithm utilizing round 
robin partitioning that advances load balancing and recollection utilization. A sequence of experimentations 
have exposed that given a skewed data sample, the Round Robin architecture was capable to reduce skew 
by distributing records on average when compared with subsisting Hash Partitioning. Experimentations 
demonstrate that the proposed method is efficient and more precise than the subsisting implementation. 
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1. INTRODUCTION 

 

The Hadoop Distributed File System (HDFS) [1] 
is constructed to store profoundly and immensely 
colossal data sets accurately and to send those data 
sets at huge bandwidth to end user applications. 
Hadoop gives a distributed file system and a 
structure for the analysis and conversion of 
profoundly and astronomically immense data sets 
utilizing the MapReduce paradigm. A paramount 
characteristic of Hadoop is the partitioning of data 
and computation across many of hosts and the 
execution of application computations in parallel 
proximate to their data. Today’s most prosperous 
companies use data to their advantage [2]. The data 
are no longer facilely quantifiable facts, such as 
point of sale transaction data. Relatively these 
companies retain, explore, analyze, and manipulate 
all the available information in their purview. 
Ultimately, they probe for evidence of facts, 
insights that lead to incipient business opportunities 
or which leverage their subsisting strengths. This is 
the business value abaft what is often referred to as 
astronomically immense Data. Hadoop has proven 
to be a technology apposite to tackle astronomically 
Immense Data quandaries. The fundamental 
principle of the Hadoop architecture is to move 
analysis to the data rather than moving the data to a 
system that can analyze it. Ideally, Hadoop 

capitalizes on the advances in commodity hardware 
to scale in the way companies want. 

There are two key technologies that sanction 
users of Hadoop to prosperously retain and analyze 
data: HDFS and MapReduce [3]. HDFS is a simple 
but astronomically potent distributed file system. It 
is able to store data reliably at consequential scale. 
HDFS deployments subsist with thousands of nodes 
storing hundreds of petabytes of utilizer data. 
MapReduce is parallel programming framework 
that integrates with HDFS. It sanctions users to 
express data analysis algorithms in terms of a 
minuscule number of functions and operators, 
chiefly, a map function and a reduce function. The 
prosperity of MapReduce is a testament to the 
robustness of HDFS - both as a system to renovate 
and access data, and as an application programming 
interface (API) for immensely colossal Data 
analysis frameworks. While MapReduce is 
convenient when performing scheduled analysis or 
manipulation of data stored on HDFS, it is not 
congruous for interactive use: it is too slow and 
lacks the expressive power required. 

The MapReduce programming [4] model has 
been prosperously utilized at Google for many 
different purposes. This prosperity attributed to 
several reasons. First, the model is facile to utilize, 
even for programmers without experience with 
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parallel and distributed systems, since it hides the 
details of parallelization, reliability, load balancing 
and locality optimization. Second, an immensely 
colossal variety of quandaries are facilely 
expressible as MapReduce computations. For 
example, MapReduce is utilized for the generation 
of data for Google's engenderment web search 
accommodation, for sorting, for data mining, for 
machine learning, and many other systems. Third, 
they have developed an implementation of 
MapReduce that scales to immensely colossal 
clusters of machines comprising thousands of 
machines. The implementation makes efficient 
utilization of these machine resources and therefore 
is felicitous for use on many of the astronomically 
immense computational quandaries encountered at 
Google. They have learnt several things from this 
work. As a first, controlling the programming 
model makes it too easy to parallelize and distribute 
computations and to create such computations 
reliable. Next, network bandwidth is an inadequate 
resource. A number of optimizations in their system 
were therefore embattled at reducing the amount of 
data thrown across the network: the locality 
optimization approves them to read data from local 
disks, and creating a single replica of the 
intermediate data to local disk preserves network 
bandwidth. Third, redundant execution can be 
adapted to reduce the impact of slow machines and 
to handle machine failures and data loss. 

MapReduce has emerged as a popular implement 
for distributed and scalable processing of massive 
data sets and is being used increasingly in e-science 
applications. Lamentably the performance of 
MapReduce systems vigorously depends on an 
even data distribution while scientific data sets are 
often extremely distorted. The ensuing load 
inequality which raises the processing time is even 
amplified by high runtime intricacy of the reducer 
tasks. An adaptive load balancing policy is 
necessary for opportune skew handling. In [5], the 
authors addressed the quandary of estimating the 
cost of the tasks that are distributed to the reducers 
predicated on a given cost model. Precise cost 
estimation is the substructure for adaptive load 
balancing algorithms and requires accumulating 
statistics from the mappers. There are some 
challenges such as, 1. Since the statistics from all 
mappers must be integrated; the mapper statistics 
must be diminutive. 2. The integrated statistics 
must capture the global data distribution albeit each 
mapper visually perceives only a minute fraction of 
the data. 3. The mappers terminate after sending the 
statistics to the controller and no second round is 
possible. Their resolution to these challenges has 

two components. 1. A monitoring component 
executed on every mapper captures the local data 
distribution and identifies its most pertinent subset 
for cost estimation. 2. An integration component 
aggregates these subsets approximating the global 
data distribution. 

2. BACKGROUND 

 

2.1. HDFS Architecture 

 

HDFS [6] is a distributed file system that gives 
high throughput access to data. All the files are 
divided into blocks of fixed size and stored on 
datanodes. The block size is configurable and 
defaults to 64MB. Files can be written only once, 
i.e., updates of existing files are not allowed. The 
HDFS namenode keeps track of the directory 
structure of the file system. It also maintains a list 
of active datanodes as well as their data blocks in a 
dynamic data structure called BlockMap. Whenever 
a datanode starts up, it registers itself at the 
namenode with the list of blocks in its storage; 
these blocks are added to the namenode’s 
BlockMap. Whenever the namenode detects failure 
of a datanode, the blocks of the failed node are 
removed from the BlockMap. Datanodes can both 
send blocks to clients upon request, but also store 
new blocks sent by the client. This process is 
coordinated by the namenode, which directs clients 
to the correct datanodes. HDFS can be configured 
to replicate files for fast recovery in the case of 
failures. The default replication factor is three 
which means that a block is stored on three separate 
datanodes. HDFS uses a simple data placement 
policy to select the datanodes that store the blocks 
and replicas of a file. The default policy of HDFS 
places the first copy of a newly created block on the 
local datanode at which the block is created and this 
called write affinity. Then HDFS attempts to select 
a datanode within the same rack for the second 
copy and a datanode in a different rack for the third 
copy. They have modified this data placement 
policy to support collocation as explained. Hadoop 
uses so called InputFormats to define how files are 
split and consumed by the map tasks. Several 
InputFormats are provided with Hadoop. Input 
formats that operate on files are based on an 
abstract type called FileInputFormat. When starting 
a Hadoop job the FileInputFormat is provided with 
a path containing the files to process. It then divides 
these files into one or more splits which constitute 
the unit of work for a single map task in a 
MapReduce program. By default the various 
FileInputFormat implementations break a file into 
64 MB chunks. The Hadoop scheduler attempts its 
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best to schedule map tasks on nodes that have a 
local copy of their splits. InputFormats provide an 
extensibility point that users can exploit to control 
the distribution of data to map tasks by assembling 
the customized splits. 

2.2. Partitioning 

 

There are typically three approaches to 
partitioning database records [7]:  Range, Round-
Robin and Hash.  

Range partitioning places categorical ranges of 
table ingresses on different disks. To understand 
range partitioning, consider a long list of value. 
Range partitioning breaks the long list into several 
shorter manageable lists and spans them across 
multiple disks. Another example might be a system 
managing monthly operations might partition each 
month onto a different set of disks. In cases where 
only a portion of the data is utilized in a query - 
let’s verbally express the M-P range the database 
can avoid examining the other sets of data in what 
is kenned as partition elimination. This can 
dramatically reduce the time to consummate a 
query. 

Round-robin partitioning evenly distributes 
records across all disks that compose a logical 
space for the table, without regard to the data 
values being stored. This sanctions even workload 
distribution for subsequent table scans. Disk 
striping accomplishes identically tantamount result 
spreading read operations across multiple spindles 
but with the logical volume manager, not the 
DBMS, managing the striping. 

Hash partitioning is a third method of 
distributing DBMS data evenly across the set of 
disk spindles. A hash function is applied to one or 
more database keys, and the records are distributed 
across the disk subsystem accordingly. Again, a 
drawback of hash partitioning is that partition 
elimination may not be possible for those queries 
whose performance could be amended with this 
technique. 

3. RELATED WORKS 

 

CoHadoop, a lightweight solution for collocating 
cognate files in HDFS is presented in [8]. Their 
approach to colocation is simple yet flexible; it can 
be exploited in different ways by different 
applications. They identified two use cases—join 
and sessionization—in the context of log 
processing and described map-only algorithms that 
exploit colocated partitions. They studied the 
performance of CoHadoop under different settings 

and compared it with both plain Hadoop solutions 
and map-only algorithms that work on partitioned 
data without colocation. Their experiments divine 
that copartitioning and colocation together provide 
the best performance. Both theoretical analysis and 
experiments suggest that CoHadoop maintains the 
fault tolerance characteristics of Hadoop to an 
immensely colossal extent. 

An essential problem for the MapReduce 
framework is the idea of load balancing. Over the 
period, several researches have been done on the 
area of load balancing. Where data is situated [9], 
how it is communicated [10], what background it is 
being located on [11, 12, 13] and the statistical 
allotment of the data can all have an outcome on a 
systems efficiency. Most of these algorithms can be 
found universal in a variety of papers and have 
been utilized by structures and systems earlier to 
the subsistence of the MapReduce structure [14, 
15]. RanKloud [16] make use of its personal 
uSplitmethod for partitioning huge media data sets. 
The uSplitmethod is required to decrease data 
duplication costs and exhausted resources that are 
particular to its media based algorithms. So as to 
work just about perceived boundaries of the 
MapReduce model, various extend or changes in 
the MapReduce models have been offered.  
BigTable [17] was launched by Google to handle 
structured data. BigTable looks like a database, but 
does not support a complete relational database 
model. It utilizes rows with successive keys 
grouped into tables that form the entity of 
allocation and load balancing. And experiences 
from the similar load and memory balancing 
troubles faced by sharednothing databases. HBase 
of Hadoop is the open source version of BigTable, 
which imitates the similar functionality of 
BigTable. Because of its simplicity of use, the 
MapReduce model is pretty popular and has 
numerous implementations [18, 19, 20]. 

To work around load balancing problems 
resulting from joining tables in Hadoop, [21] 
introduces an adaptive MapReduce algorithm for 
several joins using Hadoop that works without 
changing its setting. This paper also attempts to do 
workload balancing in Hadoop without changing 
the original structure, but concentrates on 
distributing the data evenly among partitions using 
Round Robin partitioning. 

4. PROPOSED APPROACH 

 

In Hash Partitioning approach presented in the 
previous work of the authors, the partitioning 
technique that is used when the keys are diverse, 
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large data skew can exist when the key is present in 
large volume and it is apt for parallel data 
processing. But Round Robin partition technique 
uniformly distributes the data on every destination 
data partitions and when number of records is 
divisible by number of partitions, and then the skew 
is most probably zero. For example a pack of 52 
cards is distributed among 4 players in a round-
robin fashion. In order to evaluate the performance 
of round robin partitioning in Hadoop, this 
partitioning is implemented in Hadoop even though 
this partitioning is not available in Hadoop. This 
section describes the round robin partitioning as an 
alternative of hash partitioning which will be 
incorporated in Hadoop. Besides, this section 
discusses how memory can be saved by means of a 
ReMap technique.  

 
Figure 1: MapReduce Dataflow 

As designated in Figure 1, the data splits are 
applied to the Mapper and the outcome is sorted 
splits. Further these splits are facsimiled to the 
splits of Reducer for merging. During facsimileing, 
the proposed round robin portioning is 
incorporated. The partitioning is done as designated 
in Figure 2. After that, the reducer does its work 
and engenders the final partitions. 

5. RESULTS AND DISCUSSION 

 

To estimate the performance of the proposed 
method, this work examines how fine the 
algorithms dispense the workload, and looks at how 

 
Figure 2: Round Robin Framework 

fine the memory is used. Tests performed in this 
paper were completed using LastFm Dataset, with 
each record containing the user profile with fields 
like country, gender, age and date. Using these 
records as our input, they simulated computer 
networks using VMware for Hadoop file system. 
The tests are carried out with a range of size of 
dataset such as 1 Lakh, 3 Lakhs, 5 Lakhs, 10 Lakhs, 
50 Lakhs and 1 Crore records. During the first 
experiment, an input file containing 1 lakh records 
is considered. As mentioned in the MapReduce 
Framework, the input set is divided into various 
splits and forwarded to Map Phase. Here for this 
input file, only one mapper is considered since the 
number of mappers is depends on the size of the 
input file. After mapping, partition algorithm is 
used to reduce the number of output records by 
grouping records in round robin fashion. After 
grouping, 4 partitions are created using the 
procedure Gender-Group-by-Country. All the 
corresponding log files and counters are analyzed to 
view the performance. In the other 5 experiments, 
input files with 3 Lakhs, 5 Lakhs, 10 Lakhs, 50 
Lakhs and 1 Crore records are considered. As per 
the above said method, all the input files are 
partitioned into 4 partitions. 

In order to compare the different methodologies 
presented in this paper and determine how balanced 
the workload distributions are, this study uses 
various metrics such as Effective CPU, Rate and 
Skew among various metrics, since only these 
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parameters shows the significant difference in 
outcomes. Rate displays the number of bytes from 
the Bytes column divided by the number of seconds 
elapsed since the previous report, rounded to the 
nearest kilobyte. Effective CPU displays the CPU-
seconds consumed by the job between reports, 
divided by the number of seconds elapsed since the 
previous report. The skew of a data or flow 
partition is the amount by which its size deviates 
from the average partition size, expressed as a 
percentage of the largest partition. 

The tables 1, 2 and 3 shows the results when 
using various sized input files for the comparison of 
the performance of existing Hash partitioning and 
proposed Round Robin partitioning with the 
parameters Skew, Effective CPU and Rate 
respectively. Similarly, the figures 3, 4 and 5 shows 
comparison chart of the results of the above. From 
the tables and figures for results, it is shown that the 
proposed method is performing better than Hash 
Partitioning based on a parameter skew but not in 
other 2 parameters said above. 

Table 1: Performance Comparison of Skew 

No. of 
records 

Hash Round 
Robin 

100000 12.96% 0.50% 

300000 11.63% 1.74% 

500000 12.50% 1.49% 

1000000 11.93% 1.79% 

5000000 11.96% 0.85% 

10000000 11.96% 0.54% 

 
 

 
Figure 3: Comparison Chart of Skew 

Table 2: Performance Comparison of Rate 

No. of 
records 

Hash (in 
kb) 

Round Robin 
(in kb) 

100000 8218 9040 

300000 11147 12596 

500000 13099 15064 

1000000 14127 15822 

5000000 14439 16460 

10000000 14200 15620 

 

 
Figure 4: Comparison Chart of Rate 

 
Table 3: Performance Comparison of Effective 

CPU 

No. of 
records 

Hash  
(in sec) 

Round Robin 
(in sec) 

100000 0.047 0.052 

300000 0.061 0.069 

500000 0.07 0.081 

1000000 0.073 0.082 

5000000 0.071 0.081 

10000000 0.074 0.083 

 

 
Figure 5: Comparison Chart of Effective CPU 

 

6. CONCLUSION 

 

This paper presented Round Robin, a 
comprehensive partitioning technique, to improve 
load balancing for distributed applications. By 
means of improving load balancing, MapReduce 
programs can turn out to be more proficient at 
managing tasks by reducing the overall 
computation time spent processing data on each 
node. Our work concentrates at small-sized to 
medium-sized clusters rather than large clusters. 
This study changes existing model of hash 
partitioning and boosts it for a smaller environment 
with round robin partitioning. A sequence of 
experimentations have exposed that given a skewed 
data sample, the Round Robin architecture was 
capable to reduce skew by distributingrecords on 
average when compared with existing Hash 
Partitioning. After this, additional research can be 
made to introduce few other partitioning 
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mechanisms so that it can be incorporated with 
Hadoop for applications using different input 
samples since Hadoop File System is not having 
any partitioning mechanism except hash key 
partitioning. 
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