
Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

537

A NOVEL APPROACH FOR PARTITIONING IN HADOOP

USING ROUND ROBIN TECHNIQUE

1
GOTHAI E,

2
BALASUBRAMANIE P

1Associate Professor, Department of CSE, Kongu Engineering College, Erode-638052, Tamilnadu, India

2Professor, Department of CSE, Kongu Engineering College, Erode-638052, Tamilnadu, India

Email: 1kothaie@yahoo.co.in , 2pbalu_20032001@yahoo.co.in

ABSTRACT

The Hadoop Distributed File System is constructed to store profoundly and immensely colossal data sets
accurately and to send those data sets at huge bandwidth to end user applications. Hadoop gives a
distributed file system and a structure for the analysis and conversion of profoundly and astronomically
immense data sets utilizing the MapReduce paradigm. A paramount characteristic of Hadoop is the
partitioning of data and computation across many of hosts and the execution of application computations in
parallel proximate to their data. This paper recommends an enhanced partitioning algorithm utilizing round
robin partitioning that advances load balancing and recollection utilization. A sequence of experimentations
have exposed that given a skewed data sample, the Round Robin architecture was capable to reduce skew
by distributing records on average when compared with subsisting Hash Partitioning. Experimentations
demonstrate that the proposed method is efficient and more precise than the subsisting implementation.

KEYWORDS: Hadoop, Round Robin, Partitioning, Mapreduce

1. INTRODUCTION

The Hadoop Distributed File System (HDFS) [1]
is constructed to store profoundly and immensely
colossal data sets accurately and to send those data
sets at huge bandwidth to end user applications.
Hadoop gives a distributed file system and a
structure for the analysis and conversion of
profoundly and astronomically immense data sets
utilizing the MapReduce paradigm. A paramount
characteristic of Hadoop is the partitioning of data
and computation across many of hosts and the
execution of application computations in parallel
proximate to their data. Today’s most prosperous
companies use data to their advantage [2]. The data
are no longer facilely quantifiable facts, such as
point of sale transaction data. Relatively these
companies retain, explore, analyze, and manipulate
all the available information in their purview.
Ultimately, they probe for evidence of facts,
insights that lead to incipient business opportunities
or which leverage their subsisting strengths. This is
the business value abaft what is often referred to as
astronomically immense Data. Hadoop has proven
to be a technology apposite to tackle astronomically
Immense Data quandaries. The fundamental
principle of the Hadoop architecture is to move
analysis to the data rather than moving the data to a
system that can analyze it. Ideally, Hadoop

capitalizes on the advances in commodity hardware
to scale in the way companies want.

There are two key technologies that sanction
users of Hadoop to prosperously retain and analyze
data: HDFS and MapReduce [3]. HDFS is a simple
but astronomically potent distributed file system. It
is able to store data reliably at consequential scale.
HDFS deployments subsist with thousands of nodes
storing hundreds of petabytes of utilizer data.
MapReduce is parallel programming framework
that integrates with HDFS. It sanctions users to
express data analysis algorithms in terms of a
minuscule number of functions and operators,
chiefly, a map function and a reduce function. The
prosperity of MapReduce is a testament to the
robustness of HDFS - both as a system to renovate
and access data, and as an application programming
interface (API) for immensely colossal Data
analysis frameworks. While MapReduce is
convenient when performing scheduled analysis or
manipulation of data stored on HDFS, it is not
congruous for interactive use: it is too slow and
lacks the expressive power required.

The MapReduce programming [4] model has
been prosperously utilized at Google for many
different purposes. This prosperity attributed to
several reasons. First, the model is facile to utilize,
even for programmers without experience with

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

538

parallel and distributed systems, since it hides the
details of parallelization, reliability, load balancing
and locality optimization. Second, an immensely
colossal variety of quandaries are facilely
expressible as MapReduce computations. For
example, MapReduce is utilized for the generation
of data for Google's engenderment web search
accommodation, for sorting, for data mining, for
machine learning, and many other systems. Third,
they have developed an implementation of
MapReduce that scales to immensely colossal
clusters of machines comprising thousands of
machines. The implementation makes efficient
utilization of these machine resources and therefore
is felicitous for use on many of the astronomically
immense computational quandaries encountered at
Google. They have learnt several things from this
work. As a first, controlling the programming
model makes it too easy to parallelize and distribute
computations and to create such computations
reliable. Next, network bandwidth is an inadequate
resource. A number of optimizations in their system
were therefore embattled at reducing the amount of
data thrown across the network: the locality
optimization approves them to read data from local
disks, and creating a single replica of the
intermediate data to local disk preserves network
bandwidth. Third, redundant execution can be
adapted to reduce the impact of slow machines and
to handle machine failures and data loss.

MapReduce has emerged as a popular implement
for distributed and scalable processing of massive
data sets and is being used increasingly in e-science
applications. Lamentably the performance of
MapReduce systems vigorously depends on an
even data distribution while scientific data sets are
often extremely distorted. The ensuing load
inequality which raises the processing time is even
amplified by high runtime intricacy of the reducer
tasks. An adaptive load balancing policy is
necessary for opportune skew handling. In [5], the
authors addressed the quandary of estimating the
cost of the tasks that are distributed to the reducers
predicated on a given cost model. Precise cost
estimation is the substructure for adaptive load
balancing algorithms and requires accumulating
statistics from the mappers. There are some
challenges such as, 1. Since the statistics from all
mappers must be integrated; the mapper statistics
must be diminutive. 2. The integrated statistics
must capture the global data distribution albeit each
mapper visually perceives only a minute fraction of
the data. 3. The mappers terminate after sending the
statistics to the controller and no second round is
possible. Their resolution to these challenges has

two components. 1. A monitoring component
executed on every mapper captures the local data
distribution and identifies its most pertinent subset
for cost estimation. 2. An integration component
aggregates these subsets approximating the global
data distribution.

2. BACKGROUND

2.1. HDFS Architecture

HDFS [6] is a distributed file system that gives
high throughput access to data. All the files are
divided into blocks of fixed size and stored on
datanodes. The block size is configurable and
defaults to 64MB. Files can be written only once,
i.e., updates of existing files are not allowed. The
HDFS namenode keeps track of the directory
structure of the file system. It also maintains a list
of active datanodes as well as their data blocks in a
dynamic data structure called BlockMap. Whenever
a datanode starts up, it registers itself at the
namenode with the list of blocks in its storage;
these blocks are added to the namenode’s
BlockMap. Whenever the namenode detects failure
of a datanode, the blocks of the failed node are
removed from the BlockMap. Datanodes can both
send blocks to clients upon request, but also store
new blocks sent by the client. This process is
coordinated by the namenode, which directs clients
to the correct datanodes. HDFS can be configured
to replicate files for fast recovery in the case of
failures. The default replication factor is three
which means that a block is stored on three separate
datanodes. HDFS uses a simple data placement
policy to select the datanodes that store the blocks
and replicas of a file. The default policy of HDFS
places the first copy of a newly created block on the
local datanode at which the block is created and this
called write affinity. Then HDFS attempts to select
a datanode within the same rack for the second
copy and a datanode in a different rack for the third
copy. They have modified this data placement
policy to support collocation as explained. Hadoop
uses so called InputFormats to define how files are
split and consumed by the map tasks. Several
InputFormats are provided with Hadoop. Input
formats that operate on files are based on an
abstract type called FileInputFormat. When starting
a Hadoop job the FileInputFormat is provided with
a path containing the files to process. It then divides
these files into one or more splits which constitute
the unit of work for a single map task in a
MapReduce program. By default the various
FileInputFormat implementations break a file into
64 MB chunks. The Hadoop scheduler attempts its

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

539

best to schedule map tasks on nodes that have a
local copy of their splits. InputFormats provide an
extensibility point that users can exploit to control
the distribution of data to map tasks by assembling
the customized splits.

2.2. Partitioning

There are typically three approaches to
partitioning database records [7]: Range, Round-
Robin and Hash.

Range partitioning places categorical ranges of
table ingresses on different disks. To understand
range partitioning, consider a long list of value.
Range partitioning breaks the long list into several
shorter manageable lists and spans them across
multiple disks. Another example might be a system
managing monthly operations might partition each
month onto a different set of disks. In cases where
only a portion of the data is utilized in a query -
let’s verbally express the M-P range the database
can avoid examining the other sets of data in what
is kenned as partition elimination. This can
dramatically reduce the time to consummate a
query.

Round-robin partitioning evenly distributes
records across all disks that compose a logical
space for the table, without regard to the data
values being stored. This sanctions even workload
distribution for subsequent table scans. Disk
striping accomplishes identically tantamount result
spreading read operations across multiple spindles
but with the logical volume manager, not the
DBMS, managing the striping.

Hash partitioning is a third method of
distributing DBMS data evenly across the set of
disk spindles. A hash function is applied to one or
more database keys, and the records are distributed
across the disk subsystem accordingly. Again, a
drawback of hash partitioning is that partition
elimination may not be possible for those queries
whose performance could be amended with this
technique.

3. RELATED WORKS

CoHadoop, a lightweight solution for collocating
cognate files in HDFS is presented in [8]. Their
approach to colocation is simple yet flexible; it can
be exploited in different ways by different
applications. They identified two use cases—join
and sessionization—in the context of log
processing and described map-only algorithms that
exploit colocated partitions. They studied the
performance of CoHadoop under different settings

and compared it with both plain Hadoop solutions
and map-only algorithms that work on partitioned
data without colocation. Their experiments divine
that copartitioning and colocation together provide
the best performance. Both theoretical analysis and
experiments suggest that CoHadoop maintains the
fault tolerance characteristics of Hadoop to an
immensely colossal extent.

An essential problem for the MapReduce
framework is the idea of load balancing. Over the
period, several researches have been done on the
area of load balancing. Where data is situated [9],
how it is communicated [10], what background it is
being located on [11, 12, 13] and the statistical
allotment of the data can all have an outcome on a
systems efficiency. Most of these algorithms can be
found universal in a variety of papers and have
been utilized by structures and systems earlier to
the subsistence of the MapReduce structure [14,
15]. RanKloud [16] make use of its personal
uSplitmethod for partitioning huge media data sets.
The uSplitmethod is required to decrease data
duplication costs and exhausted resources that are
particular to its media based algorithms. So as to
work just about perceived boundaries of the
MapReduce model, various extend or changes in
the MapReduce models have been offered.
BigTable [17] was launched by Google to handle
structured data. BigTable looks like a database, but
does not support a complete relational database
model. It utilizes rows with successive keys
grouped into tables that form the entity of
allocation and load balancing. And experiences
from the similar load and memory balancing
troubles faced by sharednothing databases. HBase
of Hadoop is the open source version of BigTable,
which imitates the similar functionality of
BigTable. Because of its simplicity of use, the
MapReduce model is pretty popular and has
numerous implementations [18, 19, 20].

To work around load balancing problems
resulting from joining tables in Hadoop, [21]
introduces an adaptive MapReduce algorithm for
several joins using Hadoop that works without
changing its setting. This paper also attempts to do
workload balancing in Hadoop without changing
the original structure, but concentrates on
distributing the data evenly among partitions using
Round Robin partitioning.

4. PROPOSED APPROACH

In Hash Partitioning approach presented in the
previous work of the authors, the partitioning
technique that is used when the keys are diverse,

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

540

large data skew can exist when the key is present in
large volume and it is apt for parallel data
processing. But Round Robin partition technique
uniformly distributes the data on every destination
data partitions and when number of records is
divisible by number of partitions, and then the skew
is most probably zero. For example a pack of 52
cards is distributed among 4 players in a round-
robin fashion. In order to evaluate the performance
of round robin partitioning in Hadoop, this
partitioning is implemented in Hadoop even though
this partitioning is not available in Hadoop. This
section describes the round robin partitioning as an
alternative of hash partitioning which will be
incorporated in Hadoop. Besides, this section
discusses how memory can be saved by means of a
ReMap technique.

Figure 1: MapReduce Dataflow

As designated in Figure 1, the data splits are
applied to the Mapper and the outcome is sorted
splits. Further these splits are facsimiled to the
splits of Reducer for merging. During facsimileing,
the proposed round robin portioning is
incorporated. The partitioning is done as designated
in Figure 2. After that, the reducer does its work
and engenders the final partitions.

5. RESULTS AND DISCUSSION

To estimate the performance of the proposed
method, this work examines how fine the
algorithms dispense the workload, and looks at how

Figure 2: Round Robin Framework

fine the memory is used. Tests performed in this
paper were completed using LastFm Dataset, with
each record containing the user profile with fields
like country, gender, age and date. Using these
records as our input, they simulated computer
networks using VMware for Hadoop file system.
The tests are carried out with a range of size of
dataset such as 1 Lakh, 3 Lakhs, 5 Lakhs, 10 Lakhs,
50 Lakhs and 1 Crore records. During the first
experiment, an input file containing 1 lakh records
is considered. As mentioned in the MapReduce
Framework, the input set is divided into various
splits and forwarded to Map Phase. Here for this
input file, only one mapper is considered since the
number of mappers is depends on the size of the
input file. After mapping, partition algorithm is
used to reduce the number of output records by
grouping records in round robin fashion. After
grouping, 4 partitions are created using the
procedure Gender-Group-by-Country. All the
corresponding log files and counters are analyzed to
view the performance. In the other 5 experiments,
input files with 3 Lakhs, 5 Lakhs, 10 Lakhs, 50
Lakhs and 1 Crore records are considered. As per
the above said method, all the input files are
partitioned into 4 partitions.

In order to compare the different methodologies
presented in this paper and determine how balanced
the workload distributions are, this study uses
various metrics such as Effective CPU, Rate and
Skew among various metrics, since only these

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

541

parameters shows the significant difference in
outcomes. Rate displays the number of bytes from
the Bytes column divided by the number of seconds
elapsed since the previous report, rounded to the
nearest kilobyte. Effective CPU displays the CPU-
seconds consumed by the job between reports,
divided by the number of seconds elapsed since the
previous report. The skew of a data or flow
partition is the amount by which its size deviates
from the average partition size, expressed as a
percentage of the largest partition.

The tables 1, 2 and 3 shows the results when
using various sized input files for the comparison of
the performance of existing Hash partitioning and
proposed Round Robin partitioning with the
parameters Skew, Effective CPU and Rate
respectively. Similarly, the figures 3, 4 and 5 shows
comparison chart of the results of the above. From
the tables and figures for results, it is shown that the
proposed method is performing better than Hash
Partitioning based on a parameter skew but not in
other 2 parameters said above.

Table 1: Performance Comparison of Skew

No. of
records

Hash Round
Robin

100000 12.96% 0.50%

300000 11.63% 1.74%

500000 12.50% 1.49%

1000000 11.93% 1.79%

5000000 11.96% 0.85%

10000000 11.96% 0.54%

Figure 3: Comparison Chart of Skew

Table 2: Performance Comparison of Rate

No. of
records

Hash (in
kb)

Round Robin
(in kb)

100000 8218 9040

300000 11147 12596

500000 13099 15064

1000000 14127 15822

5000000 14439 16460

10000000 14200 15620

Figure 4: Comparison Chart of Rate

Table 3: Performance Comparison of Effective

CPU

No. of
records

Hash
(in sec)

Round Robin
(in sec)

100000 0.047 0.052

300000 0.061 0.069

500000 0.07 0.081

1000000 0.073 0.082

5000000 0.071 0.081

10000000 0.074 0.083

Figure 5: Comparison Chart of Effective CPU

6. CONCLUSION

This paper presented Round Robin, a
comprehensive partitioning technique, to improve
load balancing for distributed applications. By
means of improving load balancing, MapReduce
programs can turn out to be more proficient at
managing tasks by reducing the overall
computation time spent processing data on each
node. Our work concentrates at small-sized to
medium-sized clusters rather than large clusters.
This study changes existing model of hash
partitioning and boosts it for a smaller environment
with round robin partitioning. A sequence of
experimentations have exposed that given a skewed
data sample, the Round Robin architecture was
capable to reduce skew by distributingrecords on
average when compared with existing Hash
Partitioning. After this, additional research can be
made to introduce few other partitioning

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

542

mechanisms so that it can be incorporated with
Hadoop for applications using different input
samples since Hadoop File System is not having
any partitioning mechanism except hash key
partitioning.

REFERENCES:

[1] www.aosabook.org/en/hdfs.html

[2] www.gopivotal.com/sites/default/files/Hawq_
WP_042313_FINAL.pdf

[3] www.hadoophdfs.com/tutorials

[4] J. Dean and S. Ghemawat, “MapReduce:
simplified data processing on large clusters”,
Proceedings of the 6

th
 OSDI Symposium, 2004.

[5] B. Gufler, N. Augsten, A. Reiser, and A.
Kemper, “Load balancing in MapReduce based
on scalable cardinality estimates”, Proceedings

of the 28th ICDE Conference, 2012.

[6] The Apache Software Foundation, “HDFS
architecture guide”,
http://hadoop.apache.org/hdfs/docs/current/hdf
s_design.html.

[7] www.infonitive.com

[8] Y. Mohamed, Eltabakh, Yuanyuan Tian,
Fatma Ozcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson, “CoHadoop:
Flexible Data Placement and Its Exploitation in
Hadoop”, Proceedings of the 37th

International Conference on Very Large Data

Bases, August 29th September 3rd 2011,
Seattle, Washington. Proceedings of the VLDB
Endowment, Vol. 4, No. 9, 2011.

[9] C-H. Hsu and S-C. Chen, “Efficient Selection
Strategies towards Processor Reordering
Techniques for Improving Data Locality in
Heterogeneous Clusters”, Journal of

Supercomputing, Vol. 60, 2012, pp.284–300.

[10] C-H. Hsu and S-C. Chen, “A Two-level
Scheduling Strategy for Optimizing
Communications of Data Parallel Programs in
Clusters”, International Journal of Ad Hoc

UbiqComputing, Vol.6, 2010, pp. 263–269.

[11] C-H. Hsu and B-R. Tsai, “Scheduling for
Atomic Broadcast Operation in Heterogeneous
Networks with One Port Model”, Journal of

Supercomputing, Vol. 60, 2009, pp. 269–288.

[12] C-H. Hsu, T-L. Chen and J-H. Park, “On
Improving Resource Utilization and System
Throughput of Master Slave Jobs Scheduling
in Heterogeneous Systems”, Journal of

Supercomputing, Vol. 45, 2008, pp. 129–150.

[13] M. Zaharia, A. Konwinski, AD. Joseph, R.
Katz and I. Stoica, “Improving MapReduce

Performance in Heterogeneous Environments”,
Proceedings of 8th USENIX Symposium on

Operating Systems Design and

Implementation, 8-10 December 2008, San
Diego, California, USA, USENIX, pp. 29-42.

[14] A. Krishnan, “GridBLAST: A Globus-based
High-throughput Implementation of BLAST in
a Grid Computing Framework”, Concurrent

Computing, Vol. 17, 2005, pp. 1607–1623.

[15] H. Stockinger, M. Pagni, L. Cerutti and L.
Falquet, “Grid Approach to Embarrassingly
Parallel CPU Intensive Bioinformatics
Problems”, Proceedings of IEEE International

Conference on eScience and Grid Computing,
December 2006, Amsterdam, The Netherlands,
pp. 58.

[16] KS. Candan, JW. Kim, P. Nagarkar, M.
Nagendra and R. Yu, “RanKloud: Scalable
Multimedia Data Processing in Server
Clusters”, IEEE MultiMed, Vol. 18, 2010, pp.
64–77.

[17] F. Chang, J. Dean, S. Ghemawat, WC Hsieh,
DA. Wallach, M. Burrows, T. Chandra, A.
Fikes and RE. Gruber, “Bigtable: A
Distributed Storage System for Structured
Data”, ACM Transactions on Computer

Systems, Vol. 26, 2008.

[18] H. Liu and D. Orban, “Cloud MapReduce: A
MapReduce Implementation on Top of a Cloud
Operating System”, Proceedings of IEEE/ACM

International Symposium on Cluster, Cloud

and Grid Computing, May 2011, CA, USA,
IEEE/ACM, pp. 464–474.

[19] A. Matsunaga, M. Tsugawa and J. Fortes,
“Programming Abstractions for Data Intensive
Computing on Clouds and Grids”, Proceedings

of IEEE Fourth International Conference on

eScience, 7-12 December 2008, Indiana, USA,
IEEE, pp. 489–493.

[20] C. Miceli, M. Miceli, S. Jha, H. Kaiser and A.
Merzky, “Programming Abstractions for Data
Intensive Computing on Clouds and Grids”,
Proceedings of IEEE/ACM International

Symposium on Cluster Computing and the

Grid, 18-21 May 2009, USA, IEEE/ACM,
pp.480–483.

[21] S. Lynden, Y. Tanimura, I. Kojima and A.
Matono, “Dynamic Data Redistribution for
MapReduce Joins”, Proceedings of IEEE

International Conference on Cloud Computing

Technology and Science, 29 November – 1
December 2011, Athens, Greece, IEEE, pp.
713–717.

