
Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

466

AN FPGA BASED OVERLAPPED QUASI CYCLIC LDPC

DECODER FOR WI-MAX

1
G.AMIRTHA GOWRI,

 2
S.SUBHA RANI

 Associate Professor, Department of Electronics and Communication Engineering,
Kumaraguru College of Technology, Coimbatore, India

2Professor, Department of Electronics and Communication Engineering,
PSG College of Technology, Coimbatore, India

E-mail: 1 amirthagowri.g.ece@kct.ac.in , 2 ssr@ece.psgtech.ac.in

ABSTRACT

In this paper, we present a partially parallel Quasi cyclic Low Density Parity Check decoder architecture
for WiMAX IEEE 802.16e standard. Two phase message passing Min-sum decoding algorithm is used to
decode the Low Density Parity Check codes. The decoder is designed for code rate ½ and code length of
576 bits and 2304bits. The decoder is easily configurable to support different code lengths of WiMAX
IEEE 802.16e standard. In the proposed architecture, two phases of decoding are overlapped to increase the
throughput and hardware utilization is increased. In this work , a novel configurable variable node
processor is introduced to increase the hardware utilization. The proposed architectures are implemented
on Xilinx Virtex V xc5vlx110-3-ff676 FPGA.
Keywords: Field programmable Gate Arrays, Min-sum Decoding Algorithm, Quasi cyclic Low Density

Parity check Codes.

1. INTRODUCTION

Low Density Parity Check Codes (LDPC) are a

class of linear block codes for forward error
correction, first proposed by Gallager [1] in 1962.
LDPC codes are capacity approaching codes [2,3].
LDPC decoder is more realizable due to inherent
parallelism present in the decoding algorithm of
LDPC codes. So, LDPC codes find applications in
digital video broadcasting through satellite, mobile
communication and magnetic storage systems.

LDPC codes are classified as random codes and
structured codes. The hardware design of encoder
and decoder is more complex for random codes,
even though they have excellent error correcting
performance. The performance of structured codes
such as QC-LDPC codes are closer to random codes
and hardware complexity is also reduced. It is easy
to design QC-LDPC codes with multiple code rates
and code lengths. Hence, these structured QC-
LDPC codes are included in many communication
standards such as DVB-S2, 10GBASE-T,
IEEE802.11 and IEEE802.16e. The LDPC codes
are decoded using soft decision iterative message
passing algorithm. The two phase message
passing(TPMP) algorithm presented in Gallager’s
work[1] has optimal error correcting performance,
but it is hard to realize. Based on the TPMP

algorithm several simplified algorithms have been
developed. The sum product algorithm (SPA)[5]
which uses log likelihood ratios and avoids
exponential calculations. Even though the SPA has
excellent error correcting performance, it is not
suitable for VLSI design due to more mathematical
computations. So, Min-sum algorithm (MSA) [6] ,
an approximation of SPA which reduces the
hardware complexity.

 Based on the requirement, the decoders may be
realized as :

1) Fully parallel
2) Fully Serial
3) Partly parallel

Fully parallel architectures are desirable for high

throughput applications. Fully parallel
architectures suffer by routing congestion and
silicon area is increased due to interconnection
wires. The ASIC implementation of a 1024-b,
rate1/2 fully parallel architecture presented in[8]
directly maps the tanner graph into hardware and an
information throughput of 500 Mbps is obtained.
Certain optimization measures can be taken to
alleviate routing congestion and routing delay in
these fully parallel architectures. The critical path
delay of the decoder[9] was reduced by dividing

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

467

the longest wires into several short wires with
pipeline registers and log-likelihood ratio messages
are transmitted along with these pipelined paths and
achieved a throughput of 13.21 Gbps. The energy
per bit is also decreased. The fully parallel
architectures are realized only for high data rate
applications, even though several techniques such
as bit serial [10], multi split row [11] are proposed
to reduce routing congestion. The routing
congestion of these architectures increases as code
length grows. In contrast to fully parallel decoders,
fully serial decoders have one check node
processing unit and one variable node processing
unit and large memory is required to store data. The
hardware complexity is less for these serial
architectures and a very low data throughput is
achieved. The partly parallel architectures balance
the hardware complexity and throughput. The
partly parallel architectures are designed for
different area/throughput requirements[12-23]. The
layered decoding algorithm is used in [24] and the
architecture supports irregular LDPC codes with
multiple code lengths and code rates of Wi-MAX
standard IEEE802.16e.In this architecture, different
parallel factors are used to improve the throughput.
The architectures presented in[25,26] support
regular LDPC codes of Wi-MAX and WLAN
standards. Modified min-sum algorithm is used
in[25]. These architectures are used for multimedia
communication. Different parallelism factors were
used to improve the throughput.

In this paper, we propose a partly parallel
architecture in which two phase message passing
min-sum (TPMP-MS) decoding algorithm is used.
In this TPMP-MS, decoding is done in two phases:
1.check node updating phase and 2. Variable node
updating phase. These two phases are executed one
after the other. In our work, these two phases are
partially overlapped based on the dual diagonal
structure of the base matrix. In this decoder, a
configurable variable node processing unit is
introduced to improve the hardware utilization.

The remainder of the paper is organized as
follows. A brief review of LDPC codes and

decoding algorithm is presented in section2, The

proposed decoder is presented in section 3. FPGA
implementation results are discussed section 4.
Section 5 concludes the paper.

2. LDPC CODES AND DECODING

ALGORITHM

2.1 LDPC Codes

LDPC codes are represented by M×N sparse
parity check matrix ‘H’ where ‘N’ represents code

length, ‘M’ represents number of parity bits ,
K = N – M represents message length and K/N is
code rate. The number of 1’s present in each row
and column is defined as row weight and column
weight respectively. The LDPC codes may be
regular if row and column weights are constant or
irregular otherwise.

The PCM ‘H’ is graphically represented by

tanner graph which has two sets of nodes: N
number of variable nodes corresponding to each
column of the PCM and M number of check nodes
corresponding to each row of the PCM. An edge is
connected between a variable node and a check
node if the element Hij of the PCM is ‘1’. The
example ‘H’ matrix and its corresponding tanner
graph are shown in Figure 1 and Figure 2.



















=

10011010

01100110

10111001

01010111

H

Figure 1. Example ‘H’ Matrix

Figure 2: Tanner Graph of the example ‘H’Matrix

The structured QC-LDPC codes are defined by a
base matrix Hb of size mb × nb which is an array of
circulant matrices. The ‘H’ matrix of QC-LDPC
codes are constructed from the base matrix Hb by
replacing each element of the base matrix by z × z
circulant matrix. The circulant matrix is a zero
matrix if the element of the base matrix is a
negative number or identity matrix if the base
matrix has ‘0’ entry or shifted identity matrix if the
entry is a positive integer which specifies the shift
values of the identity matrix.

2.2 IEEE 802.16e Standard QC-LDPC Codes

IEEE 802.16e standard for Wi-MAX defines four

code rates 1/2, 2/3, 3/4 and 5/6 and 19 code
lengths. The base matrix of sizes of 12 x 24, 8 x

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

468

24, 6 x 24 and 4 x 24 support the above code rates
respectively. The same base matrix is used as a
platform for different code lengths related to a
selected code rate and different code lengths can be
achieved by having different values of z. The
value of z is increased from 24 to 96 in steps of 4.
So, 19 different code lengths of size 576 bits (with
z = 24) to 2304 bits (with z = 96) is obtained. The
base matrix of size 12 x 24 is shown in Figure 3in
Appendix-I which has dual diagonal structure. The
diagonal elements are identity matrices which are
marked in red colour in the Figure 3.

2.3 Min-Sum Decoding Algorithm

Iterative message passing algorithms are used to

decode the LDPC codes. Soft belief
propagation(BP) algorithm gives the good decoding
performance. Binary phase shift keying (BPSK)
modulation is used to modulate the coded
information bits. The modulated information is
transmitted over AWGN channel with mean ’1’ and
variance σ2. The reliability messages are
represented as logarithmic likelihood ratios. The
general BP algorithm is composed of two phases of
message passing i.e. from variable to check nodes
and check to variable nodes.

The sum product algorithm is regarded as the

standard algorithm for decoding LDPC codes. This
algorithm suffers performance loss when the
processing data has wide dynamic range, since a
trade off must be made between hardware resources
and data precision. This problem is overcome by
min- sum decoding algorithm which achieves a
comparable performance to SPA and complexity in
check node process is simplified. The decoding
steps are:

1. The belief propagation algorithm computes the
posterior probability that a given bit in the
transmitted code word C = [C0, C1, …, CN-1]
equals ‘1’ , given the received word Y = [Y0, Y1,

…, YN-1]. The messages at variable nodes are
initialized with intrinsic messages (ηi) which are
defined as:

 (1)

2. The outgoing messages from each check node
are computed by using the incoming messages from
the neighbouring variable nodes except the
destination one. The number of neighbouring
variable nodes is equal to the column weight of
that particular row.

The check to variable message is computed as

 (2)

Where mn represents outgoing message from the
check node ‘m’ to the neighbouring variable node

‘n’, while n’m represents the incoming messages
gathered at the check node from its neighbouring
variable nodes except the node n, in the Tanner
graph. In the first round of the iteration, the
intrinsic

messages are used as messages from the
variable node.

3. Similarly, variable nodes perform the updating
process by collecting messages from the connected
check nodes. The message from each variable node
is updated as follows:

 (3)

The outgoing messages mn of a variable node
are updated by using addition of the intrinsic

message n and the incoming extrinsic messages

m’n which traversed from its neighbouring check
nodes M(n) except the target one.

4. After one round of check node and variable node
updates,(step2 and step3), the termination
condition (the maximum number of iterations)
should be checked. If the termination condition is
not satisfied, the decoding operation would be
performed iteratively until the termination
condition is met. If the termination condition is met,
the reliability message is computed as:

 (4)

Based on the reliability information, the code
word bit Cn is estimated as

 (5)

3. ARCHITECTURE OF THE PROPOSED

DECODER

In the two phase iterative message passing LDPC

decoding algorithm, the check node messages are
updated in the first phase and variable node
messages are updated in the second phase. These
two phases are repeated for several iterations till the
termination condition is met. The variable node
message updating phase depends on the updated
messages from check node processing unit and
vice versa. So, the variable node updating process
starts only after the completion of the check node

updating phase as shown in Fig.4.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

469

 Figure 4: Non Overlapped Decoding phases

If each phase requires ‘n’ clock cycles, ‘2n’
clock cycles are required to complete one iteration.
But, if these two phases of the decoding process
are overlapped, the number of clock cycles required
for decoding can be reduced and hardware
utilization is also improved. The overlapping is
done by determining the data dependencies between
the rows and columns.

The proposed architecture is designed for 12 x

24 Hb base matrix(rate ½). The architecture is
designed to support the code lengths 576 bits (Z =
24) and 2304 bits (Z = 96) and ½ code rate. Since,
the given ‘H’ matrix has different row and column
weights, the architecture is designed for irregular
QC–LDPC codes. Based on the dual diagonal
structure of the base matrix, the variable node
process is partially overlapped with check node
process and hardware utilization is improved. The
overlapping of two phases is shown in Fig.5. The
throughput of the proposed decoder is compared
with the non-overlapped decoder and existing
decoders and throughput of the decoder is given
by,

 (6)

where is total number of iterations.

Figure 5: Overlapped Decoding phases

The block diagram of the architecture of
overlapped decoder is shown in Figure 6 in
Appendix- I. The iterative decoding process for one
iteration is carried in two phases: 1. Check node
computation 2. Variable node computation. Each
row of the matrix corresponds to a check node and
each column corresponds to a variable node. In the
check node computation phase, the check node

processing units compute the extrinsic messages for
variable nodes as defined in equation(2). In the
variable node computation phase, the VNPU
computes the messages for check nodes as defined
in equation(3). This process of updating check and
variable nodes is continued to a maximum number
of iterations defined. At the end of the final
iteration, the VNPU computes the message as in
equation (4). The code word bit is estimated as
given in equation (5) at the end of final iteration.

There are two different check node processing

units based on the row weights.CNPU_6 which
finds minimum, sub minimum and index of the
minimum of messages from 6 neighbouring nodes
(i.e. row weight is 6) and CNPU_7 which finds
minimum, sub minimum and index of the minimum
of messages from 7 neighbouring nodes (i.e. row
weight is 7). In the base matrix, four rows have
row weight of 7 and eight rows have row weight of
6. So, there are 8 numbers of CNPU_7 and 16
numbers of CNPU_6.

There are three different functional units for

variable node processing based on the different
column weights: VNPU_3 which adds two check to
variable node updates from two neighbouring
nodes and intrinsic value of that node (i.e. if
column weight is 2). VNPU_4 which adds three
check to variable node updates from three
neighbouring nodes and intrinsic value of that node
(i.e. if column weight is 3). VNPU_7 which adds
six check to variable node updates from six
neighbouring nodes and intrinsic value of that node
(i.e. if column weight is 6).

The partly parallel architecture has a 2 × mb(24)

Check Node Processor units (CNPU) which work
in parallel. Each block row having ‘z’ sub rows is
processed by 2 CNPUs and each CNPU process
z/2 rows serially. Hence, at the end of z/2 clock
cycles all the rows (mb × z) of the ‘H’ matrix are
processed. In the non overlapped decoder, the
variable nodes are updated after the completion of
processing all the rows. But, in the overlapped
decoder, the check and variable node updating
phases are partially overlapped. At the end of first
clock cycle, the updated check node
messages(check node messages) for the first and
thirteenth sub columns of block columns 14 to 24
are ready to process by VNPUs. So, at the second
clock cycle, the CNPUs process next subsequent
rows and VNPUs process the first and 13th columns
of block columns 14 to 24. At z/2th clock cycle, the
CNPUs complete the processing all the rows. At

CNPU

Process

VNPU

Process

CNPU

Process

CNPU

Process

Iteraion-1 Iteraion-n

...

CNPU

Process

VNPU

Process

CNPU

Process
CNPU

Process
...

VNPU

Process

VNPU

Process

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

470

(z/2 + 1)th clock cycle, all the column updates for
block columns 14 to 24 are ready. The processing
of block columns 1 to 13 starts at (z/2 + 1)th clock
cycle. At (z+1)th clock cycle all the columns are
processed and check node updating phase of next
iteration starts. The process continues until the
maximum number of iterations specified.

To process ‘N’ columns in z/2 clock cycles, 2 ×

nb (48) VNPUs are required. Since irregular codes
are used , three different variable node processing
units are required (22 VNPU_3s, 10 VNPU_7s and
16 VNPU_4s). Two VNPUs are assigned to process
each block column and each VNPU process z/2
columns serially. Hence, 2 × 11(22) VNPUs are
required to process the block columns 14 to 24.
These 22 VNPUs perform their operation in parallel
with 24 CNPUs in the first phase of the decoding
cycle. In the second phase, block columns 1 to 13
are to be processed. To process these columns 26
VNPUs are required. The 22 VNPUs assigned for
block columns 14 to 24 will be idle in the second
phase. So, to improve the hardware utilization,
these 22 VNPUs are used in the second phase also.

The number of check node messages required for

block columns 14 to 24 are 2. But, in block
columns 1 to 13, the number of check node
messages required are 6 and 3. Hence, different
functional units are required for VNPUs to process
6 messages and 3 messages and 2 messages. The
three different VNPUs are designated as VNPU7,
VNPU4 and VNPU3 respectively. The number of
VNPU3s to process block columns 14 to 24 are 22.
These 22 VNPU3s are configured to function as 7
VNPU7s in the second phase. Additionally, 16
VNPU4s and 3 VNPU7 are required to process the
block columns 1 to 13. So, a total of 27 VNPUs (7
VNPU3-7s, 16 VNPU4s and 3 VNPU7s and 1
VNPU3s) are required.

The architecture has mb (24) numbers of

CNURAM-A memory units, mb number of
CNURAM_B memory units, mb number of
VNURAMS which stores messages for CNPUs and
VNPUs, mb Index ROM memories to store column
addresses and 2 VNUROM memories to store
LLR values.

The messages required for CNPUs are stored in

CNURAM_A memory banks and CNURAM_B
memory banks. The non zero entries of columns 1-
13 in each row of a block row are stored in
CNURAMA bank. The non zero entries of columns
14-24 are stored in CNURAMB. For each block

row, there is one CNURAMA and one
CNURAMB. The inputs for all 24 CNPUs are
accessed at the same time and processed
concurrently. The rows of each block row are
processed sequentially. At z/2 clock cycles all the
rows are processed by 24 CNPUs and the outputs of
the CNPUs (for columns 1 to 313) are stored in the
same memory locations of VNURAM_As and
outputs of the CNPUs(for columns 313 to 576) are
stored in the same memory locations of
CNURAM_Bs. The VNPUs process the data
column wise. The column addresses are stored in
INDEXROM. The output lines of the INDEXROM
are connected to the read address lines of the
VNURAM. There is one INDEXROM for each
VNURAM. The data to be processed by VNPUs
are read from VNURAMs. The processed data is
stored in CNURAMs. CNURAMs and VNURAMs
have dual ports.

To increase the throughput, the frequency of
operation is to be increased. The frequency of
operation is increased by introducing pipeline
stages in the check and variable node process.

3.3 Check Node Processing Unit (CNPU)

The check node to variable node messages are
computed in check node processing units. The
architecture of check node processing unit is shown
in Figure 7 in Appendix I. The inputs to the CNPU
are stored in CNURAM_A and CNURAM_B in the
sign magnitude form. The messages are sent to the
CNPUs simultaneously. The CNPU computes the
minimum, sub minimum and index of the
minimum of the absolute values of the incoming
messages from the neighbouring variable nodes. The
XOR logic in the CNPU computes the products of
all signs and signs of all individual messages. The
minimum, sub minimum and index of the minimum,
product of all signs and signs of all individual
messages are given to the data distributor. The sub
minimum value is used as the magnitude of the
updating message of the neighbouring node when
the index of the minimum equals the index of the
neighbouring node and all other neighbouring nodes
are assigned the minimum value. Then the output in
the sign magnitude form is converted into the two’s
complement form. To reduce critical path delay,
pipeline registers are introduced in CNPU. In Figure
10, CNPU computes minimum, subminimum and
index of minimum for 4 incoming messages and
the same logic is used for 6 and 7 messages. The
first phase of decoding process(check node phase) is
shown in Fig.8.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

471

Figure 8: Check node process

3.4 Variable Node Processing Unit(VNPU)

The variable node processing unit(VNPU) is

shown in Fig. 9 which adds the extrinsic messages
from the neighbouring check nodes connected to
the variable node and intrinsic message of that
variable node as given in the equation (3). The row
weights of the ‘H’ matrix are 2, 3 and 6. So, three
different VNPU functional units are required to add
3 inputs, 4 inputs and 7 inputs. The configurable
variable node processing is shown in Figure 10 in
Appendix-I. The second phase of decoding
process(variable node phase) is shown in Figure 11
in Appendix-I.

4. FPGA IMPLEMENTATION RESULTS

The proposed architecture is modeled in VHDL
and simulated using Modelsim. The decoder is
synthesized and implemented using Xilinx ISE
version 13.2 software. The target FPGA is Xilinx
Virtex V XC5VLX-110. The decoder is designed to
support the code lengths 576 bits and 2304 bits at
code rate ½ of WiMAX IEEE802.16e standard.
The maximum number of iterations is set at 10.

Figure 9: Variable node processing unit

The messages are quantized to 6 bits. The
comparison of performance and device utilization
of proposed architectures with the exiting
architectures is shown in Table 1. The performance
is compared with multi rate decoder[24]for
irregular codes of WiMAX IEEE802.16e standard
which uses layered decoding algorithm and has 48
parallel functional units. The throughput of the
proposed architecture is 23.7% higher than the

multi rate decoder. Since, distributed RAMs are
used in the proposed architecture, larger number of
logic slices are utilized in comparison with the
other architectures. If block RAMs are used,
number of slices will be reduced and the number of
block RAMs will be increased. The throughput of
the proposed architectures is less in comparison
with the decoder presented in[25], because the
number of parallel CNPUs are lesser in the
proposed architecture. Hence, the number of clock
cycles required for check node process in the
proposed architecture is higher in comparison with
the architecture[25]. The throughput of the
proposed architectures is much higher than the
decoder[26] which supports regular QC-LDPC
codes of WLAN. The performance comparison of
proposed architecture for code lengths 576 bits and
2304 bits is shown Table 2. The decoder with
configurable VNPU has higher throughput for code
length of 2304 bits. The throughput of proposed
architecture is increased by 5.2% in comparison
with non overlapped architecture for 2304 bits.

5. CONCLUSION

In this paper, we proposed a partially parallel
decoder architecture in which check and variable
node processes are partially overlapped . The
throughput of the decoder with configurable VNPU
is higher than the non overlapped decoder. A
reconfigurable variable node unit (using
multiplexers and de-multiplexers), a novel idea is
introduced in the decoder architecture. Our
implementations shows that the throughput of the
proposed architecture is higher. The number of
logic slices utilized are larger in comparison with
the other architectures, because distributed RAMs
are used to store the messages for CNPU and
VNPU. The proposed architecture can be
configured to adopt various code lengths of
WiMAX IEEE 802.16e standard(576 bits to 2304
bits in steps of 24) .

REFERENCES:

[1] Gallager. R, “Low - density parity – check

 Codes ” , IRE Trans. on Information Theory

 vol. 8, 1962, pp. 21– 28.

[2] MacKay. D, & Neal. R, “Near Shannon limit
Performance of low density parity Check
codes”, in Electronic Letters vol. 32, 1996,
pp. 1645–1646.

[3] Chung, S., Forney, G., Richardson, T., &
Urbanke, R., “On the design of low- density
parity- check codes within 0.0045 dB of

READ (1)

CNURAM

A&B

WRITE(1)

CNURAM

A&B

READ (3)

CNURAM

A&B

READ(2)

CNURAM

A&B

WRITE(2)

CNURAM

A&B

WRITE(3)

CNURAM

A&B

...

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

472

the Shannon limit”, IEEE Communication
Letters 5 2001, pp. 58–60.

[4] R.M.Tanner, “A recursive approach to low
Complexity codes”,IEEE Transactions on
Information Theory, IT-27, 1981, pp. 533-547.

[5] Chung, S., Richardson, T., & Urbanke, R.,
“Analysis of sum-product decoding of Low –
density parity-check codes using a Gaussian
approximation”, IEEE Trans. on Information
Theory vol. 47, 2001, pp. 657–670.

[6] Jinghu Chen, Ajay Dholakia, Evangelos
Eleftheriou, Marc P. C. Fossorier and Xiao –
Yu Hu, “Reduced - Complexity Decoding of
LDPC codes”, IEEE Transactions on
Communications, vol. 53, 2005, pp. 1288 –
1299.

[7] H. Zhong and T. Zhang, “Design of VLSI
implementation oriented LDPC codes”, IEEE
58th Vehicular Technology Conf. vol. 1, 2003,
pp. 670-673.

[8] A. Blanksby and C. Howland, “A 690 – mW
1-Gbps 1024-b, rate - 1/2 low-density parity-
Check code decoder”, IEEE J. Solid State
Circuits vol. 37 2002, pp. 404–412.

[9] Naoya Onizawa, Takahiro Hanyu and Vincent
C. Gaudet, “Design of High- Throughput Fully
Parallel LDPC Decoders Based on Wire
Partitioning”, IEEE Transactions. on Very
Large Scale Integration (VLSI) Systems vol.
18, 2010, pp. 482-489.

[10] A. Darabiha, A. C. Carusone and F. R.
Kschischang, “A 3.3 – Gbps bit – serial
Block interlaced min-sum LDPC decoder in
0.13µm CMOS”, IEEE CICC 2007, pp. 459-
462.

[11] Tinoosh Mohsenin, Dean N.Truong and Bevan
M.Bass, “A Low Complexity Message
Passing Algorithm for Reduced Routing
Congestion in LDPC Decoders”, IEEE
Transactions On Circuits and Systems-I:
Regular papers vol. 57, 2010, pp. 1048-1061.

[12] T. Zhang and K. K. Parhi, “A 54Mbps (3,6) –
regular FPGA LDPC decoder”, IEEE SIPS,
2002, pp. 127-132.

[13] Y. Chen and D. Hocevar, “A FPGA and ASIC
implementation of rate ½ 8088-b irregular
low density parity check decoder”, IEEE
lobal Telecom Conference 2003, pp.113–117.

[14] M. Mansour and N. Shanbhag, “Low power
VLSI decoder Architectures for LDPC
codes”, Int. Symposium on Low Power
Electronics and Design, 2002, pp. 284-289.

[15] M. Karkooti and J.R. Cavallaro, “Semi-
Parallel reconfigurable architectures for

Real - time LDPC decoding”, IEEE
International Conference on Information
Technology and computing ITCC 2004, pp.
579–585.

[16] Zhongfeng Wang, Zhiqiang Cui, “Low
Complexity High Speed Decoder Design for
Quasi Cyclic LDPC codes”, IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, 2007,
pp.104-114.

[17] Yongmei Dai, Zhiyuan Yan, and Ning Chen,
“Optimal Overlapped Message Passing
Decoding of Quasi – Cyclic LDPC
Codes”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems,

 vol. 16 2008, pp. 565-578 .
[18] Yongmei Dai, Ning Chen and Zhiyuan Yan,

“Memory Efficient Decoder Architectures for
Quasi-Cyclic LDPC Codes”, IEEE Trans. On
Circuits and Systems-I: Regular papers, vol.55
2008, pp. 2898-2911.

[19] Daesun Oh and K. K. Parthi , “ Min-Sum
Decoder Architectures with reduced word
Length for LDPC codes”, IEEE Trans. On
Circuits and Systems-I: Regular papers, vol.57
2010, pp. 105-115.

[20] Xiaoheng, Jingyu Kang, Shu Lin and
Venkatesh Akella, “Memory System
Optimization for FPGA - based
Implementation of Quasi-Cyclic LDPC codes
Decoders”,IEEE Transactions On Circuits and
Systems-I: Regular papers, vol.58, 2011, pp.98-
111.

[21] Marjan Karkooti, Predrag Radosavljevic,
Joseph R. Cavallaro, “Configurable LDPC
Decoder Architectures for Regular and
Irregular Codes”, J. Sign Process Syst vol. 53,
2008, pp. 73-88.

[22] Xiaoheng Chen, Shu Lin ,Life Fellow, IEEE,
and Venkatesh Akella, “QSN— A Simple
Circular – Shift Network for Reconfigurable
Quasi – Cyclic LDPC Decoders”, IEEE
Transactions on Circuits and Systems—II:
express briefs, vol. 57, 2010, pp.782 – 786.

[23] Yong Ki Byun, Jong Kang Park, Soongyu
Kwon, and Jong Tae Kim, “An Efficient
Overlapped LDPC Decoder with Upper
Dual - diagonal Structure”, Journal of Semi
Conductor Technology and Science, 2013,
pp. 8-14.

[24] Kiran K. Gunnam, Gwan S. Choi, Mark B.
Yeary and Mohammed Atiquzzaman, “VLSI
Architectures for Layered Decoding for
Irregular LDPC codes of WiMAX”, Proc.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

IEEE International Conference on
Communication(ICC) , 2007, pp.4542-4547.

[25] Vikram Arkalgu Chandrasetty and Syed
Mahfuzul Aziz, “Resource Efficient LDPC
Decoders for Mutimedia Communication”,
Electronic edition @aXiv.org:1305.6216.

[26] Vikram Arkalgu Chandrasetty and Syed
Mahfuzul Aziz, “A Highly Flexible LDPC
Decoder using Hierarchical Quasi - Cyclic
Matrix with Layered Permutation”, Journal of
Networks vol. 7, 2012, pp. 441- 449.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

APPENDIX –I

 Hb =

Figure 3: Base Matrix ‘Hb’ for IEEE 802.16e standard for code rate ½

Figure 6: Proposed LDPC Decoder with Reconfigurable VNPU

Figure 7: Check Node Processing Unit

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

Figure 10: Reconfigurable variable node processing unit

Figure 11: Variable node phase

READ (1)

INDEX

ROM

READ(1)

VNURAMA

&B

WRITE (1)

CNURAMA

&B

READ (2)

INDEX

ROM

READ(2)

VNURAMA

&B

READ (4)

INDEX

ROM

...

WRITE(2)

CNURAMA

&B

READ (3)

INDEX

ROM

READ(3)

VNURAMA

&B

READ(n)

INDEX

ROM

READ(n)

VNURAMA

&B

WRITE(n)

CNURAMA

&B

READ(n-1)

VNURAMA

&B

WRITE (n-

1)

CNURAMA

&B

WRITE(n-2)

CNURAMA&

B

Journal of Theoretical and Applied Information Technology
 20

th
 May 2014. Vol. 63 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

476

Table 1: Comparison of Performance and resource utilization with existing architectures

Table 2: Comparison of Proposed LDPC Decoders with N = 576 and N = 2304

Decoder

Without overlap

Proposed Architecture

Code length

576 2304 576 2304

Slices

4096 3754 4976 5272

Slice Flip

Flops

11157 34670 13110 36271

LUTs

11454 20391 10542 19437

Block RAMs

8 20 9 18

Frequency
(MHz)

133.082 136.835 145.229 145.229

Throughput

(Mbps)

157 163.5 164.5 172

 Decoder

Without

overlap

Proposed

Architecture

[25] [26] [24]

Code length/Code
rate

2304 / 1/2 WiMAX
IEEE806.16e

2304/ 1/2 648,1296, 1944
/1/2 (WLAN)

2304
Multiple rates

Code Type

QC Irregular QC Irregular QC Regular QC Regular QC Irregular

Algorithm Min-Sum Min-Sum Modified Min-Sum

Min-sum TDMP

Parallelism 24 CNUs

48 VNUs

24 CNUs

48 VNUs

48 CNUs

48 VNUs

18 CNUs

18 VNUs

48

Slices

3754 5272 3141 5908 3239

Flip Flops

34670 36271 2024 10816 3165

LUTs

20391 19437 9547 1604 5664

Block RAMs

20 18 87 47 73

Frequency

(MHz)

136.835 145.229 144 128 110

Throughput

(Mbps)

163.5 172 266 54,45,32 57~139

Target FPGA

Xilinx Virtex V XC5VLX-110 Xilinx Virtex V
XC5VLX-110T

Xilinx Virtex II XC2V8000-5FF152

