<u>10th May 2014. Vol. 63 No.1</u>

 $\ensuremath{\mathbb{C}}$ 2005 - 2014 JATIT & LLS. All rights reserved \cdot

ISSN: 1992-8645

www.jatit.org

FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES

R.P.MEENAAKSHI SUNDHARI¹, Dr.R.ANITA²

¹ Department of ECE, Sasurie College of Engineering, Vijayamangalam, Tamilnadu, India.

² Department of EEE, Institute of Road and Transport Technology, Erode, Tamilnadu, India.

Email: ¹rpmeenaakshi@gmail.com, ²anita irtt@yahoo.co.in

ABSTRACT

In digital systems, the filters occupy a major role. This work describes the design of parallel FIR filter structures using poly-phase decomposition technique that requires minimum number of multipliers and low power adders. Normally multipliers consume more power and large area than the adders. For reducing the area, this filter structure uses adders instead of multipliers since the adder requires low power and less area than the multipliers. Moreover, number of adders does not increase along with the length of parallel FIR filter. Finally the proposed parallel FIR filter structures are beneficial in terms of hardware cost and power when compared to the existing parallel FIR filter structure.

Keywords: Digital Signal Processing (DSP), Fast Finite-Impulse Response (FIR) Algorithms (FFAs), Symmetric Convolution

1. INTRODUCTION

Due to the explosive growth of multimedia application, the demand for high-performance and low-power digital signal processing (DSP) is getting higher and higher. The FIR filter is one of the fundamental processing elements in any digital signal processing (DSP) system. FIR filters are used in DSP applications ranging from video and image processing to wireless communications. In some applications, such as video processing, the FIR filter circuit must be able to operate at high frequencies, while in other applications, such as cellular telephony and multiple-input multipleoutput (MIMO), the FIR filter circuit must be a low-power circuit with high throughput, capable of operating at moderate frequencies [14].

On the other hand, parallel and pipelining processing are two techniques used in DSP applications, which can both be exploited to reduce the power consumption. Parallel or block processing can be applied to digital FIR filters to either increase the effective throughput of the original filter or reduce the power consumption of the original filter [7]. In parallel processing, multiple outputs are computed in parallel in a clock period. Therefore, the effective sampling speed is increased by the level of parallelism.

Traditionally, the application of parallel processing to an FIR filter involves the replication of the hardware units so that several inputs can be processed in parallel and several outputs can be processed at the same time. If the area required by the original circuit is A, then the L-parallel circuit requires an area of $L \times A$. In other words, the circuit area increases linearly with the block size [15]. In many design situations, the hardware overhead incurred by parallel processing cannot be tolerated due to limitations in design area. Therefore, it is advantageous to realize parallel FIR filtering structures that consume less area than traditional parallel FIR filtering structures.

Pipelining transformation leads to a reduction in the critical path, which can be exploited to either increase the clock speed or sample speed or to reduce power consumption at same speed. Pipelining reduces the effective critical path by introducing pipelining latches along the data path. Similar to the parallel processing, pipelining can also be used for reduction of power consumption. Poly-phase decomposition [1, 2] is mainly

<u>10th May 2014. Vol. 63 No.1</u>

© 2005 - 2014 JATIT & LLS. All rights reserved

ISSN: 1992-8645	www.jatit.org	I

manipulated to reduce the complexity of parallel FIR filter, where the small-sized parallel FIR filter structures are derived first and then the larger block-sized ones can be constructed by cascading or iterating small-sized parallel FIR filtering blocks.

A relatively new class of algorithms termed Fast FIR Algorithms (FFA) which reduces the complexity of parallel filter. By using Fast FIR algorithms (FFAs), reduction in the number of multiplications comes at the expense of increasing the number of additions required for implementation. Using this approach [3], the L-parallel filter can be implemented using approximately (2L - 1) sub-filter blocks, each of which is of length N/L. The resulting parallel filtering structure would require (2N - N/L) multiplications instead of L×N.

2. FAST FIR ALGORITHM

Assuming $\{x_i\}$ and $\{h_i\}$ to be the input sequence and the Nth-order impulse response of an FIR filter respectively, the output sequence y_n and the filter transfer function H(z) can be written as (1),

$$\begin{split} &\chi(\mathbf{n}) = \sum_{i=0}^{N-1} \mathbf{h}_i \, \mathbf{x}_{\mathbf{n}-i} \,, \quad \mathbf{n} = 0, \, 1, \, 2, \dots, \infty \\ &\mathbf{H}(\mathbf{z}) \, = \, \sum_{k=0}^{N} \mathbf{h}(\mathbf{n}) \, \mathbf{z}^{-n} \end{split}$$

The traditional L-parallel FIR filter can be derived using poly-phase decomposition as

$$\begin{array}{l} \sum_{i=0}^{L-1} Y_i\left(z^L\right) z^{-i} \!\!=\! \sum_{j=0}^{L-1} H_j(z^L) \, z^{-j} \sum_{k=0}^{L-1} X_k(z^L) \, z^{-k} \\ (2) \end{array}$$

where $Y_i(z)$, $X_k(z)$, and $H_j(z)$ are the poly-phase components of output, input, and the filter transfer function, respectively and the poly-phase components are defined as follows,

$$\begin{split} Y_{i}(z) &= \sum_{m=0}^{\infty} z^{-m} y_{mL+i}, H_{i}(z) = \sum_{m=0}^{\frac{m}{L}-1} z^{-m} h_{mL+i}, \\ X_{i}(z) &= \sum_{m=0}^{\infty} z^{-m} x_{mL+i}, \quad \text{ for } i = 0, 1, 2 \text{ and } L^{-1} \end{split}$$

This block FIR filtering equation shows that the parallel FIR filter can be realized using L^2 -FIR filters of length N/L. This linear complexity can be reduced using various FFA structures.

2.1. 2×2 (L = 2) FFAs

From (2) with L = 2,

$$Y_0 + \underline{z}_{\infty}^{-1} Y_1 = (H_0 + z^{-1} H_1) (X_0 + z^{-1} X_1)$$

= $H_0 X_0 + \underline{z}_{\infty}^{-1} (H_0 X_1 + H_1 X_0) + z^{-2} H_1 X_1$
(3)

which implies that

$$Y_0 = H_0 X_0 + z_0^{-2} H_1 X_1$$

$$Y_1 = H_0 X_1 + H_1 X_0$$

(4)

Direct implementation of (4) is shown in Fig. 1. This structure computes a block of 2 outputs using 4 length N/2 FIR filters and 2 postprocessing additions, which requires 2N multipliers and 2N - 2 adders [3]. However, (4) can be written as

$$Y_{0} = H_{0} X_{0} + z_{n}^{-2} H_{1} X_{1}$$

$$Y_{1} = (H_{0} + H_{1}) (X_{0} + X_{1}) - H_{0} X_{0} - H_{1} X_{1}$$
(5)

Implementation of (5) is shown in Fig. 2. This structure has three FIR sub-filter blocks of length N/2, which requires 3N/2 multipliers and 3(N/2 - 1) + 4 adders. From the figure, this filter structure has one preprocessing and three post-processing adders [3].

Fig. 1. Traditional 2-Parallel FIR Filter

Fig. 2. Two-Parallel FIR Filter Implementation using FFA

An example is demonstrated here for a clearer perspective. Example1:consider a 24-taP FIR filter with a set of symmetric Coefficients applying to a proposed two parallel FIR filter $\{h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7) h(8) h(9) \dots h(23)\}$

L-ISSN: 1817-3195

<u>10th May 2014. Vol. 63 No.1</u>

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195
Where $h(0)=h(23)$, $h(1)=h(22)$, $h(2)=h(2)$ h(4)=h(19) h(5)=h(18) $h(11)=h(12)$ applying to	1), h(3)=h(2 Y ₀ = H ₀ X ₀ - z^{-3} H ₂ X ₂ + z^{-3} × (X ₁ + X ₂) - H ₁ X ₁]	<[(,H ₁ +H ₂)
parallel FIR filter structure, and the top tw will be as $H0\pm H1=\{h(0)\pm h(1) h(2)\pm h(3) h(6)\pm h(7), \dots, h(18)\pm h(19) h(20)\pm h(21)\}$	wo sub filter $Y_1 = [(.H_0 + H_1) (X_0 + X_1) - h(4)\pm h(5) (.H_0 X_0 - z^{-3} H_2 X_2) + h(23)$	H ₁ X ₁] -
$h(0)=h(1)=\pm(h(22)\pm h(23))$ $h(2)=h(3)=\pm(h(20)\pm h(21))$	$\begin{aligned} Y_2 &= [(\underline{H}_0 + H_1 + H_2) (X_0 + X_1) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_1] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_2] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_2] - [(H_1 + H_2) (X_1 + X_2) - H_1 X_2] - [(H_1 + H_2) - H_2 X_2] - H_1 X_2 - H_2 X_2 $	$X_{1} + X_{2}] - [(H_{0} + H_{1}) + H_{2}) (X_{1} + X_{2}) - H_{1} X_{1}] $ (7)
$h(4)\pm h(5)=\pm(h(18)\pm h(19))$	The hardware im	plementation of requires six

 $h(6) \pm h(7) = \pm (h(16) \pm h(17))...$

As can be seen from example above, two of three sub filter blocks from the proposed two parallel FIR filter structure,H0-H1 and H0+H1,are with of the symmetric coefficient now, which means the sub filter block can be realized by fig:4,with only half of the amount of multipliers required. Each output of multipliers responds to two taps. No that the transposed direct form FIR filter is employed. Compare to the existing FFA two parallel FIR filter structure, the a proposed FFA structure leads to one more sub filter block which contain symmetric coefficient. However its come with the price of the increase amount of address in preprocessing and post processing blocks. In this case two additional address are required for L=2.

2.2. 3×3 (L = 3) FFAs

The (3×3) FFA produces a parallel filtering structure of block size 3. From (2) with L = 3,

$$Y_{0} = H_{0} X_{0} + z_{\infty}^{-3} (H_{1} X_{2} + H_{2} X_{1})$$

$$Y_{1} = (H_{0} X_{1} + H_{1} X_{0}) + z^{-3} H_{2} X_{2}$$

$$Y_{2} = H_{0} X_{2} + H_{1} X_{1} + H_{2} X_{0}$$
(6)

Direct implementation of (6) computes a block of 3 outputs using 9 length N/3 FIR filters and 6 post-processing additions, which requires 3N multipliers and 3N -3 adders. By a similar approach as in (2×2) FFA, following (3×3) FFA is obtained,

The hardware implementation of requires six length N/3 FIR sub-filter blocks, three preprocessing and seven post-processing adders, which reduce hardware cost.

Figure 3. Three-Parallel FIR Filter Implementation using FFA

3. PROPOSED FFA STRUCTURES FOR SYMMETRIC CONVOLUTIONS

A new structure is proposed to utilize the symmetry of coefficients. Poly-phase decomposition is manipulated to earn many sub-filter blocks, which contain the symmetric coefficients. So half the number of multiplications can be reused in the sub-filter block for the multiplication of whole taps. Therefore, for an N-tap L-parallel FIR filter the total amount of saved multipliers is half the number of multiplications in a single sub-filter block (N/2L).

3.1. 2×2 Proposed FFA (L = 2)

From (4), A two-parallel FIR filter can be written as

$$Y_{0} = \{\frac{1}{2} [(\underbrace{H}_{0} + H_{1}) (X_{0} + X_{1}) + (H_{0} - H_{1}) \\ (\underbrace{X}_{0} - X_{1}) - \underbrace{H}_{1} X_{1} \} + z^{-2} H_{1} X_{1} \\ Y_{1} = \frac{1}{2} [(\underbrace{H}_{0} + H_{1}) (X_{0} + X_{1}) - (\underbrace{H}_{0} - H_{1}) (\underbrace{X}_{0} - X_{1})]$$
(8)

When it comes to a set of even symmetric coefficients, can earn one more sub-filter block containing symmetric coefficients than the existing

<u>10th May 2014. Vol. 63 No.1</u> © 2005 - 2014 JATIT & LLS. All rights reserved

implementation of the proposed two-parallel FIR filter. Proposed two-parallel FIR filter structure has three sub-filter blocks. Among those, two sub-filter blocks $(H_0 - H_1)$ and $(H_0 + H_1)$ are equipped with symmetric coefficients. So each output of multiplier responds to two taps. Compared to the existing FFA two-parallel FIR filter structure, the proposed FFA structure requires only half the amount of multipliers.

Proposed two-parallel FIR filter structure has three sub-filter blocks. Among those, two sub-filter blocks ($H_0 - H_1$) and ($H_0 + H_1$) are equipped with symmetric coefficients can be realized by Fig. 5. So each output of multiplier responds to two taps. Compared to the existing FFA two-parallel FIR filter structure, the proposed FFA structure requires only half the amount of multipliers.

3.2. 3×3 Proposed FFA (L=3)

Same as (6), a three parallel FIR filter can be written as (9). Four of six sub-filter blocks from the proposed three-parallel FIR filter structure are with symmetric coefficients. But the existing three parallel FIR filter structure has only two out of six sub-filter block with symmetric coefficients. Implementation of proposed three-parallel FIR filter structure.

COMPARISON BETWEEN PROPOSED AND EXISTING FIR FILTER STRUCTURE

Comparison between proposed and existing three-parallel FIR filter structure. Where the subfilter blocks with symmetric coefficients shown by shadow blocks. The proposed structure additionally adds two adders in preprocessing and five adders in post processing blocks. Therefore, N/3 multipliers can be saved for proposed N-tap three-parallel FIR filter structure.

Fig.4. Proposed Two-Parallel FIR Filter Implementation

Fig.5. Sub-filter block implementation with symmetric coefficients

<u>10th May 2014. Vol. 63 No.1</u>

 $\ensuremath{\mathbb{C}}$ 2005 - 2014 JATIT & LLS. All rights reserved \cdot

structures are employed for some sub-filter blocks that contain no symmetric coefficients which have more compact operations in preprocessing and post-processing blocks and the proposed FFA structures are applied to the rest of sub-filter blocks with symmetric coefficient. Comparison of subfilter blocks between four parallel existing FAA and proposed FAA is shown.

The proposed four parallel FIR structure has three more sub-filter blocks containing symmetric coefficients than the existing FAA structure.

н

+H,+I

Fig.8. Comparison of sub-filter blocks between existing FFA and the proposed FFA four-parallel FIR structures

4. EXPERIMENTAL RESULT AND IMPLEMENTATION

The existing FFA structures and the proposed FFA structures are implemented in VHDL with word length 16-bit and filter length of 24. Carry save, carry select and binary to excess 1 adder are used to implement the sub-filter block. Simulation

H₁+H

result of Parallel FIR Filter structure is shown in Fig. 9. Comparison result of area, LUTS, power, delay and frequency are shown by the Table I, Table II, Table III, Table IV, Table V.

10th May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved www.jatit.org E-ISSN: 1817-3195

Atelefinte 🗧	1			-			_	-	-			-	_
Adestad/ut	AND ADDRESS OF	1000001100				-							_
D Mandada	and a subscription of the	10101-100	10101100			-		-	-	-	_	-	
and the second second	The second second second	11110000	00001111					-	_				_
C /Manual / C	100110100001000	10011010	10011010		-	-		-			_		_
D Medee/all	133311111600000	101001	20060000									to the second se	
T Allerterive	111111111111111111	11112121	11122121	1011001	00111100	111010010	1111001	1001310111	0110110	1101001063	1110011	100001110001	110000
B / Mindud/g1	TRAINING THE PARTY OF THE PARTY	11111111	1111111	110100010	01100101	1001110010	2101110	110011111	1110111	2011001101	1000000	11111101100	.01301
D /Mandad/p2	munumu	11111111	1111111	110011100	01010001	2001110001	000011	T11010100	1110101	2011100010	1000111	100001101100	011001
D /M=4x4//1	Immunum	31315551	11111111	11111130	01111000	2011000110	0000001	101110001	0110110	2011101001	1111011	100100001111	101111
D /Alaskik/sci	1133311111111111	11111111	TUTT	01100011	10110011	1110001110	1100111	1001010110	011011	21000311101	1001111	11110010100	000011
D /Mandad/url				011011130 01100611	01111000 10110011	1110001110	1000000	101110001	0110110	2011101001	1111011	1001000011	T D

Fig. 9. Simulation Result of Parallel FIR Filter

	-			Area	
Length	Struct	Carry	Carry	Square	Binary
	ure	Save	Select	Root	to
		Adder	Adder	Carry	Excess 1
				Select	Adder
				Adder	
24-tap	Existi	42417	35502	33369	31881
(L=2)	ng				
	FFA				
24 tom	Duomo	24427	20052	26282	26264
(1-2)	Propo	24437	20033	20282	20204
(L=2)	Seu EE A				
	гга				
24-tap	Existi	78587	77333	74791	78407
(L=4)	ng				
	FFA				
24-tap	Propo	49782	50494	49164	49080
(L=4)	sed				
	FFA				

ISSN: 1992-8645

Table 1 Comparison of Area Between Existing FFA and Proposed FFA

<u>10th May 2014. Vol. 63 No.1</u> © 2005 - 2014 JATIT & LLS. All rights reserved

ISSN: 1992-8645 <u>www.jatit.org</u>

org

Table	2 Compa	rison of L	UTsBetwo	een Exisi	ting FFA a	nd Proposed	d FFA	
				LUTs				
	Lenoth	Structur	Carry	Corry	Square	Binary to		

Length	Structur	Carry	Carry	Square	Binary to
	e	Save	Select	Root	Excess 1
		Adder	Adder	Carry	Adder
				Select	
				Adder	
24-tap	Existing	5413	4375	4163	3904
(L=2)	FFA				
24-tap	Propose	2941	3673	3258	3256
(L=2)	d FFA				
24-tap	Existing	9454	9088	8623	9353
(L=4)	FFA				
24-tap	Propose	6146	6028	5827	5820
(L=4)	d FFA				

Table 3 Comparison of DelayBetween Existing FFA and Proposed FFA

			Ľ	Delay(ns)	
Length	Structure	Carry	Carry	Square	Binary to
		Save	Select	Root Carry	Excess 1
		Adder	Adder	Select	Adder
				Adder	
24-tap	Existing	34.849	34.849	34.849	34.849
(L=2)	FFA				
24-tap	Proposed	37.109	33.905	36.080	36.190
(L=2)	FFA				
24-tap	Existing	34.849	34.849	34.849	34.849
(L=4)	FFA				
24-tap	Proposed	37.584	37.135	38.486	38.659
(L=4)	FFA				

Table 4 Comparison of Power Between Existing FFA and Proposed FFA

Lenoth	Power (mw)					
Length Structure	Carry	Carry	Square	Binary to		
		Save	Select	Root	Excess 1	
		Adder	Adder	Carry	Adder	
				Select		
				Adder		

					-		
45			<u>www</u> .	jatit.org			Е
	24-tap (L=2)	Existing FFA	3250	2869	2608	2402	
	24-tap (L=2)	Proposed FFA	2356	2440	2421	2399	

Table 5 Comparison of Maximum Frequency Between Existing FFA and Proposed FFA

Length	Structure	Maximum Frequency(MHZ)				
		Carry Save Adder	Carry Select Adder	Square Root Carry Select Adder	Binary to Excess 1 Adder	
24-tap (L=2)	Existing FFA	79.73	129.336	137.988	120.525	
24-tap (L=2)	Proposed FFA	59.96	137.912	125.188	137.912	

5. CONCLUSION

ISSN: 1992-86

Thus, a new parallel FIR filter structure was designed in order to reduce the hardware complexity and power consumption, which are beneficial to symmetric convolutions when the number of taps is multiple of 2 or 3. In parallel FIR filter implementation, multipliers are the major portions in hardware consumption. This structure uses the nature of symmetric coefficients and saves a significant amount of multipliers at the expense of adders. It is profitable to exchange multipliers with adders. Overall, the new proposed FIR filter structures consisting of advantageous poly-phase decompositions dealing with symmetric convolutions, which is better than existing FFA structures in terms of hardware consumption.

REFERENCES

- [1] Basant K. Mohanty, Somaya Al-Maadeed, Pramod K Meher, Abbes Amira. Memory Footprint Reduction for Power Efficient Realization of 2-D Finite Impulse Response Filters, IEEE Transactions on Circuit Systems I, vol. 61, no. 1, pp. 120-133, January 2014.
- [2] Basant K. Mohanty, Pramod K Meher A High Performance Energy Efficient Architecture for FIR Adaptive Filter based on New Distributed Arithmetic Formulation of Block LMS Algorithm, IEEE Transactions on Signal Processing, Vol. 61, no. 4, pp. 921 – 932, February 15, 2013.

Journal of Theoretical and Applied Information Technology 10th May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved

©	<u>10th May 2014. Vol. 63 No</u> 2005 - 2014 JATIT & LLS. All righ	b.1 hts reserved	JATIT
ISSN: 1992-8645	www.jatit.org	E-ISS	SN: 1817-3195
 [3] Zhen Gao, Pedro Reviriego, Xu, Ming Zhao, Jing Wang a Maestro, Efficient Arithmeti SEU Tolerant FIR Filter Transactions on Circuit Sys Briefs, Vol. 60, No. 8, pp August 2013. [4] Shen Fu Hsiao, Jun Hong Ming Chih Chen, Low O Designs Based on Faitl Truncated Multiple Constan Accumulation, IEEE Transac Systems II: Express Briefs, pp.no. 287 – 291, May 2013. [5] I.Kouretas and V.Paliouras tolerant FIR filter architectu Residue Number System, IEE [6] Yu-Chi Tsao, Ken Choi Parallel FIR Digital Filter Symmetric Convolutions bas Algorithm. IEEE Transaction Scale Integration (VLSI) Syst 2, pp. 366-371, February 2012 [7] Acha, J.I. (1989). Computatio fast implementation of L-p- digital filters. IEEE Transac Systems I, vol. 36, no. 6, pp. 8 [8] Cheng C, Parhi K.K. (2 efficient fast parallel FIR based on iterated short co Transactions on Circuits S Papers, vol. 51, no. 8, pp. 149 	2005 - 2014 JATIT & LLS. All right www.jatit.org Wen Pan, Zhan [14] P and Juan Antonio area c Residue Based imp Design, IEEE and tems II: Express [15] Pa .no. 497 – 501, Pro Imp Zhang Jian and Cost FIR Filter nfully Rounded t Multiplication/ ctions on Circuit Vol. 60, No. 5, Delay Variation res based on the E, 2013. . Area-Efficient Structures for sed on Fast FIR and L-block ath and L-block ctions on Circuit 805–812. 2004). Hardware filter structures novolution. IEEE Systems I, Reg. 2–1500.	hts reserved E-ISS Parker D.A, Parhi K.K.(19 a/power parallel FIR dig olementations. J. VLSI Signal Systems, vol. 17, no. 1, pp. 75- arhi, K.K. (1999), VLSI Dig ocessing Systems: De olementation. New York.	SN: 1817-3195 97). Low- gital filter Processing -92. gital Signa sign and
 [9] Cheng C, Parhi K. K. complexity reduction of paral Proc. IEEE International Circuits Systems I, Kobe, Jap [10] Cheng C, Parhi K.K. (2 parallel FIR structures parallelism. IEEE Transacti Systems I, Reg. Papers, vol 280, 200 	 (2005). Further Ilel FIR filters. in Symposium on an. 2007). Low-cost with 2-stage ons on Circuits 1. 54, no. 2, pp. 		

- [11] Chung J.G, Parhi K.K. (2008). Frequencyspectrum- based low-area low-power parallel FIR filter design. EURASIP J. Appl. Signal Process.
- [12] Lin I.S, Mitra S.K (1996). Overlapped block digital filtering. IEEE Transactions on Circuits Systems II, Analog Digital Signal Processing, vol.43, no. 8,pp. 586-596.
- [13] Mou Z.J, Duhamel P. (1991). Short-length FIR filters and their use in fast non-recursive filtering. IEEE Transactions on Signal Processing, vol. 39, no.6, pp.1322-1332.
 - 38