
Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

IAPI QUAD-FILTER: AN INTERACTIVE AND ADAPTIVE

PARTITIONED APPROACH FOR INCREMENTAL

FREQUENT PATTERN MINING

1
SHERLY K.K,

2
Dr. R. NEDUNCHEZHIAN,

3
Dr. M. RAJALAKSHMI

1Assoc. Prof., Dept. of Information Technology, Toc H Institute of Science & Technology, Ernakulam
2Principal, Sri Ranganathar Institute of Engineering & Technology, Coimbatore, India

3Associate. Professor, Department of Computer Science, Coimbatore Institute of Technology, Coimbatore

E-mail: 1sherly.shilu@gmail.com, 2rajuchezhian@gmail.com,
3raji_nav@yahoo.com

ABSTRACT

Association rule mining has been proposed for market basket analysis and to predict customer
purchasing/spending behaviour by analyzing the frequent itemsets in a large pool of transactions. Finding
frequent itemsets from a very large and dynamic dataset is a time consuming process. Several sequential
algorithms have contributed to frequent pattern generation. Most of them face problems of time and space
complexities and do not support incremental mining to accommodate change in customer purchase
behaviour. To reduce these complexities researchers propose partitioned and parallel approaches; but they
are compromising on anyone of these. An interactive and adaptive partitioned incremental mining
algorithm with four level filtering approaches for frequent pattern mining is proposed here. It prepares
incremental frequent patterns, without generating local frequent itemsets in less time and space
complexities and is efficiently applicable to both sequential and parallel mining.

Keywords— Frequent Pattern Mining; Association Rule; Partitioned Database; Parallel Mining;

Interactive Mining; Incremental Mining

1. INTRODUCTION

In the present scenario plenty of data and
information are available globally. The explosive
growth of electronic commerce increases online
transactions every year. Organizations store their
ever-increasing day-to-day transactional details in
their transaction databases. Data mining techniques
can be used for retrieving knowledge from the
available data and information. It prepares models
by analyzing the hidden relationships among stored
data. Association rule mining (ARM) is one of the
data mining tasks, which has been applied for
different real-life applications: [1] and [2].

Association rules identify the set of
items that are most often purchased with
another set of items in a transaction database.
Frequent pattern mining is an important task to
obtain associations or correlations among items in a
large dataset which in turn becomes a time
consuming process. Frequent patterns are itemsets
that appear frequently in a dataset. The main
operation in the frequent pattern mining process is
computing the occurrence frequency of the
interesting set of items and identifying the subsets
of items that frequently occur in many database
transactions. Association rules derived from
frequent patterns enable behavioural analysis,
marketing policies, web log analysis, decision

making and even in medical diagnosis and fraud
detection [8] and [14].

As the amount of transactions increases it
becomes very difficult to determine the frequent
patterns with fewer complexities. Thus efficient
techniques are required to find association rules
from very large databases. A potential solution for
improving the performance and providing
scalability is to parallelize the mining algorithms.
But computational cost of parallel mining is fairly
high compared with sequential mining. A
significant number of parallel and distributed FP
mining algorithms have been proposed [3]. Most of
these approaches generate static frequent patterns
and suffer excessive communication overhead.
Static approaches do not provide the support to
accommodate the day to day transactions. Usage of
static patterns for long term prediction of frequent
patterns for a dynamically growing database is not
advisable. Thus algorithms support incremental
mining is suitable for dynamic databases to
accommodate the pattern changes. Dynamically
growing databases may become very large after a
certain period of time. There is a possibility for
change in behaviour due to the change in life style.
Thus very old transactions may be removed from
the database to accommodate the new behavioural
patterns. Different users may require different

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

support values for different applications, finding an
appropriate support value is a challenging task. It is
better to provide the user with the facility to
interactively adjust the support value as per their
requirement. Hence an algorithm capable to handle
very large database with incremental and interactive
data mining capability is required for dynamic
databases.

The objective of this research is to propose
a method which can solve these shortcomings and
generate frequent patterns which are efficient,
scalable, faster and interactive with the capability to
accommodate behaviour changes with less CPU
and I/O overheads. To overcome these limitations a
new partitioned approach is proposed which
generates frequent itemsets without generating any
local frequent itemsets. This algorithm is designed
for dealing with the problems of space complexity,
time complexity and computational cost faced by
the researchers in frequent pattern mining of very
large database and provides incremental mining as
well as interactive mining to accommodate the
change in behavioural patterns.

1.1 Overview

The proposed frequent pattern mining
algorithm, Incremental and Adaptive Partitioned
Incremental Mining Four-level filter (IAPI Quad-
filter) deal with the problems and difficulties of
association rule mining in very large datasets. This
algorithm uses a database partitioning approach to
produce frequent itemsets without generating local
frequent itemsets. In this approach, transaction
items are pre-processed and arranged according to
the item code, thus individual item counting and
count comparisons are made faster. Rather than
fixing single minimum support value IAPI Quad-
filter uses a range of support values (low, high) for
making the dynamic and the interactive mining
faster. It divides the dataset into small sized non-
overlapping partitions of user specified sizes so
that each partition can be accommodated in the
main memory. To reduce the computational cost as
well as I/O overhead and space complexity while
finding the frequent itemsets, each frequent item
transaction group is collected separately and four
level filtering is done to remove infrequent items,
which is shown in Figure 1. First, it removes the
global infrequent items from the selected
transactions, then items which have count less than
the count of the selected frequent item are removed
from each transaction. Also similar transactions of
the resultant transaction sets are removed, after
recording their occurrence count. Then to reduce
the computational cost further, items which are
found to be infrequent in the selected group are also

removed and considered only the frequent ones to
get the frequent itemsets.
In Apriori when the length of the itemsets
increased, the number of candidate sets gets
reduced accordingly, but the size and the number of
transactions to be compared remains same. But in
IAPI-Quad-filter the number of transaction to be
compared and their size also get reduced in finding
higher frequent itemsets. This method is supported
by incremental database features and is also
adaptive to the customer behavioural changes. IAPI
also provides the user with the facility to
interactively adjust the minimum support value as
per one’s own conveniences. Thus, this algorithm
performs better than the existing algorithms with
respect to scalability, speed and efficiency. The
main attraction of this approach is that it generates
the frequent itemsets without producing any local
frequent itemsets; thus generation of false frequent
itemsets are eliminated.

Figure 1 Four-level filtering of IAPI

This paper is organized as follows. Section 2
describes related work on different frequent pattern
mining algorithms. Section 3 presents the basic
terminologies associated with the proposed method.
Section 4 gives the details of the various phases of
the proposed algorithm and their functionalities are
described using sample data. Section 5 gives the
details of experiments conducted and performance
analysis. Section 6 concludes the paper.

2. RELATED WORK

Several algorithms have been developed
by researchers to find the static frequent patterns
from small and medium sized databases. The
popular algorithm Apriori R. Agrawal et al. [1]
forms the foundation for static frequent pattern
mining. Apriori-like approaches prepare frequent
pattern by generating candidate sets. The major
problem of Apriori is that it has to read the entire
database in every pass, although many items and

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

transactions are no longer needed in later passes. It
generates candidate item sets iteratively. Thus its
computational cost is very high. Eclat, M.J.Zaki.
[4] is basically a depth-first search algorithm uses
vertical database layout and uses intersection based
approach to compute the support of an itemset. First
scan of the database builds the TID_set of each
single item. The advantage of Eclat over Apriori is
that there is no need to scan the database to find the
support of (k+1) itemset, because the TID_set of
each k-itemset carries the complete information
required for counting support and it also uses the
Diffset technique. However, the TID_set can be
long, taking more memory space as well as
computation time for intersecting the long sets. The
hybrid algorithm, C.Borgelt. [5] performs best
when Apriori was switched to Eclat after the
second iteration.

To improve the efficiency of the mining
process, Han et al. [6] proposed a tree structure
based algorithm FP-growth that constructs a
frequent pattern tree which generates frequent
patterns in two database scans without generating
candidate sets. It shows an outstanding
improvement over Apriori. The disadvantage of FP-
growth is that it has to generate conditional pattern
bases and sub- conditional pattern tree recursively.
Addition of new transactions may require
reconstruction of the FP-tree. M. El-Hajj et al. [7]
proposed another approach COFI tree that uses a
compact memory based data structure. For each
frequent item, a relatively small independent tree is
built summarizing co-occurrences and a clever
pruning reduces the search space drastically.
Finally, a simple and non-recursive mining process
reduces the memory requirements as minimum
candidacy generation and counting is needed to
generate all relevant frequent patterns. Qian Wan et
al. [9] use a compact tree structure, called CT-tree,
to compress the original transactional data. This
allows the CT-Apriori algorithm, to generate
frequent patterns quickly by skipping the initial
database scan and reducing a great amount of I/O
time per database scan. It reduces the storage space
requirement and mining time. These are static
algorithms.

To obtain frequent sets from very large
datasets with low memory space utilization in two
database scan, researchers propose partitioning
algorithms. Ashok Savasere et al. [10] suggest a
partitioning algorithm, which splits the given
database into a number of small segments. During
the first scan on the database, it identifies the local
frequent itemsets of individual segments. At the
end of the first scan, these local large itemsets

are merged to generate a set of all potential
large itemsets. In the second scan, the actual
support for these itemsets are generated and the
large itemsets are identified. This algorithm is
highly dependent on the heterogeneity of the
database; it may generate too many independent
local frequent itemsets and they may not fit in the
memory. To analyze the problem of market basket
data, Sergey Brin et al. [11] present an algorithm
DIC which uses fewer passes over the data than
classical algorithms to find the frequent itemsets.
DIC provides the flexibility to add and delete
itemsets on the fly. DIC checks all the subsets of
each transaction to find frequent sets which is
expensive both in time and space compared to
partition algorithm. DIC can accommodate the
behavioural changes and interactive mining with
less time complexity.

CARMA proposed by C.Hidber [12]
requires two database scans to produce all large
itemsets. During the first scan, the algorithm
continuously constructs a lattice of all large item-
sets. For each set in the lattice CARMA provides a
lower bound and an upper bound for its support.
The user is free to adjust support and confidence at
any time. During the second scan, the algorithm
determines the precise support of each set in the
lattice and continuously removes all small itemsets.
Carson Kai-Sang et al. [13] propose a dynamic
algorithm CanTree which facilitates incremental
mining as well as interactive mining. In this
approach, the items in each transaction are arranged
in a canonical order and the entire transactions are
stored in a tree structure with one database scan.
The construction of CanTree is independent of the
threshold values. Thus, interactive mining is
possible without rescanning the entire database.
S.K Tanbeer et al. [15] present a novel tree
structure called CP-tree, which creates efficient
frequent patterns with interactive and incremental
mining functionalities in one database scan. It has
two phases, insertion phase that inserts transactions
into CP-tree and tree reconstructing phase that
rearranges the items according to the frequency
order. Since items are arranged in the ascending
order, CP-tree has less number of nodes compared
to CanTree. But tree reconstruction introduces
additional computations. M. Hamedanian et al. [16]
have proposed a new prefix tree structure to reduce
the time of restructuring.

3. BASIC TERMINOLOGIES

The database D consists of variable length
transactions T and these transactions have itemsets
{X,Y,Z,…}. Let I = {I1, I2, I3,… Im} be a set of m

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

Property 2: To reduce the memory utilization and
searching delay in finding the frequent itemsets,
each frequent item transaction groups are collected
separately and infrequent items in the selected
group are filtered out at four levels.
Property 3: Each frequent item has a co-occurring
itemset list Cf for finding the frequent itemsets, the
same set of items is considered while adding new
transactions.
Property 3.1: Co-occurring items list of each
frequent item is decided at the time of initial
frequent pattern generation, based on their support
count value and is updated only on every removal
of old partitions.

4.2.1 Frequent Itemsets Generation

There are two steps in the first phase; the
first step is to find the frequent items in the entire
dataset and the second step is to find the frequent
itemsets among the identified frequent items. The
phase I functional details are shown in figure 2.

Figure 2 Functional block diagram of phase I

For finding the frequent items f, first divide the
database into convenient size of non-overlapping
partitions and from each partition find the count of
individual items and record their count in each
partition separately in an item count table. Then
find the frequent items which meet the minimum
support count (Sh) in the entire dataset during the
first database scan. Initially, items in each
transaction are arranged according to the item code,
which is a fixed global ordering and a counter is set
up for each item and initialized to zero. Increment
the count of items as per their occurrence in each
transaction and record their count in each partition
separately. Then their cumulative count gives the
global support for the items. Support calculation is

done by scanning transaction one by one, and
increasing the counter of the itemset if it is a subset
of the transaction. Figure 3 illustrates the first step
of phase I, that is global frequent items generation
using a sample dataset having 15 transactions with
14 distinct items and these transactions are divided
into 3 partitions with 5 transactions each. IAPI
Quad-filter uses two preset minimum values (Sl,

Sh) to facilitate incremental and interactive mining
[property 1]. The given example sets low, high
values as 25% and 40% respectively. Here among
14 items, 7 are found to be globally frequent
(support ≥ 40%).

Figure 3 Frequent Item Generations

Figure 4: Frequent itemset generation of item C
Table 1: Co-occurring Items List

To find the frequent itemsets first collect

all the transactions that contain the first frequent
item f1 from the entire database and store only the
items whose count is greater than the selected
frequent item in memory buffer[property 2]. Keep a
list of items Cf which are considered along with
each frequent item for finding the frequent itemsets.

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

The same sets of items are considered together for
finding the frequent itemsets on addition of new set
of transactions [property 3]. Figure 4 shows the
frequent itemset generation steps of item C by
grouping the transactions containing item C into a
buffer. To reduce the buffer size and computational
cost of finding frequent itemsets, it collects only 3
items {I,J,N}, where their count is greater than or
equal to the count of item C which is 9. These three
items are recorded in the co-occurring list of item C

shown in Table 1. Then record the count of each
item in that transaction group and remove the
infrequent ones (support < 25%) from the selected
transaction set, which gives the count of frequent
and nearly frequent 2-itemsets.

Figure 5: Frequent itemset generation of item I

Now to find the frequent 3-itemsets, select
the set of transactions containing the first frequent
2-itemset {C,I} from the buffer by eliminating the
items having count less than the count of item I in
the 2-itemset group and identify the items having
support ≥ Sl. The same procedure is used for
finding the higher frequent itemsets (4-itemset, 5-
itemset and so on). For finding the support of k-
itemsets it is necessary to collect only the
transactions containing at least k items. Similar
steps are used for other 2-itemsets {C,N}of item C
to get their co-occurring higher frequent itemsets.
Repeat the same for all other frequent items {I,J,N}
identified in the first scan and find all possible
frequent itemsets of the whole dataset (Figure 5).
Keep the list of frequent and nearly frequent
itemsets separately. There may be chances of new
frequent itemsets to occur, on adding new
transaction sets to the existing one. Thus NFsets
helps to avoid the rescanning of the whole dataset,
while adding new partitions and updates the
frequent patterns with less time compared to the
existing methods[property 1.1]. Updating the
NFsets on addition of every partition requires more
time. Thus NFsets are updated only if they appear
as a frequent set in the newly added partition. To
keep track of how many newly added partitions are
to be scanned for updating the NFset, every NFset
is tagged with the lastly updated partition number
Pn [property 1.2].

 4.2.1.1 IAPI Quad-filter Algorithm -Phase I

1. Partition database into r non-overlapping

partitions of convenient size (Z) to

accommodate in memory. Fix two minimum
support values, Sh as the user selected
minimum support and Sl to accommodate
dynamic support (Sl < Sh).

2. Find the count of each item in each partition,
then calculate their total count and identify
frequent 1-itemsets (support ≥ Sh) and
initialize item length k=1.

3. Prepare a co-occurring item list, Cf for each
frequent item, i.e. items having support
greater than or equal to the support of that
item which is considered for the frequent
itemset selection.

4. Select each frequent k-itemset and find its co-
occurring frequent items from the set of
transactions containing the selected frequent
itemset by removing the items having count
less than the count of that itemset from each
transaction.

5. Remove the items having count less than the
low minimum support count in the selected
group and identify the (k+1)-itemsets with
support ≥ Sl, then increment k.

6. Repeat the steps 4, 5 for higher itemsets till no
higher frequent sets are obtained, then
decrement k.

7. Repeat the steps 4,5 and 6 for all k-itemsets of
the selected frequent item and identify the
frequent itemsets (support ≥ Sh) and nearly
frequent itemsets (support between Sl and Sh)
containing the selected frequent item say f1;
also record the current partition number (Pn)
along with each nearly frequent itemsets.

8. Repeat the same for the remaining frequent
items.

4.2.1.2 Memory and CPU overhead

Management

To reduce the delay in finding the
occurrence count of each item in the first scan and
the filtering delay in the frequent itemset
generation, pre-processing is done to arrange the
items in each transaction according to the order of
item codes. Unlike Apriori, this approach avoids
the searching of entire dataset to obtain the
occurrence count of each itemset and thus reduces
the CPU overhead and the number of database
accesses. To optimize the memory utilization, co-
occurring frequent itemsets of each frequent item is
obtained by collecting all transactions containing
these frequent items separately in to memory
buffer. Further four level filtering is done to reduce
the size of the selected transactions.

It is observed that as the count of frequent
item increases, the number of transactions collected

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

together to identify the frequent itemset also
increases. At the same time, the number of items in
each transaction gets reduced due to filtering
approach. It also shows that rather than searching in
the entire database it needs to search only in the
buffer for obtaining higher frequent itemsets. To
reduce the searching delay in incremental and
interactive mining, nearly frequent itemsets count is
not getting updated on every new transaction set
addition. These are updated only if they are found
to be frequent in the newly added partitions and if
the user wishes to interactively reduce the preset
minimum support value (Sh); here the partition
number indicates the last partition that the itemset
had counted before and only the remaining
partitions are to be searched to obtain its support
count.

4.2.2 Incremental Mining

This method accommodates the newly
arrived transactions and updates the frequent
patterns with less computational delay. To reduce
the computational cost, it is suggested to include
transactions at the end of the day or store the newly
arrived transactions separately in a temporary
partition and after a partition becomes full, add it to
the existing partitions. Then find the count of each
item in the newly added partition and update the
count in the existing list. Also update the count of
existing frequent itemsets. If any existing frequent
item/itemsets is found to be infrequent, remove it
from the Fset list. Then include it with the NFset
list if it’s support ≥ Sl along with the current
partition number. Further find the count of its
subset and if found to be frequent include it in the
Fset. Then find the new frequent itemsets having
support ≥ Sh in the new partition, if any, then find
its count in other partitions by searching it in the
NFset list. If not obtained, conduct a possibility test
using equation 4. If there is possibility to be
frequent, search its count in the entire dataset. If
found to be frequent include it in the Fset list, else
if nearly frequent, include in NFset list else discard
it. At the end of day (or partition become full), find
the frequent supersets of the newly generated
frequent items if any, by collecting all the
transactions containing the new item from the entire
dataset.

� ∗ � � ��� � �	 � 1��� ∗ � � 1� �
 ∗ �	 ∗ � � 1 �

�� ∗ � ∗ � (4)

Where Pi – no. of partitions used for initial pattern
generation, Pc – current partition no.
Z– Partition size, L - Lower minimum support,
U - Upper minimum support,

S - new Fset support in new partition
Table 2: Newly Added Partition

Table 2 shows the sample partition added

to the existing database and the updated count of
individual items are shown in table 3. In the given
example, a new frequent item E is generated on
addition of the new partition 4. Thus to find the
frequent supersets of item E, collect all transactions
containing item E and follow the same frequent
itemset generation procedure. Also update the count
of existing itemsets. Figure 6 shows the frequent
itemset updating procedure of item I.

Table 3: Updated Item Count

Figure 6: Frequent Itemset updating procedure on

adding new partition (Item I)

4.2.2.1 IAPI Quad-filter Algorithm (Phase II) -

Incremental Mining

1. Find each item count in the new partition,
then update its total count and identify the
frequent items.

2. If any new frequent item is generated, find its
frequent supersets. Consider the existing
frequent items and other new frequent items
having count greater than the selected one as
co-occurring items Cf.

3. Include the co-occurring item list Cf of each
new frequent item to the existing list. Also
include the newly formed frequent and nearly

frequent itemset to the existing list.

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

4. Find the frequent itemsets in the new partition
by considering only the items listed in Cf and
update their total count. Also update the count
of other existing Fsets and if their support <

Sh, shift them to the nearly frequent set list
and record the current partition number.

5. If any new frequent itemset is obtained from
the new partition, find its total count by
referring to the NFset list.

6. If not found in the NFset list, conduct a
possibility test using equation 4 and if there is
a possibility to be frequent, scan the entire old
transactions containing the selected frequent
item and find its total count. If its support ≥
Sh, include it in the Fset list else if support ≥
Sl, keep it in NFset list along with the current
partition number (Pn). If there is no
possibility to be frequent, discard it.

4.2.3 Accommodation of Behavioural Changes

(Phase III)

After a certain period, if the
behaviour/purchase pattern changes, older
transactions (partitions) are removed. Then update
the existing frequent patterns. When the older
partitions are removed, the count of each frequent
itemsets in the partition, where the removal
happened is obtained and their count is deducted
from the frequent set list. Also count of each item
in that partition which is deducted from the total
count. After the partition removal the occurrence
frequency of each item may change and due to the
heterogeneity of the dataset, there is a chance of
new frequent itemsets to occur with the existing
frequent items. Thus a new co-occurring item list
Cf is prepared and generates the new Fset and
NFset lists using the same frequent itemset
generation procedure [property 3.1]. The
partitioning technique used in the proposed method
helps to update the item count without rescanning
the entire database.

1. Count of each item in the old partition which
is removed is deducted from the total count
and identifies the frequent items in the
remaining dataset.

2. Find the Fsets and NFsets of each frequent
item from the remaining partitions using the
frequent pattern mining procedures stated
above.

4.2.4 Interactive mining (Phase IV)

Interactive mining provides the user to
interactively adjust minimum support value.
Finding an appropriate support value for a dataset is
a challenging task. It is better to provide the users

with the facility to change the support value as per
their requirements.

1. When user increase the preset Sh value,
choose the itemsets with support ≥ new
support as Fset from the existing frequent set
and shift others to the NFset list and record
their partition number (Pn) as last partition
number.

2. When the user reduces the Sh value, select the
itemsets having support ≥ new support from
the existing NFset and include it along with
the existing Fset list. If the partition number
(Pn) of the NFset is less than the current
partition number (Pc), then find their count in
the remaining partitions (Pn+1,Pn+2,…Pc) to
get the total count and identify the newly
formed Fsets.

3. Also choose the items having count greater
than or equal to the newly set support count as
frequent items and find their frequent
supersets from the entire database.

5. EXPERIMENTAL SETUP AND

PERFORMANCE ANALYSIS

Functionalities and effectiveness of the
proposed algorithm IAPI Quad-filter were tested
with market basket datasets T10I4D100K prepared
by IBM Almaden Quest research group and a
Synthetic dataset. This algorithm is developed and
tested on Intel(R) core (TM) 2 Duo, 2.1 GHz CPU
having 1.2 GHz, 3 GB RAM with Microsoft
Windows XP using NetBeans IDE 7.0.0 and
MySQL Server 4.1. Execution time and memory
utilization are compared for various support
threshold values with differently sized partitions as
well as with different number of partitions in both
datasets (Figure 7).

Figure 7: Time comparison of IAPI in initial pattern

generation, addition and deletion, support change using
synthetic dataset

Experimental results show that execution
time increases, when the total size of the dataset
increases with constant minimum support (Figure
8). Initial pattern creation time required is more if

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

the number of partitions is more, but at the same
time new partition addition and deletion of old
partitions require less time if the partition size is
small with constant dataset size, i.e updating time
depends on the size of the data added/deleted. Test
results given in figure 8 shows that addition of 20%
of data requires about 55% to 60% of the initial
pattern creation time, 10% of data takes 25% to
30% of the initial pattern creation time. It is
observed that, when the support threshold reduces,
the number of frequent items increases, thus
execution time required is more (Figure 9). Due to
heterogeneity of dataset there are chances of
reducing the number of frequent items, even though
the dataset size increases. The test results illustrate
that the execution time of IAPI Quad-filter directly
depends on the number of frequent items in the
dataset. Graphical representations of the test results
of IAPI are shown in Figures 7, 8 and 9.

Figure 8: Frequent pattern generation time comparisons

of IAPI with T10I4D100K

Figure 9: Frequent pattern generation time of IAPI with

different support values

5.1 Performance Comparison

Performance of IAPI Quad-Filter
algorithm is compared with three popular
algorithms: Partition Algorithm, DIC and CanTree
using T10I4D100K dataset. Speed of execution of
IAPI Quad-filter is ten times faster than Partition
algorithm and twenty times faster than DIC. The
memory requirement of IAPI Quad-filter is around
five to six times lesser than Partition algorithm and

twenty to thirty times less compared to DIC (Figure
10 and 11). Though partition algorithm is designed
for very large dataset due to large number of
independent local frequent itemsets generated for
dense datasets, it requires more memory; thus there
is limitation in dataset size. Since IAPI Quad-filter
is not generating any local frequent sets, it is
suitable for both dense and sparse datasets. A large
number of frequent sets require more computations;
thus execution time required is more in partition
algorithm due to the occurrence of large number of
local frequent itemsets. Partition algorithm creates
static patterns and for incrementally updating the
frequent patterns, it is required to keep all local
frequent itemsets in memory, also if the user wishes
to change the support value, the rescanning of the
entire database is required for updating the frequent
sets.

Figure 10: Execution time comparisons of IAPI, Partition

and DIC with different data size

Figure 11 Time comparison of IAPI, CanTree and DIC in
initial pattern creation, addition and deletion of

partitions using synthetic dataset

DIC is developed for dynamic frequent set
generation, thus it requires four to ten times less
time for incrementally updating the database,
compared with the initial frequent set generation. It
is observed that, in DIC, removal of old transaction
requires five to ten times less time compared with
IAPI. But the main difficulty with DIC is that it has
to keep the count of all possible subsets in the
entire transaction set; thus it consumes more
memory and hence not suitable for very large data
sets. Subset generation introduces more
computational cost and requires 10 to 20 times

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

more time than IAPI for the initial frequent set
generation. CanTree is suitable for both incremental
and interactive mining. It keeps the entire
transactions in the CanTree for preparing frequent
itemsets; thus it requires two to three times more
memory than IAPI. CanTree requires re-
construction of FP tree for each frequent item for
every addition, deletion as well as the support
change cases, which may lead to more
computational delay.

6. CONCLUSION

Most of the real life databases are very

large and dynamic. Thus it is essential to have an
approach which has the flexibility to handle larger
dynamic dataset efficiently and effectively. This
study proposes an incremental and interactive
mining algorithm with partitioning approach,
designed to obtain frequent patterns from a very
large sized dataset without generating local
frequent itemsets. Most of the frequent pattern
mining algorithms have complex structures and
requires more database scans. This approach
combines the features of various algorithms such as
Apriori, CanTree, CARMA and Partitioning
algorithm to obtain frequent itemsets with no
complex calculations or data structures using small
memory space in short time duration. Unlike
Apriori, IAPI Quad-filter avoids the searching of
entire dataset to obtain the occurrence count of each
itemsets. The size and the number of transaction to
be compared are further reduced with higher
itemsets, due to four level filtering approaches.
Thus 50% to 60% of memory space reduction and
30% to 40% of data comparisons reduction are
achieved by this approach. This approach uses two
bounds (low, high) for minimum support and
generates two category itemsets: frequent itemsets
having support greater than high minimum support
value and nearly frequent itemsets having support
in between low and high. Partitioning approach
avoids the first database scan while deleting the old
partitions and the nearly frequent itemsets help to
reduce search delay for updating the frequent
itemsets in incremental mining and interactive
mining. The most attractive feature of IAPI is that
this can be applied on both sequential and parallel
mining approaches. Thus the proposed method can
prepare more accurate user spending profile in short
time period with less space and computational
complexity.

REFERENCES

[1] R. Agrawal, T. Imielienski, and A. Swami,

‘Mining Association Rules between Sets of
Items in Large Databases’. Proceedings of the

Management of Data Conference, ACM
Press, New York, NY, USA, 1993, pp. 207–
216.

[2] R. Agrawal, R. Srikant, ‘Fast algorithms for
mining generalized association rules’,
Proceedings of the 20

th
 International

Conference on Very Large Databases, 1994,
pp. 487–499.

[3] David Wai-Lok Cheung, Vincent T. Y. Ng, Ada
Wai-Chee Fu, Yongjian Fu. ‘Efficient Mining
of Association Rules in Distributed
Databases’, IEEE Trans. Knowl. Data Eng.
Vol. 8 No. 6, pp. 911-922.

[4] M.J.Zaki. (2000), ‘Scalable Algorithms for
Association Mining’, IEEE Transactions on

Knowledge and Data Engineering, 1996,
Vol. 12, pp. 372-390.

[5] C.Borgelt, ‘Efficient Implementations of
Apriori and Eclat’, Proceedings of 1st IEEE

ICDM Workshop on Frequent Item Set

Mining Implementations. CEUR Workshop

Proceedings 90, Aachen, Germany. 2003.
[6] J. Han, J. Pei, and Y. Yin. (2000), ‘Mining

frequent patterns without candidate
generation’, Proceedings of ACM SIGMOD

International Conference on Management of

Data, pp. 1–12.
[7] M. El-Hajj and O. R. Zaiane, ‘COFI approach

for mining frequent itemsets revisited’,
Proceedings of the 9

th
 ACM SIGMOD

Workshop on Research Issues in Data Mining

and Knowledge Discovery, New York, 2004,
pp. 70–75.

[8] Chuang-Cheng Chiu and Chieh-Yuan Tsai. ‘A
Web Services-Based Collaborative Scheme
for Credit Card Fraud Detection’,
Proceedings of the 2004 IEEE International

Conference on e-Technology, e-Commerce

and e-Service (EEE’04), pp. 177-181,28-31
march 2004.

 [9] Qian Wan and Aijun An. (2005), ‘Compact
Transaction Database for Efficient Frequent
Pattern Mining’, IEEE international

conference on Granular Computing, Vol. 2,
pp. 652-659.

[10] Ashok Savasere Edward Omiecinski
Shamkant Navathe. (1995), ‘An Efficient
Algorithm for Mining Association Rules in
Large Databases’, Proceedings of the 21

st

VLDB Conference, pp. 432−444.

Journal of Theoretical and Applied Information Technology
 10

th
 May 2014. Vol. 63 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

[11] Sergey Brin, Rajeev Motwani, Jeffrey D
Ullman and Shallom Tsur. (1997), ‘ Dynamic
itemset counting and implication rules for
market basket data’, Proceedings of ACM

SIGMOD International conference on

Management of data, Vol. 26, No. 2 of
SIGMOD record, pp. 255-264.

[12] C. Hidber. (1999), “Online association rule
mining”, Proceedings of the ACM SIGMOD

International Conference on Management of

Data, pp. 145–156.
[13] Leung C.K., Khan, Quamrul I., Li Zhan.,

Hoque, T. (2007), ‘CanTree: A Canonical-
Order Tree for Incremental Frequent-Pattern
Mining’, Knowledge and Information

Systems, Vol. 11, No. 3, pp. 287–311.
[14] Jianyun Xu, Andrew H. Sung and Qingzhong

Liu., ‘Behaviour Mining for Fraud Detection’,
Journal of Research and Practice in

Information Technology, Vol. 39, No. 1, p.p
3-18, February 2007.

[15] S. K Tanbeer, C. F Ahmed, Byeong-Soo
Jeong, Young-Koo Lee. (2008), ‘Efficient
single-pass frequent pattern mining using a
prefix-tree’, Information Science, Vol. 179,
pp. 559–583.

 [16] Mohadeseh Hamedanian, Mohammad
Nadimi, Mohammad Naderi., ‘ An Efficient
Prefix Tree for Incremental Frequent Pattern
Mining’, International Journal of Information
and Communication Technology Research,
Vol. 3 No. 2, pp. 49-55, February 2013.

