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ABSTRACT 

 
A novel hybrid algorithm based on geometric wavelets for efficient compression of digital images is 
proposed.  The presented work combines the recent segmentation based binary space partition scheme with 
the popular geometric wavelet coding method to capture the edge singularities in a more effective way and 
to provide the sparse representation of the image. The BSP scheme uses polar co-ordinate representation of 
straight line for partitioning the image domain. This improved the choice of bisecting lines available for 
partitioning thereby enhancing the probability of reducing the cost functional. A new pruning algorithm is 
tried to optimize the rate distortion curve and achieve the desired bit rate. A new “geometric” context 
modeling scheme combined with arithmetic coding is designed to boost the performance of the algorithm. 
The signal-to-noise ratios are compared with state-of-the-art wavelet coders; recent segmentation based 
algorithms as well as the original geometric wavelet coding algorithm and found that the results outperform 
the existing methods. The results report a gain of 2.19 dB over the EZW algorithm and 1.35 dB over the 
SPIHT algorithm at the bit-rate 0.0625 bpp. The presented algorithm shows a gain of 1.01 dB over the 
original GW algorithm at the compression ratio of 128 for the Lena test image. But for the high 
computational complexity and hence increased time complexity, the algorithm gives remarkable results in 
terms of rate-distortion compression. 

Keywords: Binary Space Partition, Geometric Wavelets, Hybrid Coding, Rate-Distortion Compression, 

Signal-to-Noise Ratio 
 

1. INTRODUCTION  

 
Storage and transmission of digital images has 

become an integral part of our daily life. As our 
dependence on the digital media continues to grow, 
finding competent ways of storing and conveying 
these large amounts of data has become a major 
concern. Because the amount of space required to 
hold unadulterated images can be extremely large in 
terms of cost, as well as of the huge bandwidth 
required to transmit them, researchers are seeking 
methods for efficient representations of these digital 
pictures to simplify their transmission and save disk 
space. At this point in time, the technique of image 
compression has become very essential and highly 
applicable. To date, substantial advancements in the 
field of image compression have been made, 
ranging from the traditional predictive coding 
approaches, classical and popular transform coding 
techniques and vector quantization to the more 
latest second generation coding schemes. Starting at 
1 with the first digital picture in the early 1960s, the 
compression ratio has reached a saturation level of 

around 300:1 recently. Even then, the reconstructed 
image quality still remains as an important issue to 
be investigated.  

The Discrete Cosine Transform (DCT) [1] has 
been, until recently, the most popular technique for 
image compression because of its optimal 
performance and ability to be implemented at a 
reasonable cost. The popular JPEG standard [2] for 
still images and the MPEG standard for moving 
images are based on DCT. Wavelet-based image 
coding techniques [3] are the latest development in 
the field of image compression offering 
multiresolution capability resulting in superior 
energy compaction and high quality reconstructed 
images at low bit rates. The discrete wavelet 
transform forms the basis of the popular JPEG 
2000. The wavelet transforms based coding 
approaches have taken over other classical methods 
particularly the cosine transform, due to its 
capability to solve the problem of blocking artefacts 
which is a common phenomenon in DCT based 
compression. However, the EZW [4], the SPIHT 
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[5], the SPECK [6], the EBCOT [7] algorithms and 
the current JPEG 2000 [8] standard are based on the 
discrete wavelet transform (DWT) [9]–[10].  

Despite providing outstanding results in terms of 
rate-distortion compression, the transform-based 
coding methods do not take an advantage of the 
geometry of the edge singularities in an image. This 
led to the design of ‘Second Generation’ or the 
segmentation based image coding techniques [11] 
that make use of the underlying geometry of edge 
singularities of an image. To this day, almost all of 
the proposed ‘Second Generation’ algorithms are 
not competitive with state of the art (dyadic) 
wavelet coding. In this regard, inspired by a recent 
progress in multivariate piecewise polynomial 
approximation [12], we put together the advantages 
of the classical method of coding using wavelets 
and the segmentation based coding schemes to what 
can be described as a geometric wavelet approach. 

This study focuses on a recent development in 
the field of piecewise polynomial approximation for 
image coding using Geometric wavelets [13]. This 
scheme efficiently captures curve singularities and 
provides a sparse representation of the image and 
thereby achieves better quality reconstructed 
images with higher compression ratios. Stress is 
given on the shared approach of image compression 
using geometric wavelets and the binary space 
partition scheme. The current study is envisaged to 
enhance the GW image coding [13] method and its 
improved version [14]. We use the polar co-
ordinate form of the straight line [15] in the binary 
space partition scheme (BSP). Here the number of 
quantized bisecting lines is increased and hence 
probability of minimizing the cost functional and 
finding the optimal cut of the domain is improved. 
A rate-distortion optimization process is performed 
prior to encoding where a new pruning algorithm is 
tried to prune the BSP tree and achieve the desired 
bit rate. A new “geometric” context modeling 
scheme combined with arithmetic coding is 
designed to boost the performance of the algorithm. 

The paper is organized as follows: Section 2 
gives a brief summary of up to date research carried 
out in relation to this work, based on the literature 
survey. Section 3 deals with the basic concepts of 
binary space partition scheme and geometric 
wavelets. Sections 4 give the details of the 
geometric wavelet image coding algorithm. Section 
5 provides experimental results which are compared 
with those of recent state-of-the-art wavelet and 
“sparse geometric representation” methods and also 
with GW and improved GW approaches. Summary 
& conclusion is presented in section 6. 

2. LITERATURE SURVEY 

A number of segmentation algorithms have 
been proposed for image coding till date, each 
claiming to be different or superior in some way. 
The first segmentation-based coding methods were 
suggested in the early 1980s [11]. These algorithms 
partition the image into complex geometric regions 
using a contour-texture coding method (1982) [15] 
over which it is approximated using low-order 
polynomials. One of the most popular segmentation 
based coding schemes investigated by researchers 
in the early days were the Quadtree-based image 
compression (1991) [16], which recursively divides 
the image signal into simpler geometric regions. 
Many variations of the ‘Second Generation’ coding 
schemes have since been announced that exploit the 
geometry of curve singularities of an image [17], 
[18], [19]. In one of the outstanding ‘Second 
Generation’ methods, Froment and Mallat (1992) 
constructed multi-scale wavelet-like edge detectors 
and showed how a function from the responses of a 
sparse collection of these detectors can be 
reconstructed [20]. They reported good coding 
results at low bit-rates. Cand`es and Donoho (2001) 
constructed, a bivariate transform called Curvelets 
intended to capture local multi-scale directional 
information [21]. Cohen and Matei (2001) also 
presented a discrete construction of an edge-
adapted transform [22] which is closely related to 
nonlinear Lifting (2003) [23]. In a later work 
(2003), the authors enhance classical wavelet 
coding by detecting and coding the strong edges 
separately and then using wavelets to code a 
residual image [4]. Do and Vetterli’s construction 
of Contourlets (2005) [24], is similar but is a purely 
discrete construction. Coding algorithms that are 
geometric enhancements of existing wavelet 
transform based methods, where wavelet 
coefficients are coded using geometric context 
modelling also exist [25]. But all of these 
constructions are redundant, i.e., the output of the 
discrete transform implementations produces more 
coefficients than the original input data. Research 
on the possibility of using these new transforms to 
outperform wavelet based coding is still on-going. 

The binary space partition (BSP) scheme, a 
simple and efficient method for hidden-surface 
removal and solid modelling was introduced in 
1990 [26]. The BSP technique was applied to the 
concept of image compression in 1996 [27] and is 
adopted in the first stage of this study. Later, in 
2000, binary partition trees were used as an 
efficient representation for image processing, 
segmentation, and information retrieval [28]. 
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Recently, many second generation image 
compression algorithms such as the Bandelets 
(2005) [29], the Prune tree (2005) [12], the Prune-
Join tree (2005) [12], the GW image coding method 
(2007) [13] and the like based on the sparse 
geometric representation have been introduced. 
LePennec and Mallat (2005) [29] lately applied 
their ‘Bandelets’ algorithm to image coding, where 
a warped-wavelet transform is computed to align 
with the geometric flow in the image and the edge 
singularities are coded using one-dimensional 
wavelet type approximations. The concept of 
combining the binary space partition scheme and 
geometric wavelets for compression of digital 
images were put forward by Dror Alani, Amir 
Averbuch, and Shai Dekel in 2007 [13]. Here the 
bisecting lines of the BSP scheme are quantized 
using the normal form of straight line. This method 
successfully competes with state-of-the-art wavelet 
methods such as the EZW, SPIHT, and EBCOT 
algorithms and also beats the recent segmentation 
based methods. But the algorithm turned out to be 
computationally very intensive [16]. An 
improvement was made to this work in 2011 by 
Garima Chopra and A. K. Pal [14]. They used the 
slope intercept form of a straight line instead of the 
normal representation. This improved the 
possibility of minimizing the cost functional by 
increasing the choice of bisecting lines available for 
partitioning. The technique further increased the 
complexity of the algorithm. 

Our approach deviates from the context of 
multi-scale geometric processing, even from the 
more general framework of harmonic analysis, 
which is the theoretical basis for transform based 
methods and also from the popular wavelet based 
studies and is based on the GW and binary space 
partition method introduced in [13]. The main 
difference between the GW algorithm and recent 
work is that we use the polar coordinate 
representation of straight line for partitioning the 
domain thereby further improving the availability 
of partitioning lines and intern further minimizing 
the cost functional at each step of BSP scheme.  

3. MATHEMATICAL PRILIMINARIES 

3.1 Binary Space Partition Scheme 

Given an image f, the algorithm divides convex 

polygonal domain Ω into two subsets Ω0 and Ω1 

using a bisecting line. The subdivision is performed 

to minimize a given cost functional (equation 1). 

This partitioning process then operates recursively 

in a hierarchical manner on the subdomains until 

some exit condition is met. To be specific, we 

describe the algorithm of [27], which is a BSP 

algorithm that identifies a compact geometric 

description of a target bivariate function. The goal 

in [27] is to encode an optimal cut of the BSP tree, 

to be precise, a sparse piecewise polynomial 

approximation of the original image based on the 

union of disjoint polygonal domains in the BSP 

tree. Rate-distortion optimization strategies are 

used [9] to meet a given bit rate. 

For a given convex polygonal domain Ω, the 

algorithm finds two subdomains, Ω0 and Ω1; and 

two bivariate (linear) polynomials �Ω0 and �Ω1, that 

minimizes the given cost functional: 

     (1) 

where Ω0 and Ω1 represent the subsets resulting 
from the subdivision of Ω (Ω0 and Ω1 should be 
considered as children for the mother Ω). The 
bivariate polynomial used is defined by: 

                     �Ω� = �� � + �� � + ��                      (2) 

The polynomial interpolation is made using the 

least square method [33], computing the difference 

between the image and the polynomial at a defined 

region Ω. The algorithm continues partitioning each 

region recursively until there are no enough pixels 

to subdivide or the approximation error is 

sufficiently small. The algorithm constructs a 

binary tree with the partitioning information. The 

algorithm needs to encode the information of the 

geometry, namely, the line that cut each sub-

domain, and the approximation function in each 

sub-domain represented by the polynomial 

coefficients. Figure 1. shows the steps involved in 

Binary Space Partitioning algorithm. 

First a line L divides the region Ω into two 

regions Ω0 and Ω1. The two regions Ω0 and Ω1 are 

further divided into Ω00, Ω01 and Ω11, Ω10 

respectively. These four regions are further divided 

into eight and so on until area of the subdomain 

contains only a very few pixels. A more flexible 

exit criterion to cease partitioning is when the 

approximation error,  is sufficiently 

small. Then it is represented in a tree structure as 

shown in Figure 2. 
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Figure 1: Binary Space Partitioning of the domain Ω 

(two levels). 

 
Figure 2: BSP tree representation 

3.2 Geometric Wavelets 

Geometric Wavelets [30] are multi-scale 
dictionary elements which are constructed directly 
from the data, and have guarantees on the 
computational cost, the number of elements in the 
dictionary and the sparsity of the representation. 
Geometric wavelets (GW) have been considered in 
context of image compression in [13]. It is a new 
multi-scale data representation technique which is 
useful for a variety of applications such as data 
compression, interpretation and anomaly detection 
[9]. The GW is defined as: 

                 ΨΩ0 (�) ≜ 1Ω0(QΩ0 − QΩ)        (3) 

 Ω0 here means one of the children of mother, Ω. It 
is possible to reconstruct the function f using: 

                        �= ΣΩi ΨΩi (�)         (4) 

Geometric Wavelet , ΨΩ is a “local difference” 
component that belongs to the detail space between 
two levels in the BSP tree, a “low resolution” level 
associated with Ω and a “high resolution” level 
associated with Ω0. Geometric wavelets also satisfy 
the vanishing moment property like isotropic 
wavelets [31], i.e., if f is locally a polynomial over 
Ω, then minimizing of (1) gives QΩ0 = QΩ = 1, and 

therefore ΨΩ0(�) = 0. Unlike classical wavelets, 
geometric wavelets do not satisfy the two scale 
relation and the biorthogonality property. 

4. THE GEOMETRIC WAVELET CODING 

ALGORITHM 

We encode the differences between the original 
coarse projections of the data and the points 
projected onto the planes at a finer scale, to find a 
compact representation for the data at the finer 
scale. For this, an effective scheme is developed 
based on the construction of a minimal space 
spanning this set of differences [32]. The axes of 
this difference space are termed “geometric 
wavelets”, and the projections of the finer-scale 
corrections to the data points onto the plane 
spanned by these axes are called the “wavelet 
coefficients”. The process is continued, forming a 
binary tree of mother and children at finer and finer 
scales until no further details are needed to 
approximate the data up to a pre-specified accuracy. 
The process is discussed in detail in the following 
sections. 

4.1  BSP Tree Construction 

 The BSP method is computationally very 
intensive. Therefore, the image is tiled first and 
then the BSP algorithm is applied independently on 
each tile, thereby creating a BSP forest. The tile 
size is generally adopted is 128 x 128. The BSP 
scheme is applied on each tile of the image by 
using the polar coordinate form of the straight line. 
In polar coordinates on the Euclidean plane, a line 
is expressed as: 

 
where m is the slope of the line and b is the y-

intercept. The equation can be rewritten as: 

                                  (6) 

It is not possible to quantize the parameter m, as 

it is unbounded, has value infinity for the straight 

lines which are parallel to y axis. This problem is 

solved by using the new parameter ø in place of m 

in (8), where ø is the angle between the line and the 

x axis in the anticlockwise direction. Parameters  

and ø are shown in Figure 3. 

Subsequently, equation (4) reduces to: 

                           (7) 

The number of bisecting lines available for the 

partitioning of tile of dimension 128 x 128 in [14] 

is 15740. In the improved GW approach [14], the 

number increased to 60775. But in the proposed 

algorithm this availability number further increased 

to 69780. Hence, this method provides a better 

choice of bisecting lines thereby giving more 

possibility to minimize the cost functional. Table 1 
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gives the minimum values of the cost functional (1) 

on the initial partitioning of different tiles of the 

Cameraman test image. Following the procedure 

mentioned in section 3.1, the BSP tree is generated 

for each tile and according to the method defined in 

section 3.2, geometric wavelets are created for each 

node. 

4.2  Sparse Geometric Wavelet Representation 

The GW image coding algorithm [12] is based 
on the idea that among all the geometric wavelets 
only a “few” wavelets have large norm. Once all 
the geometric wavelets are created, they are 
arranged according to their L2 norm as shown in 
equation (8). 

           (8) 

Then the sparse geometric representation is 

extracted using the greedy methodology of 

nonlinear approximation [33], [34]. Here, n 

wavelets are selected from the joint list of 

geometric wavelets over all tiles.  

 A rate-distortion optimization is performed 
prior to encoding where a new pruning algorithm is 
tried. The R-D curve for each node is generated by 
approximating the node by the quantized 

polynomial (t), which is obtained by scalar 
quantizing the polynomial coefficients. In this 
Lagarangian cost based pruning, the R-D optimal 
pruning criterion for the given operating slope, λ is 
as follows: Prune the children if the sum of  
Lagarangian costs of the children is greater than or 
equal to the Lagarangian cost of the parent. 
Mathematically, this means that the children are 
pruned if (DC1+DC2) + λ(RC1+RC2) >= (DP+λRP), 
where RP and DP are rate and distortions of the 
parent and RC1, RC2, DC1 and DC2 are the rate and 
distortions of the children respectively. 

Subsequently, function f is approximated using 

the n-term geometric wavelet sum given in equation 

(4), where n is the number of wavelets used in the 

sparse representation. 

4.3  Encoding 

To obtain a reasonable approximation of the 

image, it is essential that if a child is present in the 

sparse representation, then the mother should also 

be there, i.e, the BSP tree should be connected. 

Therefore, instead of encoding an n-term tree 

approximation, we create an n + k geometric 

wavelet tree by considering more k nodes [35]. The 

cost of imposing the condition of the connected tree 

structure is not very huge, since there is high 

probability that if a child is important all its 

ancestors are also important [33], [34].  

There are two sorts of data to be encoded, 1) the 
geometry of the support of the wavelets 
participating in the sparse representation and 2) the 
polynomial coefficients of the wavelet. Before 
encoding the extracted BSP forest, a small header is 
written to the compressed file. Header consists of 
the minimum and maximum values of the 
coefficients of the participating wavelet and the 
image graylevels. Out of header size of 26 bytes, 24 
are used in the storage of the minimum and the 
maximum values of the coefficients while 2 bytes 
are utilized to store the extremal values of the 
image [36]. “Root” geometric wavelets [14] 
contribute most in the approximation, so each root 
wavelet is encoded. The encoding process is 
applied repeatedly for each of the geometric 
wavelet tree nodes in each tile. 

4.3.1 Encoding the Geometry of the Support of 

the Wavelet 

The following information is encoded for each 

of the participating node Ω: 

• Number of children of Ω that participate in 

the sparse representation; 

• In case only one child is participating, then 

whether it is the left or the right child; 

• If Ω is not a leaf node, then the line that 

bisects Ω is encoded using the slope 

intercept form. 

Left child and right child are defined as the sets of 

the pixels satisfying the inequality r - tan ø. r sinƟ 

<= b and r - tan ø. r sinƟ >= b, respectively. The 

leaf node is encoded by using the bit “1.” Codes 

“00” and “01” are used for the one child symbol 

and the two children symbol, respectively. If only 1 

child of Ω is participating in the sparse 

representation, then this event is encoded by using 

an additional bit. In case Ω is not a leaf node, then 

the indices of the parameter ø and c of the bisecting 

line are encoded using the lossless variable length 

coding. 

4.3.2  Encoding the Wavelet Coefficients 

The coefficients of the wavelet polynomial, QΩ 

are quantized and encoded using an orthonormal 

representation of П1(Ω), where П1(Ω) is the set of 

all bivariate linear polynomials over Ω. A bit 

allocation scheme for the coefficients is applied 

using their distribution function (over all the 

domains) which is discussed in later sections. The 

“root” wavelet of each tile is always encoded. 
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Quantizing the Wavelet Coefficients: To ensure 
the stability of the quantization process of the 
geometric wavelet polynomial QΩ, we first need to 
find its representation in appropriate orthonormal 
basis. The orthonormal basis of П1(Ω) is found 
using the standard Graham-Schmidt procedure. Let 
V1(x,y)=1, V2(x,y)=x, V3(x,y)=y and be the 
standard polynomial basis. Then, an orthonormal 
basis of П1(Ω) is given by 

 

 

                  (9) 
where inner product and norm are associated with 

the space L2 (Ω). Let 

                                (10) 

be the representation of the geometric wavelet  Ψ ϵ 

П1(Ω) in the orthonormal basis. 

A bit allocation scheme is applied depending 
upon the distribution functions of the coefficients α, 
β and γ of the wavelets participating in the sparse 
representation. Figure 4 shows the histogram of the 
wavelet coefficients of Cameraman. Four bins are 
used to model the absolute value of the coefficients; 
bin limits are computed and passed to the decoder. 
In case all the three coefficients of the wavelet are 
small, the event is encoded using single bit, but if 
any one of them is not small then the bin number of 
each coefficient is encoded. After this quantized 
bits are written to the compressed file. Figures 5 
and 6 show how the bit budget allocation of Lena at 
the bit-rate 0.0625 bits per pixel (bpp) and 0.125 
bpp is distributed among the GW algorithm 
components respectively. 

4.4  Decoding 

In the decoding stage, the compressed bit stream 
is read to find whether the participating node is a 
root node, has 1 child or 2 children, or a leaf node. 
If one child is participating then by using bit stream 
identification, it is found whether it is left child or 
right child. If at least one of the children belongs to 
the sparse representation, then the indexes of ø and 
b are decoded and using these index parameters ø 
and b of optimal cut are calculated. Thereafter, 
using this optimal cut, domain is partitioned into 
two subdomains; and depending upon the situation 
vertex set of only one child or both children is 
found [37]. This process is repeated until entire bit 
stream is read. 

5. EXPERIMENTAL RESULTS AND 

DISCUSSION 

The proposed algorithm is tested on the still 
image of Lena of bit depth 8 and of size 512x512. 
The implementation is done using 2010 version of 
MATLAB. The Peak Signal to Noise Ratio (PSNR) 
based on Mean Square Error (MSE) is used as a 
measure of “quality” [18]. MSE and PSNR are 
given by the following relations: 

                    (11) 

                             (12) 
where m x n is the image size, xi,j is the original 
image and yi,j is the reconstructed image. MSE and 
PSNR are inversely proportional to each other and 
higher value of the PSNR implies better quality 
reconstructed image. 

The proposed method reports a gain of 1.35 dB 
[16] over the SPIHT [5] method, 1.43 dB over the 
EBCOT [7] method and 2.19 dB over EZW [4] 
algorithm at the compression ratio of 128:1 for the 
Lena test image. The presented algorithm shows a 
gain of 1.01 dB over the original GW method [13] 
and 0.95 dB over the improved GW algorithm [14] 
at a bit rate of 0.0625 bpp for the Lena image.  

Table 2 and table 3 give the comparison of 
PSNR in dB for different variations in the GW 
algorithm on test images - Lena and Cameraman 
respectively. Figure 7 shows the reconstructed 
image of Cameraman and Lena using the algorithm, 
at the compression ratio of 128:1 and PSNR is 
24.55 and 29.73 respectively. Figure 8 shows the 
reconstructed Barbara images and Figure 9 shows 
the reconstructed Egg and Vegetable images using 
the different variations of the algorithm.  

 
6. CONCLUSION 

The performance of a hybrid algorithm for 
image compression using the geometric wavelets 
and the tree-structured binary space partition 
scheme is investigated. We have improved the 
coding efficiency of the GW algorithm by using the 
polar coordinate form of straight line for optimal 
bisection in the line selection procedure. The use of 
new pruning algorithm further improved the PSNR 
making it competitive with the state-of-art coders in 
literature. The method works well with 
geometrically rich content images and gives 
remarkable results at low as well as medium bit-
rates. The algorithm is found to be extremely 
complex in computation and has high execution 
time. In future, better statistical models may be 
developed for encoding the BSP geometry. New 
methods to reduce the time complexity of the 
algorithm may also be explored. 
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Figure 3: Partition of the Image Domain into Two Subdomains - Parameters θ and ɸ 

 

 
Figure 4: Histogram of Wavelet Coefficients, α (left), β (middle) and γ (right) of Cameraman Image 

 

                              
    Figure 5: Bit Budget Allocation for Lena at Bit-Rate,            Figure 6: Bit Budget Allocation for Lena at Bit-Rate, 0.125 bpp. 

       0.03125 bpp. Output File Size is 1 Kbyte              Output File Size is 4 Kbytes 
 

Table 1. Minimum Values of Cost Functional for the First Partition on all 4 Tiles of the Cameraman Test Image on Applying the 

BSP Scheme 

Tile GW Method [13] Improved GW Method [14] Proposed Method 
Tile 1 26045109.99 26039950.74 26020186.65 

Tile 2 13508971.42 13493350.99 13491025.81 

Tile 3 32523714.67 32531042.32 32514208.74 

Tile 4 20469076.78 20465387.91 20453867.97 
 

Table 2: Comparison of PSNR in dB for different variations in the GW algorithm on test image, Lena 

Compression 
Ratio 

Bit Rate 
(bpp) 

GW 
[13] 

Improved GW 
[14] 

Hybrid GW  
[15] 

Proposed 
method 

256:1 0.03125 26.64 26.67 26.89 27.84 

128:1 0.0625 28.72 28.78 28.93 29.73 

64:1 0.125 30.73 30.82 31.20 31.45 
 

Table 3: Comparison of PSNR in dB for different variations in the GW algorithm on Cameraman test image 

Compression 
Ratio 

Bit Rate 
(bpp) 

GW 
[13] 

Improved GW 
[14] 

Hybrid GW  
[15] 

Proposed 
method 

128:1 0.0625 22.93 23.04 23.74 24.55 

64:1 0.125 25.07 25.29 25.58 26.31 

32:1 0.25 27.48 27.62 27.82 28.38 
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Figure 7. Top Left: Reconstructed Cameraman using the normal form of straight line in GW Algorithm, 0.0625 bpp, PSNR=22.93. Top 
Center: Reconstructed Cameraman using the slope-intercept form of straight line in GW Algorithm, 0.0625 bpp, PSNR=23.04. Top Right: 

Reconstructed Cameraman using the Proposed Method, 0.0625 bpp, PSNR=24.55. Bottom Left: Reconstructed Lena using the normal 

form of straight line in GW algorithm, 0.0625 bpp, PSNR=28.72. Bottom Center: Reconstructed Lena using the slope-intercept form of 
straight line in GW Algorithm, 0.0625 bpp, PSNR=28.78. Bottom Right: Reconstructed Lena using the Proposed Method, 0.0625 bpp, 

PSNR=29.73. 

 
Figure 8. (a): Original Barbara (512x512). (b): Reconstructed Barbara using the normal form of straight line in GW Algorithm, 0.0625 

bpp, PSNR=26.04. (c): Reconstructed Barbara using the slope-intercept form of straight line in GW Algorithm, 0.0625 bpp, PSNR=26.45. 

(d) Reconstructed Barbara using the Proposed Method, 0.0625 bpp, PSNR=27.32.  

 
Figure 9. Top (a): Original Egg (256x256). (b): Reconstructed Egg using the normal form of straight line in GW Algorithm, 0.0625 bpp, 

PSNR=25.12. (c): Reconstructed Egg using the slope-intercept form of straight line in GW Algorithm, 0.0625 bpp, PSNR=25.65. (d) 

Reconstructed Egg using the Proposed Method, 0.0625 bpp, PSNR=26.58. Bottom (a): Original Vegetable (512x512). (b): Reconstructed 
Vegetable using the normal form of straight line in GW Algorithm, 0.0625 bpp, PSNR=23.24. (c): Reconstructed Vegetable using the 

slope-intercept form of straight line in GW Algorithm, 0.0625 bpp, PSNR=23.57. (d) Reconstructed Vegetable using the Proposed Method, 

0.0625 bpp, PSNR=24.32.  


