
Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

588

OPTIMIZATION OF TRANSACTION PROCESSING IN

CLOUD DATABASES THROUGH A DATACENTER SYSTEM

DESIGN CRACS TO IMPROVE REPLICA CONSISTENCY,

AVAILABILITY AND SCALABILITY

1
R. ANANDHI AND

2
DR. K. CHITRA

1Registered Scholar, Dept. of Computer Applications, SCSVMV University, Kanchipuram, TN, India
2Asst. Professor, Department of Computer Science, Govt. Arts College, Melur, Madurai, TN, India

E-mail: 1anandhi78@yahoo.com, 2manikandan.chitra@gmail.com

ABSTRACT

It is obvious that tremendous achievements have been emerged in IT industries at various sectors. If we
have a keen look, all the technologies are revolving around a single word “DATA”. All techniques are
trying to improve the read and write of data from and to the database. Usually read and write are referred
by common word called “transactions”. Cloud Computing is one of those technologies that involves
execution of Database transactions. This paper provides a system model called CRACS which maintains
atomicity, isolation, consistency and durability of transactions at NOSQL databases which usually try to
deviate from above said properties of transactions.
Keywords: ACID, BASE, Cloud Computing, Consistency, Datacenter, Transactions.

1. INTRODUCTION

 Cloud computing is a new paradigm in
which dynamically scalable virtualized computing
resources are provided as a service over the
Internet. As resources are limited, it is very
important that cloud providers efficiently provide
their resources [1]. The trust model for efficient
reconfiguration and allocation of computing
resources satisfy various user requests; moreover it
collects and analyzes reliability based on historical
information of servers in a Cloud data center. Then
it prepares the best available resources for each
service request in advance, providing the best
resources to users [2]. Cloud computing is a new
computing paradigm composed of Grid computing
and Utility computing concepts together. It
provides dynamically scalable virtualized
computing resources as a service over the Internet
and users pay for as many resources as they have
used [3]. Due to limitations in software
technologies and network bandwidth in the past,
Cloud computing could not guarantee service levels
and scope that needed to be delivered over the
Internet. Nowadays, Cloud computing can provide
various levels of service and functions over the
Internet, as software and network technologies
develop [4].

2. TYPES OF CLOUDS

 Cloud computing has various advantages
are improved performance, lower IT infrastructure
costs, unlimited storage capacity, less maintenance
and improved compatibility. The types of
clouds are: a) Public Cloud is made available to
the general public or a large industry group b)
Private Cloud is operated solely for a single
organization c) Community Cloud’s infrastructure
is shared by several organizations d) Hybrid Cloud
is a composition of two or more clouds (private,
community, or public) [5].

3. SERVICES OF CLOUDS

 Cloud Computing denotes the hiring of
resources like servers, memory, storage areas etc.
Cloud itself is a network of virtualized servers or
virtual data centers that can deliver powerful
applications, platforms, and infrastructures as
services over the Internet (ie) IaaS (Infrastructure
as a Service is a provision model in which an
organization outsource the equipment used to
support operations, including storage, hardware,
servers and networking components), Paas

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

589

(Platform as a Service is a delivery of a computing
platform over the web), SaaS (Software as a
Service is one of the methodologies of Cloud
Computing, which is based on a “one-to-many”
model whereby an application is shared across
multiple clients) [5]. Recently a new service has
been extended by Cloud called as DaaS (Database
as a Service). There are two common deployment
models: users can run databases on the cloud
independently, using a virtual machine image, or
they can purchase access to a database service,
maintained by a cloud database provider. Of the
databases available on the cloud, some are SQL-
based and some use a NoSQL data model [6].

4. TRANSACTIONS

 A transaction [7] comprises a unit of
work performed within a database management
system (or similar system) against a database, and
treated in a coherent and reliable way independent
of other transactions. Transactions in a database
environment have two main purposes:

1. To provide reliable units of work that allow
correct recovery from failures and keep a
database consistent even in cases of system
failure, when execution stops (completely or
partially) and many operations upon a
database remain uncompleted, with unclear
status.

2. To provide isolation between programs
accessing a database concurrently. If this
isolation is not provided, the program's
outcomes are possibly erroneous.

 A simple transaction is usually issued to
the database system in a language like SQL
wrapped in a transaction, using a pattern similar to
the following:

1. Begin the transaction.
2. Execute a set of data manipulations and/or

queries.
3. If no errors occur then commit the transaction

and end it.
4. If errors occur then rollback the transaction

and end it.

5. PROPERTIES OF TRANSACTIONS

 Normally the transactions of a database
have to obey certain properties popularly termed as
ACID. The term ACID stands for Atomicity,
Consistency, Integrity and Durability [8].
Atomicity refers to the ability of the DBMS to
guarantee that either all of the tasks of a transaction
are performed or none of them are. Atomicity states

that database modifications must follow an “all or
nothing” rule. If some part of a transaction fails,
then the entire transaction fails, and vice versa.
Consistency ensures that the database remains in a
consistent state, despite the transaction succeeding
or failing and both before the start of the transaction
and after the transaction is over. Isolation refers to
the requirement that other operations cannot access
or see the data in an intermediate state during a
transaction and helps to implement concurrency of
database. Durability states that once a transaction
is committed, its effects are guaranteed to persist
even in the event of subsequent failures. That
means when users are notified of success, the
transactions will be persist, not be undone and
survive from system failure.
 The running theme is “scaling out instead
of scaling up,” driven by the economics of PC
commoditization, where scale out means adding
more cheap components and scale up means adding
more power and complexity to a small number of
expensive components [9]. NOSQL (Not Only
SQL) databases were developed from the ground up
to be distributed, scale out databases. They use a
cluster of standard, physical or virtual servers to
store data and support database operations. To
scale, additional servers are joined to the cluster
and the data and database operations are spread
across the larger cluster. Since commodity servers
are expected to fail from time-to-time, NoSQL
databases are built to tolerate and recover from such
failure making them highly resilient [10]. NOSQL
transactions obey BASE properties [11] which
deviate from ACID concept. Basically available
could refer to the perceived availability of the data.
If a single node fails, part of the data won't be
available, but the entire data layer stays operational.
Soft state leads to the concept of data needing a
period refresh. Without a refresh, the data will
expire or be deleted. Eventual consistency means
that updates will eventually ripple through to all
servers, given enough time. Mostly the database
designed by and support NOSQL will show only
BASE properties. Thus transactions with BASE
attributes are not expected to have immediate
consistency. This paper is going to deal with a new
architecture of datacenter so that all replicas of
database are going to have the same content at any
time “t” (ie) they are all consistent among
themselves. Since the values at database are to be
consistent, many research proposals are there to
improve those expected parameters. Modern
distributed data stores offer a choice of consistency
models [12]. Weak consistency models are fast and
guarantee “always on” behavior but provide limited

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

590

guarantees. Stronger consistency models are easier
to reason about but are slower and potentially
unavailable. The choice of a consistency model has
wide-ranging implications for application writers,
operations management, and end-users. Yet, in light
of its performance benefits, weak consistency is
often considered acceptable. Eventual
consistency—perhaps the most commonly
deployed weak consistency model—is particularly
weak: in the absence of new writes to a data item,
reads will eventually return the same value [13].

6. DATACENTER

 Regarding the components of Cloud
Environment, Datacenter is the most important one
because it hosts all the servers which store the
required data available 24x7 [Figure 1]. Data
centers are comprised of both server and
networking infrastructure. The server portion of the
infrastructure is now far down the road of
commoditization - high-end enterprise-class servers
have been replaced by large numbers of low-cost
servers. Innovation in distributed computing and
systems management software has enabled the
unreliability of individual servers to be masked by
the aggregated reliability of the system as a whole.

Figure 1: Datacenters in Cloud Environment

 A data center is a facility used for housing
a large amount of electronic equipment, typically
computers and communications equipment. As the
name implies, a data center is usually maintained
by an organization for the purpose of handling the
data necessary for its operations. For example, a
bank may have a data center keeping all its
customers' account information and transactions
involving that data are carried out. Practically every
company that is mid-sized or larger has some kind
of data center with the larger companies often
having dozens of data centers. Consistency
Management of Replicas in Wireless Grid
Environment consists in offering a service allowing

controlling the management of the consistency in
Wireless Grid [14]. A system design called
Monsoon, a blueprint for commoditizing the
networks of data centers used for “cloud” services
where large numbers of servers cooperatively
handle huge workloads [15].

7. DESCRIPTION OF CRACS

 So our proposed system design CRACS

(Figure 2) which stands for Cloud Replica with
Availability, Consistency and Scalability tries to
achieve ACID at NOSQL databases. Let us
consider there are “n” servers available at a
datacenter X. One of the servers is elected as a
Master Server.
 As the name implies, the Master Server is
the Coordinator for all the transactions take place in
that datacenter. The other “n-1” servers are
designated as Replica Servers since they store the
same replicas of various databases.

REPLICA SERVERS AT DATACENTER

REPLICA

SERVER - 1

REPLICA

SERVER - 2

REPLICA

SERVER - N

R
E
A
D
/
W
R
IT
E

D
A
T
A
/A
C
K

CLIENT 1 CLIENT 2 CLIENT M

CLIENTS

CLOUD MASTER SERVER

READ/ WRITE

QUEUE

LOAD

ANALYZER
PARSERCONFLICT

QUEUE

Figure 2: Cloud Replica with Availability, Consistency
and Scalability (CRACS)

 The Master Server is going to maintain the
entire statistics about each replica server and
doesn’t have any other database storage. It is
always watching the load at each replica server.
Usually read transactions are more than the write
transactions. But if we allow read first and then
write, then the consistency can’t be achieved. So
CRACS will give priority to write than read. Here

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

591

the Master Server is going to play roles like Parser,
Queue Manager, Transaction Manager and Load
Analyzer. Our database is build using Cassandra
NOSQL database since it is massively scalable,
partitioned row store, master less architecture,
linear scale performance, no single points of failure,
read/write support across multiple data centers &
cloud availability zones. Initially the Replica
Servers are arranged as a ring of servers so that
each one knows its neighbor. But Master Server has
to wait for the acknowledgement until it makes a
round trip delay (ie) Master Server-Replica Server
1-Replica Server 2-----Replica Server n-Master
Server. Since time is an important constraint, the
ring topology has been withdrawn and CRACS is
arranged as per the above Figure 2.

8. ALGORITHM

 Let R1, R2, R3……….Rn be the set of
Replica Servers and T1, T2…..Tm be set of
transaction available on the Queues. RQ means
Read/Write Queue and CQ means Conflict Queue.

1. Repeat While (RQ is non-empty and CQ is non-
Empty)

2. Read Transaction Ti.

3. If Transaction_Type(Ti) = ”Read” and
 Queue_Type(“RQ”) Then

 @Master Server find out the lightly
 loaded
 Replica Server say Rj from the statistics
 available.
 If @Replica Server Rj(lockbit=0) Then
 Set lockbit = 1;
 @ Rj Execute Transaction TXN(Ti);
 Message _Send(Client, Result);
 Set lockbit=0;
 Else
 Delete_Queue(RQ, Ti);
 Insert_Queue(CQ, Ti);
 End If;
 Goto Step-1;

4. Else If Transaction_Type(Ti) = ”Write” and
 Queue_Type(“RQ”) Then

 For k in 1 to Num_of_Replica_Servers
 Do
 Multicast(Rk, Ti);
 End For;
 If @Replica Server Rk(lockbit=0) Then
 lockbit=1;

 Message_Send(Master, ”Agree”);
 If (@Master
 Message_Count(“Agree”)) =
 Num_of_Replica_Servers Then
 @Rk Execute Transaction
 TXN(Ti);
 lockbit=0;
 Delete_Queue(RQ, Ti);
 Message _Send(Client,
 Result);
 Else
 Delete_Queue(RQ, Ti);
 Insert_Queue(CQ, Ti);
 End If;
 Else
 Delete_Queue(RQ, Ti);
 Insert_Queue(CQ, Ti);
 End If;
 Go to Step-1;
 End If;

5. Else if Transaction_Type(Ti) = ”Read” and
 Queue_Type(“CQ”) Then

 @Master Server find out the lightly loaded
 Replica Server say Rj from the statistics
 available.
 If @Replica Server Rj(lockbit=0) Then
 Set lockbit = 1;
 @ Rj Execute Transaction TXN(Ti);
 Message _Send(Client, Result);
 Set lockbit=0;
 Else
 Delete_Queue(CQ, Ti);
 Message _Send(Client, “Failure”);
 End if;
 Go to Step 1;

 6. Else If Transaction_Type(Ti) = ”Write” and
 Queue_Type(“CQ”) Then

 For k in 1 to Num_of_Replica_Servers Do
 Multicast(Rk, Ti);
 End For;
 If @Replica Server Rk(lockbit=0) Then
 lockbit=1;
 Message_Send(Master, ”Agree”);
 If (@Master
 Message_Count(“Agree”)) =
 Num_of_Replica_Servers Then
 @Rk Execute Transaction TXN(Ti);
 lockbit=0;
 Delete_Queue(RQ, Ti);
 Message _Send(Client, Result);
 Else

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

592

 Delete_Queue(CQ, Ti);
 Message _Send(Client, Failure”);
 End if;

 End if;
 Go to Step 1;

End While;

9. WORKING OF CRACS

Figure 3: Write operation @ CRACS

Figure 4: Read operation @ CRACS

 The architecture is said to have two queues
like Read/Write Queue and Conflict Queue. The
queue will work as a normal queue (FIFO) so that
there will be no starvation. The client will place
their request into Read/Write Queue. Master Server
then investigates (parses) the type of request
whether it is read or write transaction. Every
transaction is given a unique transaction number by
Master Server. Let the transaction taken by Master
Server be write . The write transaction is simply
forwarded to all the Replica Servers attached with
Master Server. Each Replica Server will check the
lock bit at table’s necessary records at its storage.
Let lock bit=0 at all Replica Servers. They will pass
the positive acknowledgement to Master along with
transaction number already generated (Phase 1).
Master Server will simply count those
acknowledgements. If the count is equal to the
number of Replica Servers, Master Server will
allow each Replica Server to commit the

transaction (Phase 2). Let Replica Servers commit
the transaction and send back acknowledgement to
Master Server (Figure 3). After receiving the
acknowledgements, Master Server will inform
about the success of transaction to the respective
client and delete the write transaction from the
Read/Write queue.

 If any of the Replica Servers unable to
send “agree” message during Phase 1, the Master
Server will delete the write transaction from
Read/Write Queue and insert the same write
transaction to Conflict Queue.

 If the Master takes a read transaction for
execution, then it will find out the least-load
Replica Server from the statistics maintained by it.
It routes the read transaction to it. If lock bit=0 at
this Replica Server, the Replica Server will provide
the required data to the requested client (Figure 4)
and delete the read transaction from the Read/Write
Queue. If the lock bit=1, move the read transaction
to Conflict Queue from Read/Write Queue. Let
Conflict Queue gets its chance of execution by
Master Server. Let the rejected read transaction
may get its turn. Now the same process of
examining the lock bit continues. If lock bit=0,
success will be the result else the read transaction
will be marked as a failure one to the respective
client and deleted from the Conflict Queue. Let the
Master Server will take the some rejected write
transaction from the Conflict Queue. Again the
same process is continued (ie) Master will try to get
agreement from all Replica Servers.

 If all agree in this chance, commit else
even at this try it is not possible to get the
agreement, the write transaction will be treated as a
timeout one and deleted from the Conflict Queue.
The Master Server will inform the client about the
failure of write transaction (ie) every Write/Read
transaction will be given only two chances.
Therefore at every time t, the Conflict Queue is said
to hold the rejected transactions and the Read/Write
Queue is said to have the newly entered
transactions. The transactions residing at Conflict
Queue will get the next chance for execution. If go
through CRACS positively, it will give results to
Clients. If no, it will be getting rid of the system
and gives failure message to Client. It will be the
wish of the clients to again place the same
transaction request or not.

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

593

10 SALIENT FEATURES OF CRACS

 CRACS uses the familiar, simple and

effective Two-Phase Commit Protocol during write
transactions. CRACS does write transaction at all
Replica Servers in parallel to achieve Replica
Consistency and Atomicity (all or nothing property)
(ie) write at all Replicas else withdraw from write.
So CRACS will mostly produce the stale access
rate as zero. CRACS adopts mutual exclusion
principle while committing transactions and hence
isolation of transactions will be maintained. Since
the acknowledgement is given by Replica Server to
Master Server and from Master Server to respective
client, CRACS is said to be a reliable. Since
CRACS follows reliable transmission protocol,
assured durability of committed transactions can be
given.

 CRACS adopts multicast mode (a single
command for a set of servers in parallel similar to
group communication) for write transaction, only
one write message is enough to build by Master
Server towards Replicas. CRACS gives only two
chances for either Read/Write transaction by
considering time as an important constraint.
CRACS implements row level locking to avoid lost
update problem. CRACS redirects the read
transaction to lightly loaded server in order to
fasten the operation and therefore implements the
concept of load balancing. CRACS supplies unique
transaction number to each and every transaction
and so it is possible to keep track of any transaction
at any Replicas based on that transaction number.

11. RESULTS

 Let the transaction arrives with a rate λ.
Transactions interval times and exponentially
distributed with mean 1/ λ. Transactions are
independent identically distributed random
variables, the common distribution being
exponential with mean 1/μ. Let N be the number of
transactions in the system (those queued plus one
under service) at time t. Therefore ratio δ = λ/ μ =
Mean Service Time / Mean Interarrival Time =
Traffic Intensity. The scheduling discipline is the
server is not idle with there are jobs waiting for
service and any transaction is not allowed to leave
the system before completion (either
success/failure) with proper acknowledgement.

Assume that

 E[R] = Average Response Time where R =
random variable denotes the response time in

steady state. Then,

 E[N] = δ/(1- δ) (1)

Little’s Formula states that mean number of jobs in
a queuing system in steady-state (δ < 1) is equal to
the product of the arrival rate and the mean
response time.

 So E[N] becomes λE[R] with E[R] =
Average Service Time / Probability that the server

is idle.

 If an arriving job finds ‘n’ jobs in the
system, then the response time is the sum of n+1
random variables, S+S1+S2+…+Sn.

 S = Service time of the tagged job.

 S1= Remaining service time of the job

undergoing service.

 S2…Sn = Service time of (n-1) jobs

waiting in Queue.

 Then waiting time of a transaction W = R-
S.

Average number of jobs in the Queue

 E[Q] = λE[W] = δ2/(1- δ) (2)

where Q = Number of jobs waiting in the Queue.

 With the above calculations, the following
table (Table 1) is derived showing the execution
time taken by the transactions when installing one,
two, three and four replicas respectively. Four
graphs (Figure 5, Figure 6, Figure 7, Figure 8) are
correspondingly plotted for the execution time
taken by the transactions in milliseconds. On
examining the table and graph, it is vivid that the
performance of the CRACS is stable even though
increasing the number of replicas (ie) the execution
time taken for the transactions to complete is same
for both when number of replica is one or number
of replicas is four. Hence the scalability of CRACS
is achieved on adding the Replica Server to Master
Server.

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

594

Table 1: Execution time taken by Transactions

No.

TXN Replica 1 Replica 2 Replica 3 Replica 4

1 62.7487 57.4648 59.6686 63.1661

5 111.8385 111.5655 111.4233 113.9552

10 174.0571 173.7273 173.7529 179.0481

15 235.9202 235.7692 235.8957 235.9449

20 301.9848 297.8406 297.6283 302.9761

25 359.9003 359.7616 359.9606 359.6677

30 421.9396 422.0640 421.8927 426.9336

35 483.8847 483.4632 483.5447 483.7208

40 546.0340 545.9217 551.0043 545.9421

45 607.8006 628.5857 607.9370 628.4162

50 669.8896 669.7349 669.5836 674.9845

55 731.8993 731.7923 743.4027 747.3304

60 799.0920 793.7767 792.6075 793.8123

65 855.8728 855.9129 861.1311 855.8346

70 917.9254 922.8865 985.3209 922.9373

75 979.8270 979.6737 979.6462 979.8114

80 1041.8951 1041.9499 1041.8320 1046.9093

85 1103.8182 1103.5851 1103.7922 1119.3741

90 1165.8605 1165.8658 1170.9717 1166.2597

95 1227.8490 1227.5031 1227.6718 1237.6595

100 1289.8745 1289.6114 1289.8046 1320.7453

125 1600.7832 1599.7592 1599.7898 1604.9348

150 1909.7204 1909.8560 1914.9855 1909.7202

175 2219.6866 2219.5474 2219.7188 2235.2881

200 2529.8716 2529.7485 2529.6513 2555.7383

225 2839.4651 2839.7812 2839.7630 2855.3124

250 3175.5839 3149.5080 3149.6643 3159.8831

275 3464.8120 3464.7107 3459.6435 3490.7756

300 3779.9423 3773.6642 3779.9776 3785.0923

Figure 5: One Replica vs 300 Transactions

Figure 6: Two Replicas vs 300 Transactions

Figure 7: Three Replicas vs 300 Transactions

Figure 8: Four Replicas vs 300 Transactions

12. SAMPLE SCREEN SHOTS

Figure 9: Activation of Primary Server

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

595

Figure 10: Attachment of Replica to Primary Server

13. SAMPLE CODE

 // Starting Primary Server
 new StartServer();
 // Starting Read/Write Queue Handler
 qh = new QueueHandler();
 qh.setPriority(10);
 qh.start();
 // Starting Conflict Queue Handler
 cqh = new ConflictHandler();
 cqh.setPriority(9);
 cqh.start();
 // Timer to update the system resources from

available replica periodically
 if (debugmode == 1)
System.out.println("Before
 starting timer");
 mytimer = new Timer();
 mytimer.scheduleAtFixedRate
 (new TimerHandle(),1000,50000);
 …
 …
 inFromClient = new BufferedReader
 (new InputStreamReader
 (connectionSocket.getInputStream()));
 outToClient = new DataOutputStream
 (connectionSocket.getOutputStream());

clientQuery =
inFromClient.readLine();

 inputtype = clientQuery.substring(0, 3);
 …
 …
 while(rdwrQueue.size() > 0)
 {
 MyQueue result = rdwrQueue.poll();

try
 {
 QueueClient qc =
 new QueueClient(result);
 qc.start();
 }
 catch(IOException e)

 {
 System.out.println(
 "Error creation QueueClient: "+e);
 }
 }

14. CONCLUSION AND FUTURE SCOPE

 As per the above discussion, our system
design CRACS helps to achieve ACID at NOSQL
databases. Considering some limitations, since
Master Server maintains the entire functionalities of
CRACS, it will be bottleneck to the Master Server.
If the Master Server is down, it will critical for
CRACS for carrying out the functions. Moreover
all Replica Servers are assumed to be up at all
times. If at least one Replica Server is down after
passing agreement message to Master Server (ie)
after Phase 1, consistency becomes hard in
CRACS. All transactions are assumed to be simple
producing no sub-transactions. So the future scopes
of this proposal are

 A. CRACS will be improving the fault
tolerance at both Master Server and Replica Server.

 B. Moreover the Master Server is build to
process even sub-transactions if any.

 C. Instead of deleting the Read
Transaction if the lightly-loaded server is
unavailable, we can try at the second lightly-loaded
server in order to make the Read Transaction a

successful one.

REFERENCES

[1] “Cloud computing — Issues, research and

implementations, Information Technology

Interfaces”, by Mladen A. Vouk at 30th
International Conference (ITI 2008), 2008, pp.
31–40. (Conference Proceedings)

[2] “A Trust Evaluation Model for QoS Guarantee
in Cloud Systems” by Hyukho Kim, Hana Lee,
Woongsup Kim, Yangwoo Kim in
International Journal of Grid and Distributed

Computing Vol.3, No.1, March, 2010.

[3] “A Challenge in Improving the Consistency of
Transactions in Cloud Databases - Scalability”
by R. Anandhi, Dr. K. Chitra in International

Journal of Computer Applications (0975 –

8887) Volume 52– No.2, August 2012

Journal of Theoretical and Applied Information Technology
 30

th
 April 2014. Vol. 62 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

596

[4] “An Overview about Cloud Computing" by
R.Anandhi and Dr. K. Chitra in International

Journal of Information Technology and

Knowledge Management, January-June 2012,

Volume 5, No. 1, pp. 27-30

[5] http://en.wikipedia.org/wiki/Cloud_database

[6] http://en.wikipedia.org/wiki/
Database_transaction

[7] http://www.cs.helsinki.fi/group/cinco/teaching/
2009/advanced-businesstransactions-
seminar/papers/ACID_in_Distributed_Databas
e_Shiwei_Yu.pdf

[8] “Towards Next Generation Data Center

Architecture: Scalability and

Commoditization” by Albert Greenberg,
Parantap Lahiri, David A. Maltz, Parveen
Patel, Sudipta Sengupta Microsoft Research,
Redmond, WA, USA.

[9] http://www.couchbase.com/why-nosql/nosql-
database

[10] http://stackoverflow.com/questions/3342497/ex
planation-of-base-terminology

[11] “A Study about Comparison on Consistency
Models in Cloud Transactions” by R. Anandhi,
G. Sekar, N.M. Elango, and Dr. K. Chitra in
IJCSSEECE 3(2) 2012, pp 35-4.

[12] “PBS at Work: Advancing Data Management

with Consistency Metrics” by Peter Bailis,
Shivaram Venkataraman, Michael J. Franklin,
Joseph M. Hellerstein, Ion Stoica UC Berkeley.

[13] “Consistency Management of Replicas in
Wireless Grid Environment” by Ghalem
Belalem, Lamia Allal, Cherifa in International
Journal of Grid and Distributed Computing

Vol. 3, No. 4, December, 2010. (Journal)

[14] “Developing an Enterprise Cloud Computing
Strategy” by Hong Li, Jeff Sedayao, Jay Hahn-
Steichen, Ed Jimison, Catherine Spence and
Sudip Chahal in Korea Information Processing

Society Review, Volume 16, Issue 2, 2009, pp.
4-16. (Journal)

