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ABSTRACT 

Comprehensive analysis of the Internet traffic conducted over the last decade revealed the concept of long-
range dependence (LRD) in the collected data traces. Some of this analysis work proved that this property 
is a result of the heavy tailed distribution of the packet inter-arrival time, which is a result of the heavy 
tailed distribution of packet size of the traffic sources. In this paper, we use this fact to build a traffic 
generator model that is based on multiplexing sources of heavy-tailed inter-arrival times and then counting 
the number of arrivals in the successive periods of length T. To come up with a parameterized model, we 
also study the effect of the heavy tailed distribution parameters (i.e. the Pareto distribution), and the time 
scale along with the number of multiplexed sources on the LRD of the generated traffic. Our model is 
different from the on/off models proposed in the literature that need to multiplex a very large number of 
sources, while we need only a few sources. Our findings are; 1. The LRD level is higher for sources with 
heavier tails; 2. There is a need to multiplex only a few sources; 3. The LRD level is higher for larger time 
scales; 4. Fixing the time scale and tuning the tail of the distribution helps us to come up with a 
parameterized linear model that only has one parameter, which is the Hurst parameter.      
Keywords:  Data generation; Heavy-Tailed Distributions; Long range dependence; Self-similarity;  

 
1. INTRODUCTION 

After the famous work of Leland et al. [1] had 
provided empirical evidence that LAN traffic 
exhibits self-similarity characteristics, researchers 
started to consider self-similar data models to 
describe network traffic in real systems. This new 
way of data modeling was a dramatic departure 
from the usual Poisson modeling that failed to 
capture certain features in the Internet traffic [2], 
including, in particular, the long-range 
dependence (LRD), which is the existence of 
significant correlations across large time scales. 
The LRD property is an important feature to 
capture in a network traffic model since it was 
found to have a considerable positive correlation 
with network device queuing delays [3]. 

 
Mathematical analysis of self-Similar processes 

is difficult and intractable and for this reason, 
researchers depend on simulation for mining 
information from real data sequences that are not 
always available and can be costly or impossible 
to capture. Traffic data models can be used to 
compensate for the shortage of real data as long as 
they capture the essential traffic properties, such 

as, the LRD property. Several studies have shown 
that LRD is a result of self-similarity in Internet 
traffic, which is attributed to the heavy-tailed 
distributions of file size and packet inter-arrival 
time [4, 5]. Accordingly, in this paper, we present 
a simple method of generating LRD synthetic data 
traces that is based on multiplexing several traffic 
sources of heavy-tailed distributed inter-arrival 
times. Then the number of arrivals in a period of 
time, T (the time scale), is considered as the 
generated LRD data sequence. Moreover, we use 
this model to study the effect of the heavy-tailed 
distribution parameters, the number of 
multiplexed sources, and the considered time 
scale on the LRD nature of the generated traffic.   

 
Our findings can be summarized as follows: 
 

• Multiplexing sources of heavy-tailed 
distributed inter-arrival times and counting the 
number of arrivals in a period of time T produces 
an LRD time series. This finding agrees with 
what was reported in the literature regarding the 
LRD nature of Internet traffic, which is attributed 
to the heavy-tailed distribution of the packet inter-
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arrival time, which is in turn dominated by the 
heavy-tailed distribution of the packet size. 
Moreover, we found that the heavier the tail, the 
higher the LRD level of the generated data traffic. 
This finding is in agreement with [4]. 

 

• The degree of LRD is higher at large 
time scales compared to small time scales. T[6].  

 

• Increasing the number of multiplexed 
sources does not affect the degree of self-
similarity, which tends to contradict with what 
was reported for the Internet core, especially for 
short time scales [7]. This has to do with the 
overprovisioning in the core of the Internet where 
the packet inter-arrival time is dominant by the 
idle periods and not the packet size. On the other 
hand, in highly utilized links, the packet inter-
arrival time is a function of the heavy-tailed 
distributed packet size [8]. 

 

• Our model is simple and scalable where 
only a few sources are multiplexed since the LRD 
level is controlled by the time scale, in which case 
the number of sources can be kept very low. 

 

• To generate a synthetic trace with a 
given Hurst parameter, we need only to specify 
the shape parameter of the heavy-tailed 
distribution where we found that there is an 
approximately linear relation between the shape 
parameter and the Hurst parameter.  
 

There are several methods for generating LRD 
synthetic traces proposed in the literature. Among 
the most widely used methods are the fractional 
Gaussian noise, and the fractional auto regressive 
integrated moving average (FARIMA) methods 
[9], the M/G/∞ queue model [10], the Random 
Midpoint displacement [11], the multifractal 
wavelet model [12], and others. Most of these 
methods are either not scalable (very slow when 
generating long traces), approximate, or not 
parameterized. Although, our method is very 
simple and fast (was implemented in a few lines 
of code using MATLAB and generated a very 
long trace in a matter of secondes) in generating 
very long data traces, the main goal of this work 
is not to compete with these sophisticated 
methods, but to have a simple model and outline 
the effect of the main features of the heavy-tailed 
distributions and the traffic aggregation level 
(time scale) on the degree of self-similarity. We 
also have to indicate that this is not the sole work 
that considers heavy-tailed distributions to 

generate self-similar synthetic traces because one 
of the pioneering work by Willinger, et al. [13] is 
similar to our model, except that they consider 
multiplexing alternating on and off sources with 
heavy-tailed on and off durations. The number of 
sources in the on periods in a given interval is 
considered a self-similar process when n 
approaches infinity, which requires high 
computation power to multiplex a very large 
number of sources. On the other hand, our 
generator is scalable, which only needs to 
consider multiplexing few heavy-tailed sources, 
as will be shown later. 

 
The rest of the paper is organized as follows: 

Section 2 gives an overview of self-similarity and 
long range dependence. In Section 3, we describe 
the traffic generation principle. In Section 4, we 
explore the effects of the number of multiplexed 
sources, the effects of the heavy-tailed 
distribution parameters, and the effects of the time 
scale on the LRD level of the generated synthetic 
traces. In Section 5, we propose a parameterized 
traffic generator, and in section 6, we test the 
model and present some experimental results. In 
Section 7, we test the stationarity of the generated 
data. We conclude our work in Section 8.  

 

2. SELF-SIMILARITY AND LRD 

 

Informally, self-similarity refers to the degree 
of randomness where a non-self-similar sequence 
is totally random and a self-similar sequence 
exhibits a degree of non-randomness. This degree 
of non-randomness can be utilized toward better 
system prediction and management. The self-
similarity nature of a time series is manifested in 
several features. One of these features is the LRD 
feature that is characterized by a single parameter, 
the Hurst parameter (H).  

 
Let � � 	 �����, �	 	 1� be a covariance- 

stationary process with mean µ, variance σ2, and 
autocorrelation function (ACF), ρ(k), defined as: 

 

 ��
�~
����
�	��	
	 → 	∞, �1� 
                                                                                                              

where f is an asymptotically slowly decaying 

function. Let �����
� (defined in (2)) be the 
aggregated processes of � computed by averaging 
x over non-overlapping blocks of length m, and let 
ρ
(m)

(k) denotes its ACF 
 



Journal of Theoretical and Applied Information Technology 
 30

th
 April 2014. Vol. 62 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
584 

 

 �����
� � 1� � ����� � �������

�����	��
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The process x is called exactly self-similar if 
[14]: 

 

 �����
� � ��
�, �3� 
and the variance of the �����
� is defined as: 
 �������
�� � 	�����,  ! 1, �4� 

 
This means a persistent correlation and a 

slowly decaying variance across different time 
scales are in contrast with the vanishing 
correlation and the exponentially decaying 

variance  for non-self-similar processes ( � 1). 

The parameter   is an indicator of the degree of 
self-similarity, which is expressed as a function 
of the Hurst parameter: 

 
  � 	2 � 2#. �5� 

 
The process x is called asymptotically self-

similar if (3) and (4) hold for large values of k. 
These features are sometimes called the Hurst 
effect that describes second order statistics of the 
aggregated versions of the self-similar process as 
a function of the Hurst parameter and the 
aggregation level, m. There are different 
representations of the Hurst effect. For example, 
one representation of the Hurst effect describes 
the relationship between the variance of the 
wavelet coefficients of the Haar Wavelet 
transform at a given scale j and the Hurst 
parameter as [12]: 

 
 ���%&�' � (2���
�	�, �6� 
   

where Wj is the wavelet coefficients at scale j, 
and c is a constant value. In all of these 
representations, the second order statistics are 
somehow preserved across different time scales. 
The degree of preservation is controlled by a 
single parameter, the Hurst parameter. 

3. TRAFFIC GENERATOR PRINCIPLE 

Initially, the model has several parameters; the 
number of multiplexed sources, n, the heavy-
tailed distribution parameters of the inter-arrival 
times, and the time scale T. The generation 
process starts by generating n sequences of 

heavy-tailed distributed inter-arrival times based 
on selected parameters of the distribution. Then 
the n sequences are interleaved after computing 
the arrival instances of the n sources to generate a 
single sequence of arrival instances. This 
sequence is divided into non-overlapped blocks of 
duration T. The number of arrivals in each block 
is computed to generate the self-similar time 
series. To set up an algorithm by which we select 
the various parameters, in the subsequent section, 
we study the effects of these parameters on the 
generated data sequences.  

 

4. THE EFFECT OF THE MODEL 

PARAMETERS 

 

In this section we study the effects of the model 
parameters on the degree of LRD. In other words, 
we study the effects of the heavy-tailed 
distribution parameters, the number of 
multiplexed sources, and the time scale on the 
LRD level. One of the well-known heavy-tailed 
distributions is the Pareto distribution that has the 
probability density function (pdf): 

 

 ���� � ���

����		
, �	 * �	 ! 	∞, + , 0,  �7� 

 
where a is the scale parameter, and b is the 

shape parameter. The mean and the variance of x 
are defined as: 

 

 
/ � 0 +�+ � 1 							�1�	+ , 1∞														�1�	+ * 1	 	 �8� 

 

�� � 3 +���+ � 1���+ � 2� 										�1�	+ , 2
	∞																															�1�	+	 ∈ �1, 2� �9� 

 

To test the effect of the various parameters, we 
first fixed the distribution parameters, and the 
number of multiplexed sources. We then 
generated different traces for different values of 
the scale parameter T. For each value of T, we 
generated 30 traces and the Hurst parameter for 
each trace is estimated and the average value is 
computed. The estimated Hurst parameter is then 
plotted against the time scale T. The estimation of 
the Hurst parameter is done using the Abry-
Veitch estimator [15]. We repeated this process 
for several values of the shape parameter, b. 
Figure 1 shows the result of this experiment 
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where a =1 and n = 5. The T values were selected 
as multiples of the mean of a single source; µ. 
Selecting T this way does not add any benefit 
other than controlling the range of T by 
discretizing its value around the value of µ.  

 
To see the effect of the shape parameter of the 

distribution, and the effect of the time scale, 
figure 1 indicates that whatever the time scale of 
the generated trace is, increasing the shape 
parameter of the distribution decreases the Hurst 
parameter value. Moreover, increasing the time 
scale increases the Hurst parameter value to a 
certain degree, and then the value seems to 
stabilize.  

 
To see the effect of the number of sources, we 

ran a similar experiment, but for n = 10 and the 
result was identical to the one with n = 5. This 
seems to contradict what has been reported in the 
literature about the Internet cores [7], but the 
Internet cores are overprovisioned and our model 
represents highly utilized links where packet 
inter-arrival time is controlled by the heavy-tail 
distributed packet size and not by the idle times as 
was explained for the Internet cores [8]. 
Moreover, it seems that one can use only a single 
source instead of multiplexing several sources, 
but a single source can produce traces with low 
mean and low variance, which can affect its 
stationarity (long run of the same number).    

 
To test the effect of the scale parameter a, we 

ran the same experiment using different values for 
the scale parameter. These experiments produced 
the same result as shown in figure 1, which 
proves that the scale parameter has no effect on 
the degree of self-similarity, which was expected 
since changing the scale parameter does not 
change the shape of the tail. Accordingly, in all 
coming experiments, we use the value 1 for the 
scale parameter a.  

 

 
Figure1. The Hurst Parameter As A Function Of The 

Aggregation Period For Different Values Of The Pareto 
Distribution Shape Parameter 

 
5. THE PARAMETERIZED TRAFFIC 

 
It was clear from figure 1 that increasing the 

shape parameter decreases the degree of self-
similarity. Moreover, it seemed that the change in 
the Hurst parameter is almost linear with respect 
to the shape parameter for T values greater than µ. 
To get a clearer picture about this linear relation, 
we ran several experiments where we fixed the 
time scale T and changed the value of b and we 
plotted the estimated Hurst parameter versus the 
shape parameter. We did that for several values of 
T greater than µ. Figure 2 shows that these plots 
represent almost linear lines. One can apply linear 
regression to come up with the best line fit. We 
here only consider the plot with T equal to 2µ and 
the same thing can be done for the other values. 
Figure 3 shows the linear regression. From the 
linear regression, we have a linear model for the 
value of b as a function of H. 

 
The mean value (µst) for a synthetic trace can 

be computed as the mean inter-arrival of a single 
source; µ, the time scale; T, and the number of 
sources as: 

  

 /�� � ��

�
  �10� 

 
Since we considered the value T = 2µ in our 

linear model, the mean is a function of the 

number of sources (/�� � 26�. Increasing the 
number of sources increases the mean.  
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Figure 2. The Hurst Parameter As A Function Of The 

Pareto Distribution Shape Parameter 

 
6. MODEL TEST 

 
Now we test our linear model by generating 
several traces with Hurst parameters ranges from 
0.6 to 0.85. For each value of the target Hurst 
parameter, we generated 30 traces and estimated 
the H values with their 95% confidence intervals. 
Table 1 shows the estimations of the Hurst 
parameters of these traces. From Table 1, it is 
clear that the generator can accurately generate 
synthetic traces with any arbitrary Hurst 
parameter. 

Figure 3. The Hurst Parameter As A Function Of The 

Pareto Distribution Shape Parameter For T = 2µ 

 
Table 1. Estimated Hurst Parameters 

Target H Sample mean 95% Confidence 
Interval 

0.6 0.6003    [0.5987, 0.6018]    

0.65 0.6473 [0.6455, 0.6491] 

0.7 0.6946 [0.6931, 0.6981] 

0.75 0.7475 [0.7460, 0.7489] 

0.8 0.8030 [0.8014, 0.8045] 

0.85 0.8557 [0.8541, 0.8573] 

 

7. STATIONARITY TEST 

In this section, we try to make sure that our 
scheme generates stationary data so that the Hurst 
parameter estimator is not misled by the non-
stationarity of the data [16, 17]. To test the 
stationarity of the generated synthetic traces, we 
generated several traces for several b values in the 
range from 1.1 to 2.7 for different T values in the 

range from 1µ to 3µ. Then each single trace is 
divided into several disjoint blocks and the Hurst 
parameter is estimated for each block as 
suggested in (Leland, Taqqu et al. 1994). Table 2 
shows the sample mean of the Hurst parameter 
per block along with the 95% confidence interval. 
It is clear from the width of the confidence 
intervals that the Hurst parameter does not 
significantly vary from block to block, which 
suggests that the stationary assumption is valid.  
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Table 2.  The Variation Of The H Parameter Over Time 

 

T/b 1.1 1.5 1.9 2.3 2.7 

1µ 
0.8853 (±0.0062) 
[0.8792, 0.8915] 

0.8019 (±0.0051) 
  [0.7968, 0.8070] 

0.6964 (±0.0068) 
[0.6896, 0.7032] 

0.6163 (±0.0116) 
[0.6047, 0.6280] 

0.5427 (±0.0069) 
[0.5359, 0.5496] 

2µ 
0.9030 (±0.0052)    
[0.8978, 0.9082] 

0.8291 (±0.0052) 
[0.8239, 0.8343] 

0.7506 (±0.013) 
[0.7506, 0.7376] 

0.6739 (±0.0063) 
[0.6677, 0.6802] 

0.6025 (±0.0016) 
[0.6009, 0.6040] 

3µ 
0.9028 (±0.0096) 
[0.8932, 0.9124] 

0.8315 (±0.0059) 
[0.8257, 0.8374] 

0.7570 (±0.0085) 
[0.7485, 0.7655] 

0.6772 (±0.0078) 
[0.6772, 0.6694] 

0.6143 (±0.0042) 
[0.6101, 0.6186] 
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8. CONCLUSIONS 

The goal of this paper is to utilize the heavy tail 
distributions to generate long-range dependence 
data traces.  We develop a simple traffic generator 
and we analyze the effect of the Pareto 
distribution parameters on the generated traces. 
This model is based on multiplexing few sources 
of heavy tail distributed inter-arrival times and 
counting the number of arrivals at the successive 
intervals of length T.  We find that it is only the 
tail of the distribution that matters when the need 
is to target a certain degree of LRD where the 
LRD is stronger at heavier tails. The interval T is 
another factor that affects the degree of LRD, but 
we find that fixing the T value and playing with 
the tail of the distribution produces a simple and 
linear model.     
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