
Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

355

PREDICTION OF SOFTWARE RELIABILITY USING COBB-

DOUGLAS MODEL IN SRGM

B.ANNIPRINCY
1
, Dr.S.SRIDHAR

2

1Research Scholar, Sathyabama University, Chennai

2Dean-Cognitive & Central Computing Facility, RV College of Engineering, Bangalore-560059

E-mail: 1banniprincyphd@gmail.com , shiyaprincy@yahoo.com , 2drssridhar@yahoo.com

ABSTRACT

Software reliability refers to the likelihood of software to function without failure for a specified duration of
time under few conditions. Software testing indicates the process that identifies the faults in totality and
worth of developed computer software. Yet, running software testing for a longer period will not result in
bug free software and high reliability. Further, good quality software will be ensured with an optimum
amount of code. The amount of faults eradicated will not depend on testing time alone. Hence, a two
dimensional software reliability growth model is being proposed, which makes use of Cobb- Douglas
production function that includes testing time and testing coverage effects on the number of faults removed
in the software system. Complete elimination of faults from software is impossible because of software
complexity and nature of testing team. This event is termed as imperfect debugging. Error generation is
defined as the process in which the faults are imperfectly removed and additional faults emerge from these
existing faults. An S-shaped model with imperfect debugging and fault generation is being developed in
this paper to provide solutions for the problems associated with software testing.
Keywords: Software Reliability, Two Dimensional, Non-Homogeneous Poisson Process (NHPP), Testing

Coverage (TC), Cobb-Douglas Model, Imperfect Debugging, S-Shaped Model.

1. INTRODUCTION

Software is experiencing a quick progress in the

current world. Thus, quality, reliability and
customer satisfaction have turned out to be the
chief objectives for software engineers and most
significant care for software developing industries.
The main key for controlling quality during
software development is testing [7]. The quality
features of the software system may include
maintainability, portability, usability, security,
reliability, availability and many more. Software
reliability is the most active attribute that help in
assessing and envisaging the operational quality of
the product [3]. Software Reliability is defined as
the chances of software to operate with no failure
for a known period of time under specified
conditions. Software reliability aspires to increase
the possibility of the designed program to function
properly as directed by the customers [1]. The
entire reliability of the software depends on the
precise modeling of software reliability and
prediction of its feasible trends. SRGMs support
well to resolve several important metrics like time
period, number of remaining faults, mean time
between failures (MTBF) and mean time to failure
(MTTF) in an easy way [6].

Predicting the future action from the past
knowledge is one among the major aims of system
analysis. This goal can be accomplished with the
construction of statistical model that allows
quantification of uncertainties and learning from
data. More studies have been concentrated in
software reliability engineering for the past thirty
years and several software reliability growth
models (SRGM) have been introduced [2]. The
random nature of the software failure occurrence or
the software fault detection phenomenon gets
modified with the alterations in fault-target, the
difference in the fault density for each module and
many other aspects [4, 5]. Software is one among
the safety issues that is vital in digital system safety
measurement. During the utilization of safety-
critical software, several processes like formal
verification and validation is highly essential to
illustrate the acquiescence with several regulatory
needs [8].

A software reliability growth model can be
viewed as one among the helpful mathematical tool
that aid in quantitatively evaluating the software
reliability. This mathematical model allows the
description of software reliability growth process
examined during the actual testing-phase by

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

356

considering the software failure-occurrence or the
soft-ware fault-detection phenomenon to be random
variables [5]. The testing effort and the
effectiveness of the test cases are the chief elements
from the software testing point of view. Several
models that were so far known either believe the
consumption rate of testing resource to be
unvarying or do not take the testing effort or its
testing effectiveness into account plainly [1]. At the
time of software testing, enormous testing-effort
will be used up and this specifies the effective way
of detecting errors in software. The testing-effort
consumed can be altered by various distributions
[6]. When the software reliability growth models
are applied to a safety- critical software system, few
of its drawbacks has to be kept in mind as well. The
expected total number of inherent software faults
computed through the software reliability growth
models that show large response to time-to-failure
data is one among the severe shortcomings of it [8]
[14].

Predictive models and assessment models are the
two key classifications found within these models.
Predictive models concentrates on the software
reliability in the earlier phase of life cycle like at
the requirements, at the beginning stage of design,
at the deeper design level in a waterfall life cycle
process and in the initial spiral of a spiral software
development process. Predictive models help in
bringing out the hazards that would be encountered
during the development of software under a given
set of prerequisites and for particular personnel
prior to actual beginning of project. Assessment
models use the failure data collected during the
initiation of software integration to compute the
present and upcoming project software reliability.

The ability of few of the system’s characteristics
to undergo expansion or modifications over time is
an essential aspect of many of the systems and this
has to be considered during the construction of a
statistical model for the system. For instance, the
statistical model may be a usual method to compute
software reliability. The parameters of this model
are estimated in common from the data existing on
software failures and the model may be acquired by
monitoring the overall trend of increase in
reliability during the debugging process. Speaking
in another way, a software reliability growth model
dictates the way the examination of failures and
correction of the faults that lay beneath influence
the software reliability [10]. These faults are similar
to the faults that arise during the testing and
debugging of software in a software development
process. Analytical tractability can be guaranteed in

majority of the models by assuming that a software
fault is instantly fixed upon detection, thereby
causing no new faults to emerge at the time of
debugging. In reality, the duration taken to debug a
fault has a limit or end and straightly affects the
residual number of faults, which in turn affects the
reliability of software application [16].

Software reliability is accepted extensively as
one of the most essential features of software
quality and it has initiated a good deal of research
for producing approaches that quantify it. The
SRGM is developed with the final intention of
producing better reliability inference and prediction
methods, which can be employed for software
development process [17]. The residual faults in
the software system frankly donate to the failure
rate and lead to software unreliability. Hence, the
issue associated with the measuring of software
reliability takes the residual number of faults in the
software into account to produce a solution. While
organizing maintenance activities, the number of
faults that is resident in the code also serves as a
significant measure for the software developer [18].
Analysis have depicted that majority of the faults
experienced by customers are replicated again
during the debugging of faults detected at the time
of testing. As a consequence of imperfect
debugging, the residual number of faults in the
software gets affected and sometimes become the
main reason for unreliability, leading to customer
disappointment.

2. RELATED WORKS

A wide range of researches have been presented

in the literature for developing software reliability
growth models in the presence of imperfect
debugging and error generation. The aim behind
such studies is to enhance the software
performance. These studies can be placed in one of
the two categories. The first category highlights the
empirical analysis of data gathered from software
projects. The second category deals with the
developments of models for quantitative evaluation
of software performance. A concise review of some
recent researches is presented here.

Carina Andersson [7] has introduced a
replication of an approach to choose software
reliability growth models. Its purpose was to make
decision on whether to discontinue testing and
release software or not. In contrast to the original
study, the selection method has been applied in an
empirical study that is carried out at various
development backgrounds. The outcomes of the
replication study reveal that the selection method

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

357

holds well on the empirical system test data
available, when changes in values of stability and
curve fit are accomplished. This implies that the
method was appropriate to be applied in an
environment that was different from the original.
With the application of the SRGMs to failures
during functional testing, predictions with low
relative error has been obtained. This has made
SRGMs to be a valuable method for yielding good
estimates of the total number of failures expected
during functional testing.

During the past few years, plenty of Software
Reliability Growth Models (SRGM) has been
introduced to greatly assist the engineers and
managers in tracking and measuring the growth of
reliability as improvements in software is being
made. Yet, some studies have shown that the
delayed S-shaped model may fail to finely fit the
software failure data as the testing-effort used up
for fault detection varies. Chin-Yu Huang et al. [1]
have first reviewed the logistic testing-effort
function that helps in expressing the amount of
testing-effort spent on software testing. They have
explained the way of incorporating the logistic
testing-effort function into both exponential type
and S-shaped software reliability models. In
addition, the proposed models are elucidated under
both ideal and imperfect debugging conditions. The
proposed models were applied to two real data sets
and the results were compared with those obtained
from conventional SRGM. The experimentation
results have proved that the predictions obtained
with the proposed models were better and the
logistic testing-effort function was more
appropriate for direct incorporation into both
exponential-type and S-shaped software reliability
models.

V. B. Singh et al. [9] have made an analysis on
how the development of various software reliability
growth models, where the fault detection process
rely on both the number of residual fault and testing
time, have been made. In addition, they have seen
that how these models can be deduced as the
delayed fault detection model by using a delay
effect factor. They have proposed four new
SRGMs, which depend on the power function of
the testing time concept with the assumption that
two kinds of faults were present in the software.
These faults were the leading faults and the
dependent faults. Leading faults can be eradicated
immediately after a failure is being detected. The
dependent faults on the other hand are masked by
leading faults and hence to eliminate the depending
faults, their related leading faults are to be got rid

first with a debugging time lag. Real software error
data have been utilized to test these models for
obtaining their goodness of fit, predictive validity
and applicability.

Lev V. Utkin et al. [10] have given an outline for
combining imprecise Bayesian methods with
likelihood inference and it is presented based on the
reliability growth models. The central theme behind
this approach is to partition a set of concerned
model parameters into two sub-sets that are
connected to various basic features of the overall
model and then, the Walley’s idea of imprecise
Bayesian models that are associated with one of the
sub-sets of the model parameters is combined with
maximum likelihood estimation of the remaining
sub-set. The Bayesian model is developed
according to the first subset and statistical data,
which then offers lower and upper predictive
probability distributions based on the second set of
parameters. Estimation of these additional
parameters are then done using a maximum
likelihood method, which depends on a new
proposition for maximum likelihood estimation
over sets of distributions following from imprecise
Bayesian models for the other subset of parameters.
The application of this hybrid method to reliability
growth models and regression models is being
demonstrated along with the discussion of topics
that are necessary to validate and promote the
framework.

N. Ahmad et al. [4] have presented a paper that
makes a comparison on the predictive ability of the
two familiar software reliability growth models
(SRGM), namely, the exponential growth model
and inflection S-shaped growth model. They have
analyzed the exponentiated Weibull (EW) testing-
effort functions initially and have conferred about
the exponential type and inflection S-shaped type
SRGM with EW testing-effort. Later on, an
analysis on the actual data applications was made
and the predictive capability of both the SRGMs
was compared graphically. Results have shown that
the prediction capability of the inflection s-shaped
type SRGM is far better than the exponential type
SRGM.

P. K. Kapur et al. [2] have put forward two
general frameworks for developing a number of
software reliability growth models that works on
the basis of a non homogeneous Poisson process
(NHPP) in an imperfect debugging and error
generation environment. The proposed models were
first designed to be used in situations where the
failure observation and fault elimination testing
processes were indistinguishable. Later, it was

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

358

extended to cases where differentiation exists
between both the failure observation and fault
elimination testing processes.

S. M. K. Quadri et al. [6] have presented an
approach to build software reliability growth model
depending on Non-Homogenous Poisson Process.
Here, the time dependent behaviors of testing-effort
expenditures that are explained by Generalized
Exponential Distribution (GED) have been taken
into account. Software Reliability Growth Models
(SRGM) that works on the basis of NHPP are
developed to incorporate the (GED) testing-effort
expenditure at the time of software testing. An
assumption was made that the error detection rate
to the amount of testing-effort used up during the
testing phase is proportional to the existing error
content. Least Square and the Maximum Likelihood
estimation approaches are used to estimate the
model parameters and numerical experiments were
carried out on real data from variety of software
projects to examine the software measures. The
analysis and the comparison on the results of
evaluation have proved that the proposed SRGM
with (GED) testing effort has a reasonably
improved fault prediction capability than the other
prevailing techniques and it is moderately suitable
for real time applications. The model is applicable
to a large community of software systems. The
optimal release policy for this model on the basis of
cost-reliability principle is discussed as well.

Testing-time observed at the instant while a
stochastic characteristic of the software failure-
occurrence time or software failure-occurrence
time-interval changes is termed as change-point.
The change-point on the software reliability growth
process has a greater effect on the accuracy of
software reliability evaluation that relies on
software reliability growth model (SRGM). Shinji
Inoue and Shigeru Yamada [5] have proposed an
SRGM with the effect of the change-point based on
a bivariate SRGM. To conduct an accurate software
reliability evaluation, they have considered the
software reliability growth process to rely on the
testing-time and testing-effort factors at the same
time. Additionally, they have explained an optimal
software release problem for obtaining optimal
testing-effort expenditures depending on our model.
Moreover, they have numerically illustrated the
software reliability assessment based on their
bivariate SRGM and have utilized real data to
estimate the optimal testing-effort expenditures.

R. Satya Prasad et al. [11] have suggested that
the software reliability may be treated as a measure
of how accurately a software system operates.

Enhancing software processes will lead to the
achievement of a reliable software product.
Software process improvement involves steps that
watch software development practices and
energetically looks for the means of increasing
value, decreasing errors, raising productivity and
improving the developer’s working atmosphere.
Statistical process control (SPC) was one of the
most excellent methods that exist to monitor and
control the software process. SPC apply proper
statistical tools to processes for providing
uninterrupted enhancements in quality, reliability of
software products and services and productivity in
the labor force. Here, they have proposed a control
method, which relies on time between failure
observations using half logistic distribution, with
Modified Maximum likelihood Estimation
(MMLE) that depends on Non Homogenous
Poisson Process (NHPP).

3. SOFTWARE RELIABILITY GROWTH

MODELS WITH TWO TYPES OF

IMPERFECT DEBUGGING

This paper deals with the development of a two-

dimensional model that combines the effect of both
the testing time and testing coverage to get rid of
the unreliable faults latent in the software. It is
assumed that the number of faults removed from
the software in a given time rely on the entire
testing resources available to the testing team. This
testing resource will be a combination of both the
testing time and testing coverage. The cobb-douglas
production function has been employed here to
develop the two dimensional model that includes
the effect of both the testing time and the testing
coverage on the number of faults eliminated from
the software system. The faults in the software may
not be eradicated ideally and this imperfect removal
of faults would cause additional faults to be
generated. In this paper, an s shaped model with
imperfect debugging and fault generation is being
developed. The proposed method is implemented
using JAVA and it is validated on real data sets.

Time Dependent Model

The time dependent behavior of fault removal
process is elucidated through a Software Reliability
Growth Model (SRGM). Nearly, major part of the
software reliability models can be labeled under
Non Homogeneous Poisson Process (NHPP)
models. The assumption that guides these models is
the software failures that arise at random times
during testing, which are caused by faults lying
hidden in software. For the purpose of modeling the
software fault detection phenomenon, counting

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

359

process }0);({ ≥ttN is defined that represents the

cumulative number of software faults detected by

testing time t . The SRGM based on NHPP is

formulated as:

!

))(exp()(
})(Pr{

n

tmtm
ntN

n
−⋅

== (1)

Where

 =n 0, 1, 2, 3….

)(tm is the mean value function of the

counting process)(tN

Testing Coverage Based Modeling

The testing coverage based software reliability
growth model can be formulated as in eqn. (2)

()
()

()()tmN

tc

tc

dt

tdm
−

−

=

1

')(
 (2)

Where,

)(tm is the expected number of faults detected

in the time interval],0(t

)(tc is the testing coverage as a function of

time t .

N is the constant that indicates the number of

faults lying dormant in the software at the initial
stage of testing.

Here)(tc defines the percentage of the coded

statements that has been observed until time t. So,

)(1 tc− defines the percentage of the coded

statements which has not yet been covered until

timet . Then, the first order derivative of)(tc ,

denoted by)(' tc , represents the testing coverage

rate.

Therefore, function ()
()tc
tc

−1

' can be taken as a

measure of the fault detection rate. In one
dimensional SRGM with testing coverage we need

to define coverage function)(tc . But, in a two

dimensional modeling approach a coverage
function is not required to be defined and it can be
estimated directly from the data.

S-Shaped Flexible Model

In 1992, Kapur and Garg developed an S-shaped

model with an assumption that a few extra faults
could be eliminated without really affecting the
system, upon the removal of various faults from the
software. The improved Kapur garg model is

derived by employing a logistic rate as the
detection rate to capture the effect of both the
imperfect debugging and fault generation. This
model assumes a Non-Homogeneous Poisson
Process. The basic assumptions of the model are as
follows:

1. Failure /fault removal phenomenon is modeled
by NHPP.
2. During execution, software is subject to failures
caused by residual faults in the software.
3. Failure rate is uniformly affected by all the faults
remaining in the software.
4. Fault detection / removal rate may vary at any
time instant.
The differential equation representing the rate of
change of cumulative number of faults detected in

time t is given in Eq. (3)

()
()

())(
exp1

' tmN
bt

b
tm −

−−

=

β
 (3)

The Eq. (4) gives the mean value function of the

number of faults detected in time t

()
()

()τβ

τ
τ

b

bN
m

−+

−−
=

exp1

)exp(1
 (4)

Where,

b is the rate at which a fault is detected/removed in

the software.

m is the mean number of faults detected/ corrected

corresponding to testing timet .

β is the constant.

x is the rate of error generation.

p is the probability of imperfect debugging.

Two-Dimensional Modeling

The development of the two dimensional
software reliability models allows the software to
be quantitatively accessed. For software engineers,
the necessity to develop a two dimensional model
serve as one of the perfect solutions to the software
reliability problem. In one dimensional analysis, the
object variable is normally based on one basic
variable even if, the object assumes several
different functions depending upon its reliance on
diverse factors. Two dimensional models are
employed to capture the dual effect of testing time
and testing coverage on the number of faults
eliminated in the software. Conventional one
dimensional models work on the basis of testing
time, testing effort or testing coverage. Yet, if the
software reliability is measured in terms of the time
spent for software testing or the percentage of
software covered, the outcomes will not be certain.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

360

A software reliability growth model is highly
necessary to obtain high precision software
reliability. This software reliability growth model
should provide solution to problems associated with
both testing time and testing coverage (the
percentage of code covered of the software). For
this reason, a two dimensional software reliability
growth model that considers the joint effect of
testing time and testing effort on the number of
faults removed in the software is being developed.
This two dimensional model depends on the Cobb
Douglas production function.

Cobb Douglas Production Function

The Cobb–Douglas functional form of
production functions is generally employed to
indicate the relationship of an output to its inputs. It
was proposed by Knut Wicksell (1851–1926) and
tested against statistical data by Charles Cobb and
Paul Douglas in 1900–1928. The Cobb-Douglas
function has taken an easy view of the economy in
which production output depends on the amount of
labor engaged and the amount of capital invested.
Despite the presence of several factors that
influence economic performance, their model was
shown to be extremely accurate.

The mathematical form of the production
function is given as in eqn. (5).

νν

KALY
−

=
1

 (5)
Where,

Y is the total production per year.

L is the labor input.

K is the capital input.

A is the total factor productivity.

ν is the elasticity of labor which is constant and

determined by available technology.
Figure. 1 graphically show the total production
influenced due to change in the proportion of labor
and capital.

Figure.1 Two-input Cobb-Douglas production function.

The following assumptions were made by Cobb
and Douglas.

1. If labor or capital extinct, then production will
extinct as well.
2. The marginal productivity of labor is
proportional to the amount of production per unit of
labor.
3. The marginal productivity of capital is
proportional to the amount of production per unit of
capital.

Cobb Douglas Model

Software Testing operates system or application
under organized situations and evaluate the results.
The controlled conditions should incorporate both
normal and abnormal conditions. Testing should
purposely try to make things fail for determining
whether things occur when they shouldn't occur or
things don't take place when they should. It is
oriented to detection. The testing team possesses
several resources of testing to ensure that software
developed is of high quality. These include
software testing man hours, CPU time, testing
effort testing coverage etc.

αα
τ

−

≅
1
us 10 ≤≤ α (6)

Where,

τ is the testing resources

s is the testing time

u is the testing coverage

α is the Effect of testing time

Let { }0,0),,(≥≥ ususN be a two-dimensional

stochastic process that describes the cumulative

number of software failures by time s and testing

coverage u . A two-dimensional NHPP with a

mean value function),(usm is formulated as

()()
()()

()() ...2,1,0,,exp
!

,
,Pr =−== nusm

n

nusm
nusN (7)

() () ξζξζλ ddusm

s u

∫ ∫=

0 0

,, (8)

Two-Dimensional S-Shaped Model

In this proposed method, a two dimension S-
shaped model has been developed to determine the
combined effect of testing time and testing
coverage. The differential equation that denotes the
rate of change of cumulative number of faults
discovered with respect to the total testing
resources is given as in eqn.(9).

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

361

()
()

()()τ
τβ

τ mN
b

b
m −

−+

=

exp1
' (9)

The mean value function of the number of faults
detected with testing resources x using the initial

condition () 00 =x is given as in eqn. (10).

() ()
()τβ

τ
τ

b

bN
m

−+

−−
=

exp1

)exp(1
 (10)

Now the testing resource of one dimensional S-
shaped model is extended to a two dimensional
problem. Using the cobb-douglas production, the
corresponding mean value function is given by eqn.
(11).

()
()()
()αα

αα

β
τ

−

−

−+

−−
=

1

1

exp1

exp1

ubs

ubsN
m (11)

In the above two-dimensional mean value

function, if 1=α , the above mean value function

can be viewed as a traditional one dimensional time

dependent SRGM and if 0=α , it becomes a

testing coverage dependent SRGM.

Two-Dimensional S-Shaped Model with

Imperfect Debugging

In practice, debugging process will be imperfect.
Two possibilities may happen at the time of fault
removal process. The first possibility may be that
the fault may be considered to be perfectly
removed. But in reality, the fault is not repaired
clearly and hence results in similar kind of failure
yet again. The second possibility may be the
introduction of new faults during correction. This is
of high risk because in the first case, the total fault
content remains unchanged. While in the second
case, error generation would cause a raise in fault
content. The effects of both sort of imperfect
debugging that occurs during testing phase are
included in our proposed model. The rate equation
for flexible model with imperfect debugging and
error generation can be written as in eqn. (12).

() () ()[]ττ
β

τ
τ

mxmN
bp

m
dt

d

b
−+

+

=
−

exp1
 (12)

Logistic function is being employed to
incorporate the effect of imperfect debugging and
error generation. By solving the above equation

using initial condition 0)0(=N , we get

()
()

()
()































+

+
−

−
= −−

−

−

xpb

xp

bpx

N
tN

1

1

exp
exp1

1
1

1

τ

τ
β

β (13)

Reliability Evaluation

Software evaluation is a most important event in
quantitative software reliability assessment. The
software reliability function signifies the
probability that a software failure does not occur in

time-interval ()()0,0, ≥≥+ xtxtt , provided that the

testing team or the user operation has been going up

to time t . In two dimensional SRGM, software

reliability can be evaluated in an operation phase
where it is assumed that the testing coverage is not
expanded. We can derive the probability that the
software failure does not occur in time-

interval []()0,0, >>+ ωω
πππ
sss that testing has

been going up to
π
s and the value of testing

coverage has been attained up to
π

u by testing

termination time
π
s as:

() ()() ()[]{ }kusmkusmusR /,/,exp,/
ππππππ

ωω −+−=

 (14)

Where k indicates the set of parameter estimates

of a two dimension SRGM

4. RESULTS AND DISCUSSION

SRGM is termed as a tool that can be used to

assess the software quantitatively, develop test
status, schedule status and observe the changes in
reliability performance. Software reliability
assessment and prediction is essential for assessing
the performance of software system. In this paper,
an effective software reliability growth model with
two kinds of imperfect debugging is being
developed. In this segment, the sample outputs that
are produced during the execution of program are
being described well.

Here, the reliability of the software is recognized
through the S-shaped Cobb-Douglas function. This
paper utilizes both the testing time and testing
coverage to identify the reliability of the software.
A data set with failure number, failure interval and
also day of failure is given as the input to the
SRGM tool. The tool identifies the faults and gives
the reliability parameters as output as shown in
Fig.2.

Figure. 2 Sample output of the SRGM Tool

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

362

Comparative Analysis

Using the proposed imperfect-debugging model,
we now show a real numerical illustration for
software reliability measurement. Here, in order to
validate the imperfect-debugging model, the AE
and MSF are selected as the evaluation criteria.

The Accuracy of Estimate (AE) is defined as in
eqn. (15).

a

a

M

aM
AE

−

= (15)

Where
a

M is the actual cumulative number of

detected errors after the test, and a is the estimated

number of initial errors. For practical purposes,

a
M is obtained from software error tracking after

software testing.

The mean of Squaraed Errors (Long-term
predictions) is defined as in eqn. (16).

()[]∑
=

−=

k

i

ii mtm
k

MSE

1

21
 (16)

Where ()itm is the expected number of errors at

time it estimated by a model and
i

m is the

observed number of errors at time it . MSE gives

the qualitative comparison for long-term
predictions. A smaller MSE denotes a minimum
fitting error and better performance.

The proposed method is compared with Yamada
Rayleigh Model and Huang Logistic Model. The
comparison values of the proposed method,
Yamada Rayleigh model and Huang Logistic
Model are given in Table 1.

Table 1: Comparative results of different SRGM
Model a r AE(%) MSE

Proposed Model 628.87 0.0824 69.97 0.83

Yamada Rayleigh Model 565.35 0.0196 57.91 1.23

Huang Logistic Model 394.08 0.0427 10.06 1.18

The graphical representation of MSE and AE for

the proposed method, Yamada Rayleigh model and
Huang Logistic Model are shown in Fig. 3 and
Fig.4 respectively.

Figure.3 Comparision of AE

Figure.4 Comparision of MSE

It is evident from the tables and graphs that the

proposed method is more effective and achieves
improved AE and reduced MSE than the other
existing methods of comparison.

5. CONCLUSION

In this paper, common methods have been

developed to obtain new generalized models, which
is based on uncomplicated assumptions and
unvarying with the basic software reliability growth
modeling that rely on NHPP. The proposed model
establishes an extensive theoretical framework to
account for the interaction between diverse
dimensions of software reliability metrics. The
dynamics of testing time of the software and the
testing coverage has been incorporated to yield a
two dimensional framework. The Cobb Douglas
production function is being employed to capture
the joint effect of testing time and testing coverage.
Validation of the proposed model is carried out on
real data sets and analyses are made using goodness
of fit criterion. The proposed SRGM is proved to
have improved performance than other SRGMs and
offer a reasonable predictive capability for the
actual software failure data. Hence, this model can
be applied to a broader classification of software.

REFERENCES

[1] Chin-Yu Huang, Sy-Yen Kuo and Michael R.
Lyu, "An Assessment of Testing-Effort

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

363

Dependent Software Reliability Growth
Models," IEEE Transactions on Reliability,
Vol. 56, No. 2, pp. 198-211, Jun 2007.

[2] P. K. Kapur, H. Pham, Sameer Anand and
Kalpana Yadav, "A Unified Approach for
Developing Software Reliability Growth
Models in the Presence of Imperfect Debugging
and Error Generation," IEEE Transactions on

Reliability, Vol. 60, No. 1, pp. 331-340, Mar
2011.

[3] Khurshid Ahmad Mir, "A Software Reliability
Growth Model," Journal of Modern

Mathematics and Statistics, Vol. 5, No. 1, pp.
13-16, 2011.

[4] N. Ahmad, S. M. K Quadri and Razeef Mohd,
"Comparison of Predictive Capability of
Software Reliability Growth Models with
Exponentiated Weibull Distribution,"
International Journal of Computer

Applications, Vol. 15, No. 6, pp. 40-43, Feb
2011.

[5] Shinji Inoue and Shigeru Yamada, "A Bivariate
Software Reliability Model with Change-Point
and Its Applications," American Journal of

Operations Research, Vol. 1, No. 1, pp. 1-7,
Mar 2011.

[6] S. M. K. Quadri, N. Ahmad and Sheikh Umar
Farooq, "Software Reliability Growth modeling
with Generalized Exponential testing –effort
and optimal Software Release policy," Global

Journal of Computer Science and Technology,
Vol. 11, No. 2, pp. 27-42, Feb 2011.

[7] Carina Andersson, "A replicated empirical
study of a selection method for software
reliability growth models," Journal of Empirical

Software Engineering, Vol. 12, No. 2, pp. 161–
182, Apr 2007.

[8] Han Seong Son, Hyun Gook Kang and Seung
Cheol Chang, "Procedure for Application of
Software Reliability Growth Models to NPP
PSA," Journal of Nuclear Engineering and

Technology, Vol. 41 No. 8,pp. 1065-1072, Oct
2009.

[9] V. B. Singh1; Kalpana Yadav, Reecha Kapur
and V. S. S. Yadavalli, "Considering the Fault
Dependency Concept with Debugging Time
Lag in Software Reliability Growth Modeling
Using a Power Function of Testing Time,"
International Journal of Automation and

Computing, Vol. 4, No. 4, pp. 359-368, Oct
2007.

[10] Lev V. Utkin, Svetlana I. Zatenko and Frank
P.A. Coolen, "Combining imprecise Bayesian
and maximum likelihood estimation for

reliability growth models," In Proc. of the Sixth

International Symposium on Imprecise

Probability: Theories and Applications,
Durham, UK, 2009.

[11] Dr. R. Satya Prasad, K. Ramchand H Rao and
Dr. R.R.L. Kantha, "Software Reliability
Measuring using Modified Maximum
Likelihood Estimation and SPC," International

Journal of Computer Applications, Vol. 21,
No.7, pp. 1-5, May 2011.

[12] Andy Ozment, "Software Security Growth
Modeling: Examining Vulnerabilities with
Reliability Growth Models," Journal of

Advances in Information Security, Vol. 23, No.
2, pp. 25-36, 2006.

[13] Martin Baumer, Patrick Seidler, Richard Torkar
and Robert Feldt, "Predicting Fault Inflow in
Highly Iterative Software Development
Processes: An Industrial Evaluation," In Proc.

of the 19th IEEE International Symposium on

Software Reliability Engineering, Seattle, USA,
2008.

[14] Man Cheol Kim, Seung Cheol Jang and Jae Joo
Ha, "Possibilities And Limitations of Applying
Software Reliability Growth Models To
Safetycritical Software," Journal of Nuclear

Engineering and Technology, Vol. 39, No. 2,
pp. 145-148, Apr 2007.

[15] Chin-Yu Huang, Jung-Hua Lo, Sy-Yen Kuo and
Michael R. Lyu, "Software Reliability Modeling
and Cost Estimation Incorporating Testing-
Effort and Efficiency," In Proc. of the 10th

International Symposium on Software

Reliability Engineering, Boca Raton, FL, pp.
62-72, Nov 1999.

[16] Swapna S. Gokhale, Michael R. Lyu, and
Kishor S. Trivedi, "Incorporating Fault
Debugging Activities Into Software
ReliabilityModels: A Simulation Approach,"

IEEE Transactions on Reliability, Vol. 55, No.
2, pp. 281-292, Jun 2006.

[17] Katerina Goseva-Popstojanova, and Kishor S.
Trivedi, "Failure Correlation in Software
Reliability Models," IEEE Transactions on

Reliability, Vol. 49, No. 1, pp. 37-48, Mar 2000.

[18] Swapna S. Gokhale, Michael R. Lyu and Kishor
S. Trivedi, "Software Reliability Analysis
Incorporating Fault Detection and Debugging
Activities," In Proc. of the Ninth International

Symposium on Software Reliability

Engineering, Paderborn, Germany, pp. 202-
211, Nov 1998.

