
Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

317

SOLVING THE JOB SHOP SCHEDULING PROBLEM WITH A

PARALLEL AND AGENT-BASED LOCAL SEARCH

GENETIC ALGORITHM

LEILA ASADZADEH

Department of Computer Engineering and Information Technology, Payame Noor University, I. R. of
IRAN

E-mail: leila_asadzadeh_cs@yahoo.com , l_asadzadeh@pnu.ac.ir

ABSTRACT

Job shop scheduling problems play an important role in both manufacturing systems and industrial process
for improving the utilization of resources, and therefore it is crucial to develop efficient scheduling
technologies. The Job shop scheduling problem, one of the best known production scheduling problems,
has been proved to be NP-hard. In this paper, we present a parallel and agent-based local search genetic
algorithm for solving the job shop scheduling problem. A multi agent system containing various agents
each with special behaviors is developed to implement the parallel local search genetic algorithm.
Benchmark instances are used to investigate the performance of the proposed approach. The results show
that the proposed agent-based parallel local search genetic algorithm improves the efficiency.

 Keywords: Job Shop Scheduling Problem, Parallel Genetic Algorithms, Local Search, Multi Agent System

1. INTRODUCTION

 The Job Shop Scheduling Problem (JSSP) is a
real-world problem in a field of production
management. To survive in the modern competitive
marketplace, which requires lower cost and shorter
product life cycles, a corporation must respond
quickly and precisely to the customer’s demands.
Effective scheduling plays an important role in this
adaptation. JSSP is an optimization problem that
can be described in terms of a set of jobs, each with
one or more operations. The operations of a job
have to be processed in a specified sequence on a
specific set of machines. The time required for all
operations to complete their processes is called the
makespan. The objective of JSSP aims to minimize
the makespan value. Job shop scheduling problem
is a difficult NP-hard combinatorial optimization
problem.

 Meta-heuristics are one of many approximation
methods widely used to solve practical optimization
problems. In recent years, several algorithms
employing a meta-heuristic approach such as
Genetic Algorithm (GA), Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO), Bee
Colony Optimization (BCO), and Artificial Bee
Colony (ABC) have been applied to solve JSSP.

 Genetic algorithms have been implemented
successfully in many scheduling problems, in
particular job shop scheduling. Parallelization and
Hybridization are an extremely effective ways of
improving the performance and effectiveness of
genetic algorithms.

 Parallel GA (PGA) is explored by the researchers
in 1980s and 1990s to make the technique faster by
executing GAs on parallel computers. PGA can be
classified into four types: master-slaver model,
coarse-grained, fine-grained and hybrid algorithm
[1]. Many researchers employed these types of
PGA in solving JSSP with varying degrees of
success. Zhang and Chen [2] did a research on
coarse-grained PGA based grid job scheduling and
able to minimize the execution time of jobs and
makespan of resources compared to the serial
process, hence improve the utilization of resources.
This proposed algorithm proved to produce
minimal makespan and near-optimal solution.
Kirley [3] had divided JSSP into sub-problems of
lower complexity and used parallel evolution of
partial solutions. Asadzadeh and Zamanifar [4]
proposed an agent-based parallel genetic algorithm
approach. This parallel approach is based on a
coarse-grained model. The initial population is
divided into sub-populations, and each sub-

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

318

population is evolved separately. Communication
between sub-populations is restricted to the
migration of chromosomes. Lin et al. [5] introduced
a hybrid model consisting of coarse-grain genetic
algorithms connected in a fine-grain style topology.
Their method can avoid premature convergence,
and it produced excellent results on standard
benchmark job shop scheduling problems.

 The most common form of hybridization is to
couple genetic algorithms with problem-specific
methods in order to make the approach really
effective. Traditional heuristic methods are
incorporated to enhance the performance of genetic
search. Ombuki and Ventresca [6] proposed a local
search genetic algorithm that uses an efficient
solution representation strategy in which both
checking of the constraints and repair mechanism
can be avoided. In their approach at local search
phase a new mutation-like operator is used to
improve the solution quality. Wang and zheng [7]
by combining simulated annealing and genetic
algorithms developed a general, parallel and easily
implemented hybrid optimization framework, and
applied it to job shop scheduling problem. Based on
effective encoding scheme and some specific
optimization operators, some benchmark job shop
scheduling problems are well solved by the hybrid
optimization strategy.

 In this paper, we use both parallelization and
hybridization to enhance the efficiency of GA and
propose an agent-based parallel local search genetic
algorithm for solving the job shop scheduling
problem. A multi agent system containing various
agents each with special behaviors is developed to
implement the parallel local search genetic
algorithm.

 The reminder of this paper is organized as follow.
In Section 2, we describe our proposed parallel
local search genetic algorithm and its details.
Experimental results are described in section 3. Our
conclusion is given in Section 4.

2. AGENT-BASED PARALLEL LOCAL

SEARCH GENETIC ALGORITHM FOR

JSSP

 Recent years have seen more active research on
parallel genetic algorithms (PGAs) being applied in
solving difficult problems. Hard problems normally
require a bigger population, and this implies the
requirement of higher computational power. One of
the most popular PGAs is the coarse grained PGAs
where the population is subdivided into a few
subpopulations keeping them relatively isolated

from each other. This model of parallelization
introduces an extra operator from normal GAs,
which is the migration operator, used to send
individuals from one subpopulation to another. In
this research, we use the island model where the
population is partitioned into small subpopulations
by geographical isolation and migration can happen
between neighbor islands (subpopulation). The
island model usually has several isolated
subpopulations of individuals evolve in parallel
where each island does its own genetic operation
and periodically sharing its best individuals through
migration.

 For more complicated problems a genetic
algorithm needs to be integrated with problem-
specific methods in order to make the approach
really effective. Coupling genetic algorithms with
local search techniques can be an extremely
effective way of improving the performance and
effectiveness of these algorithms. A local search
operator can be incorporated into the genetic
algorithm by applying the operator to each member
of the population after each generation. This hybrid
method often carried out in order to produce
stronger results than the individual approaches can
achieve on their own.

 Agents and multi-agent systems have wide
application in parallel and distributed systems. One
of the important features of agents is their
capability in parallel implementing of genetic
algorithms. We used this feature in our approach
and proposed a parallel and distributed model for
job shop scheduling problem. To implement our
parallel local search genetic algorithm, a multi
agent system containing some intelligent agents is
developed. Agents of multi agent system have
special actions that are used to implement the
parallel genetic algorithm.

 In this section the proposed agent-based model
for JSSP is introduced and its structure and details
are described. The architecture of agent-based
model is introduced in section 2.1. In section 2.2,
parallel genetic algorithm, local search procedure
and the migration mechanism are illustrated.

2.1 Architecture of Proposed Agent-Based Model

 To implement the agent-based model, we used
JADE [8] as a platform and built our agents on it.
The model contains various agents that
communicate over the context that provided by
JADE middleware. Agents developed on JADE can
interoperate with other agents built with the same
standard. JADE allows each agent to dynamically

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

319

discover other agents and to communicate with
them in a peer-to-peer manner.

 An overall schematic of this architecture has
represented in Figure 1. Agents distributed over
various hosts in the network and JADE provides a
secure communication channel for them to
communicate. We have some containers in our
platform that agents are executed on them.

 Each agent of the proposed model has been
developed for a special purpose. Initialization

Agent (IA) has the responsibility of creating the
initial population for the genetic algorithm and
computing the fitness value of chromosomes. This
agent locates on main host and controls the
behaviors of other agents in the platform. Each
Execute Agent (EA) locates on a distinct host and
executes genetic algorithm on its sub-population.
Synchronization Agent (SA) locates on main host
and coordinates migration between sub-populations
of EA agents.

2.2 Parallel Local Search Genetic Algorithm

 In this paper, we use the island model to
implement our parallel local search genetic
algorithm where the population is partitioned into
small subpopulations and migration can happen
between neighbor islands. The island model usually
has several isolated subpopulations of individuals
evolve in parallel where each island does its own
genetic operation and periodically sharing its best
individuals through migration.

 To improve the performance and effectiveness of
the parallel genetic algorithm, we couple the
genetic algorithm with local search technique. A
local search procedure is incorporated into the

genetic algorithm by applying the operator to each
member of the population at each generation. This
hybrid method produces stronger results than the
individual approaches.

 The agent-based parallel local search genetic
algorithm is shown in Figure 2. As shown in this
figure, after loading the genetic algorithm and JSSP
parameters, IA creates genetic population and
computes fitness value of chromosomes then it
divides it to some sub-populations with the same
size and sends each of them to a execute agent
(EA). Each EA locates on a distinct host and
executes genetic algorithm on its sub-population
independently. Different sub-populations
communicate with exchanging of migrants. Parallel
local search genetic algorithm consists of two
phases: evolution phase and migration phase. In
evolution phase, sub-populations are evolved
independently by execute agents and in migration
phase, exchanging of migrants is done. These two
phases run repeatedly for predefined times.

2.2.1 Local search procedure

 After creating a new chromosome using the
crossover operator, EA applies Local search
procedure on it to improve its quality. A local
search based on the Variable Neighboring Search
method (VNS) [9] is performed on the
chromosomes. This procedure is shown in Figure 3.
Local search procedure consists of two mutation
operator: Exchange and Insert that are applied on
the selected chromosome randomly. The new
created chromosome is accepted if the fitness of it
be better than previous one. Figure 4 illustrates an
example of Exchange and Insert.

Initialization

Agent
GA-code

GA-code

Host 1
Host N

Host 2 ….

 Figure 1: Proposed Agent-based Architecture for Job Shop Scheduling Problem

Agent Communication Channel

Execute

Agent

Execute

Agent

Synchronization

Agent

JADE Middleware

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

320

Begin

1 IA Initializes the JSSP and GA parameters;

2 IA creates the genetic population and calculates the fitness value of chromosomes and sends chromosomes to EAs;

3 For each EA do in parallel

4 Receive sub-population P from IA;

5 While generation-span not satisfied do

 /* Evolution phase */

6 i=0;

7 Create a new sub-population P′ ;

8 While (i < migration-frequency) do

9 While (all chromosomes not selected) do

10 Select two chromosomes from P;

11 Combine chromosomes by crossover operator and create new chromosomes;

12 Execute local search procedure on new chromosomes;

13 Add new chromosomes to P′ ;

14 End while

15 P = P′;

16 Remove all chromosomes of P′;

17 i=i+1;

18 End while
 /* Migration phase */

19 Send message to SA;

20 Receive message from SA and start migration;

21 Select some of best solutions from sub-population and send them to neighbors;

22 Receive bests from neighbors and update the sub-population;

23 End while

24 End for

 End

Figure 2: Agent-based Parallel Local Search Genetic Algorithm

 Procedure Local Search

 Get initial solution xS
 x = xS

 p=1

 n = number of jobs

 m = number of machines

 α = random_integer_number [1, nm]

 β = random_integer_number [1, nm], β ≠ α

 x = Exchange(x, α, β)

 α = random_integer_number [1, nm]

 β = random_integer_number [1, nm], β ≠ α

 x = Insert(x, α, β)

 α = random_integer_number [1, nm]

 β = random_integer_number [1, nm], β ≠ α

 x = Exchange(x, α, β)

 For i=1 to nm do

 α = random_integer_number [1, nm]
 β = random_integer_number [1, nm], β ≠ α

 If (p=1) then x' = Exchange (x, α, β)

 Else if (p=0) then x' = Insert(x, α, β)

 If (fitness (x') ≥ fitness (x)) then x = x'

 Else p = | p - 1|

 End for
 If (fitness (x) ≥ fitness (xS)) then xS = x

 End Procedure

Figure 3: Local Search Procedure

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

321

2.2.2 Migration mechanism

 Communication between various sub-populations
is carried out by exchanging of migrants. In our
approach we use synchronous migration policy.
Each EA executes local search genetic algorithm on
its sub-population for a predefined number of
generations then it sends a message to SA
informing end of its evolution phase.

 The SA is a synchronization agent, which
coordinates migration between sub-populations of
EA agents. After receiving message from all the
EAs, SA broadcasts a message to them notifying
start of the migration phase. In the migration phase,
each EA exchanges some of its best chromosomes
with its neighbors. Chromosomes with low fitness
value in sub-population are replaced with the best
chromosomes of neighbors.

3. EXPERIMENTAL RESULTS

 Before evaluating our parallel local search genetic
algorithm we explain detailed implementation of
the genetic algorithm such as chromosome
representation, fitness function, selection
mechanism and crossover operator as follow.

a) Chromosome representation: The feasible
solutions of job shop scheduling problem are
encoded by chromosomes. We use a method that
was introduced by Gen and Tsujimura [10] to
encode chromosomes of the problem. In this
method, each job has a distinct number that is used
to indicate its operations. In the n jobs and m
machines problem, the maximum number of genes
in each chromosome is n×m. Job Ji appears in a
chromosome m times. An example chromosome of

the problem in Table 1 is (3 2 1 2 3 1 1 3 2). In this
chromosome, 1 means job J1, 2 means job J2, etc.
Job J1 has three operations; thus the number of
times 1 appears in the chromosome is three.

Table 1: An Example of a 3×3 JSSP

b) Fitness function: To determine the survival
probability of a chromosome at the next generation,
we need to define a fitness function. In this paper,
we use a well-known fitness function proposed by
Goldberg [11] to evaluate the chromosomes.
Suppose that Xc is a chromosome with makespan
value M(Xc) and the Mmax is the maximum value of
makespan in the genetic population. The Fitness of
chromosome Xc is calculated as follows:

Fit (X
c
) = M

max
 – M(X

c
) (1)

c) Selection mechanism: Roulette wheel selection
containing the elite retaining model [11] is used to
select chromosomes. In the elite retaining model,
the best chromosome from the previous generation
is copied to the next generation. Hence the best
produced solution can never become worse from
one generation to the next.

d) The crossover operator: After the selection of
chromosomes, in order to create new chromosomes
for the next generation a crossover operator is used.
We use the partially matched crossover (PMX)
proposed by Goldberg and Lingle [12]. Two
crossover points are chosen from the chromosomes
randomly and equably. Then the genes of two
parents that are in the area between the crossover
points are exchanged. This operator can produce
illegal schedules. The IA repairs each illegal
schedule and converts it to a legal one.

 We evaluate the agent-based local search genetic
algorithm using LA problem instances contributed
by Lawrence [13]. These problem instances are
available from the OR library web site [14].

 The proposed parallel local search genetic
algorithm is implemented on a network with five
computers. One of computers is indicated as main
host and executes IA and SA. The number of EA
agents was fixed at four in our experiments and
these agents form a virtual cube among them. Each
EA has two neighbors.

Job Machine, Processing time

J1 1,3 2,3 3,3

J2 1,2 3,3 2,4

J3 2,3 1,2 3,1

Before J3 J2 J2 J1 J1 J3 J1 J3 J2

J3 J1 J2 J3 J2 J3 J1 J1 J2

J3 J2 J2 J1 J1 J3 J1 J3 J2

J3 J2 J2 J1 J3 J3 J1 J1 J2

Insert

Exchange

After

Before

After

Figure 4: Exchange and Insert Mechanisms

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

322

 The parameter values for parallel local search
genetic algorithm are defined as follows:
population consists of 100 chromosomes (so each
ub-population has 25 chromosomes), the generation
span is 100, the crossover rate is 0.95, the migration
frequency is 10 generations, the migration rate is 5
chromosomes and the migration topology is cube.

 In order to determine the performance of the
parallel local search genetic algorithm, results are
compared with other algorithms (Ombuki and
Ventresca [6], Asadzadeh and Zamanifar [4],
Dorndorf and Pesh [15], Goncalves et al. [16] and
Binato et al. [17]). A summary of experimental
results is given in Table 2. This table lists problem
name, problem size (number of jobs × number of
machines), the best known solution (BKS), the
solution obtained by parallel local search genetic
algorithm (PLSGA) and the solution obtained by
each of the other algorithms.

 As shown in Table 2, the PLSGA obtained the
best known solution for almost all problem
instances and the quality of solutions that have been
found is better than almost all other algorithms
except the Goncalves et al. [16] algorithm that had
better solution quality in LA22 and LA27 instances.

For the purpose of showing the behavior of the
convergence point, the parallel local search genetic
algorithm applied on LA21 and LA15 instances
during various generations and the average
makespan of the best schedules obtained are shown
in Figures 5-6. As shown by these figures,
convergence speed in the PLSGA is very high.
Thus coupling genetic algorithms with local search
heuristic and parallelization accelerates the
convergence speed and improves the performance
of these algorithms.

Table 2: Experimental Results on Benchmark Instance

Binato

et al.
Goncalves

et al.

Dorndorf

and

Pesh

Asadzadeh

and

Zamanifar

Ombuki

and

Ventresca
PLSGA BKS

Size
(n×m)

Problem

666 666 666 666 666 666 666 10×5 LA01

655 655 681 655 655 655 655 10×5 LA02

604 597 620 617 597 597 597 10×5 LA03

863 863 863 863 863 863 863 15×5 LA08

951 951 951 951 951 951 951 15×5 LA09

958 958 958 958 958 958 958 15×5 LA10

1039 1039 1039 1039 1039 1039 1039 20×5 LA12

1292 1292 1292 1292 1292 1292 1292 20×5 LA14

1207 1207 1207 1273 1207 1207 1207 20×5 LA15

946 945 1008 994 959 945 945 10×10 LA16

784 784 809 793 792 784 784 10×10 LA17

848 848 916 860 857 848 848 10×10 LA18

842 842 880 873 860 842 842 10×10 LA19

907 907 928 912 907 907 902 10×10 LA20

1091 1046 1139 1146 1114 1046 1046 15×10 LA21

960 935 998 1007 989 960 927 15×10 LA22

1032 1032 1072 1033 1035 1032 1032 15×10 LA23

1271 1218 1278 1323 1307 1218 1218 20×10 LA26

1320 1256 1378 1359 1350 1281 1235 20×10 LA27

1368 1355 1411 1437 1451 1355 1355 20×10 LA30

1784 1784 - 1844 1784 1784 1784 30×10 LA31

1850 1850 - 1907 1850 1850 1850 30×10 LA32

1719 1719 - - 1745 1719 1719 30×10 LA33

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

323

Figure 5: Convergence Curves for PLSGA for LA21

Instance.

Figure 6: Convergence Curves for PLSGA for LA15

Instance.

4. CONCLUSION

 In this paper, we solved the job shop scheduling
problem with an agent-based parallel local search
genetic algorithm. A multi agent system containing
various agents each with special behaviors was
developed to implement the parallel local search
genetic algorithm. We used the island model to
parallelize the genetic algorithm where the
population is partitioned into small subpopulations
and migration can happen between neighbor
subpopulation. To enhance the efficiency of the
genetic algorithm, a local search procedure was
applied.

 The results obtained from our proposed method
showed that the agent-based parallel local search
genetic algorithm is effective in finding optimal and
near optimal solutions for various instances of the
job shop scheduling problem. The results also
showed that convergence speed of our algorithm is

high and optimal or near optimal solutions are
found rapidly. Parallelization and local search
heuristic accelerate the convergence speed and
improve the performance of genetic algorithms. In
the future, we will concentrate the proposed method
to apply it on other optimization problems.

ACKNOWLEDGMENTS

This work is supported by the Payame Noor
University of I. R. of Iran through the research
program under Grant no. D/72096/7.

REFERENCES:

[1] R. Yusof, M. Khalid, G.T. Hui, S.M. Yusof,
and M.F. Othman, “Solving job shop
scheduling problem using a hybrid parallel
micro genetic algorithm”, Applied Soft

Computing, Vol. 11, 2011, pp.5782–5792.
[2] H. Zhang and R. Chen, “Research on coarse-

grained parallel genetic algorithm based grid
job scheduling”, In Proceedings of the Fourth

International Conference on Semantics,

Knowledge and Grid, 2008, pp. 505–506.
[3] M. Kirley, “A co-evolutionary genetic

algorithm for job scheduling problems”, In

Proceedings of the 1999 Third International

Conference on Knowledge-based Intelligent

Information Engineering Systems, 1999, pp.
84–87.

[4] L. Asadzadeh and K. Zamanifar, “An agent-
based parallel approach for the job shop
scheduling problem with genetic algorithms”,
Mathematical and Computer Modeling, Vol.
52, No. 11-12, 2010, pp.1957–1965.

[5] S.C. Lin, E.D. Goodman, and W.F. Punch,
“Investigating parallel genetic algorithms on
job shop scheduling problems”, Genetic
algorithm research and applications group,
State University of Michigan, Michigan, 1995.

[6] B.M. Ombuki, and M. Ventresca, “Local
search genetic algorithms for the job shop
scheduling problem”, Applied Intelligence,
Vol. 21, 2004, pp. 99–109.

[7] L. Wang, and D.Z. Zheng, “An effective
hybrid optimization strategy for job shop
scheduling problems”, Computers &

Operations Research, Vol. 28, 2001, pp. 585–
596.

[8] F. Bellifemine, A. Poggi, and G. Rimassa,
“Developing multi-agent systems with a FIPA-
compliant agent framework”, Software:

Practice and Experience, Vol. 31, 2001, pp.
103–128.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2014. Vol. 62 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

324

[9] P. Hansen, N. Mladenovic´, and J.A.M. Pérez,
“Variable neighborhood search: methods and
applications. 4OR: Quarterly journal of the
Belgian”, French and Italian operations

research societies, Vol. 6, 2008, pp. 319–360.
[10] M. Gen, and Y. Tsujimura, “Genetic

algorithms for solving multiprocessor
scheduling problems”, In Proceeding of 1st

Asia-pacific conference on simulated evolution

and learning, 1997, pp. 106–115.
[11] D.E. Goldberg, “Genetic Algorithms in Search,

Optimization and Machine Learning”, MA:
Addison-Wesley, 1989.

[12] D.E. Goldberg, and R. Lingle, “Alleles, loci,
and the TSP”, In Proceeding of 1st

International Conference on Genetic

Algorithms, 1985, pp. 154–159.

[13] S. Lawrence, “Resource Constrained Project
Scheduling: An Experimental Investigation of
Heuristic Scheduling Techniques”, Graduate
School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, 1984.

[14] D.C. Mattfeld, and R.J.M. Vaessens, “Job shop
scheduling benchmarks”, Internet: www
mscmga.ms.ic.ac.uk, 2008.

[15] U. Dorndorf, and E. Pesch, “Evolution based
learning in a job shop environment”,
Computers and Operations Research, Vol.22,
1995, pp. 25-40.

[16] J.F. Goncalves, J.J.D.M. Mendes, and M.G.C.
Resende, “A hybrid genetic algorithm for the
job shop scheduling problem”, European

Journal of Operational Research, Vol. 167,
2005, pp. 77–95.

[17] S. Binato, W.J. Hery, D.M. Loewenstern, and
M.G.C. Resende, “A GRASP for job shop
scheduling”, In C.C. Ribeiro, P. Hansen,

(Eds.), Essays and Surveys in Metaheuristics,
Kluwer Academic Publishers, 2002.

