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ABSTRACT

In this paper twaovel intelligent model reference adaptive conén@llare proposed. In these schemes the
intelligent supervisory loop is incorporated intoetconventional model reference adaptive controller
framework by utilizing an online growing neural uzky network structure in parallel with it. In the
conventional MRAC scheme, the controller is desigtwerealize plant output converges to referencdaho
output based on the plant which is linear withutisance free system. This scheme is for controllimgar
plant effectively with unknown parameters. Howeveasing MRAC to control the linear system with
disturbance and nonlinearities at real time isicliff. In this paper, it is proposed to incorporateeural /
fuzzy controller in MRAC to overcome the problenheTcontrol input is given by the sum of the outplut
conventional MRAC and the output of neural / furontroller. The effectiveness of the proposed adntr
schemes is demonstrated by simulations. The prdpsskemes can significantly improve the system’s
behavior and force the system to follow the refeeemodel and minimize the error between the moael a
plant output

Keywords: Model Reference Adaptive Controller (MRAC), Neural Network (NN), Fuzzy Logic
Controller(FLC)

introducing new control methodology,as in [3].
1. INTRODUCTION Therefore, robust adaptive control has become an

important control strategy required for practical

Adaptive control provides adaptationsystems.In the 1980s, researchers have found that

mechanisms (adaptive laws) that adjust a controllapplying standard adaptive laws in the case of
for a controlled system (plant) with parametricexternal acting disturbances is no longer possible,
structural, or environmental uncertainties, tas the adaptive control objective of having a
achieve desired system performance. Modd&lounded error between the plant and reference
reference adaptive control (MRAC) is a maimoutputs cannot be achieved. In addition, it was
approach of adaptive control. In MRAC, a referencebserved that other perturbations, such as time-
model is chosen to generate the desired outpuirying parameters and un-modeled dynamics,
trajectory, and the main task of MRAC is to ensureould also result in unbounded signals in the
the output of the controlled system to track theystem. Consequently, the need for robust adaptive
output of the reference model system, in additon tcontrollers emerged, as in [4]-[7].

closed-loop stability [1], [2]. Narendra and parthasarathy [8] has shown in

Most adaptive control schemes have showgeneral indirect approach to nonlinear discretetim
good convergence and stability in the ideal casepuro — control scheme which consists of
when no disturbances or noise act on the systddentification and adaptive control by using the
and when its parameters are constant. However, [[9],[10] that the NN - based adaptive control
the presence of bounded disturbances, noise aalgorithm can cooperate well with identification of
time-varying parameters, not even the stability ahe nonlinear functions to realize a nonlinear
adaptive control schemes can be guaranteed with@adaptive control when the nonlinear adaptive
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control when the non linear control scheme isombining MRAC with the use of fuzzy systems as
feedback linearizable. In [11] presented a fightereference models and controllers for control
aircraft pitch controller evolved from a dynamicdynamical systems can be found in [38]. A hybrid
growing RBFNN in parallel with a model referenceapproach by combining fuzzy controller and neural
adaptive controller. The abilities of a neurahetworks for learning-based control is proposed in
network for nonlinear approximation and[39].

development for nonlinear approximation and the The adaptive controller is used in various

development of a nonlinear adaptive controller . L :
based on neural networks has been discussed plrnacncal applications have attracted much attentio

many works [12], [13] A Neurl Networ temal 1 10 conol engneerng Thi s cue t
Model Control (NN- IMC) strategy is investigated he Eesence gofpunknown arameters or unknO\?vn
in [14] by establishing inverse and forward modeﬁ P P

based neural network (NN)The use of neurafS8TR 0 PRt PEATEEE WD BT
networks for identification and control of non lare P 9

system has been demonstrated in [15] discussesc%ntrOI law. In general, the external load

direct adaptive neural network controller for assla disturbances always exist, although It |s_bounded.
. . 0o, the controller without considering the
of non linear system. An Adaptive Inverse Mode?

Control System (AIMCS) is designed for the plantdlsturbances can not stabilize the closed-loop

and two Radial Basis Function (RBF) neuraFontrOI system. A solution to thls_problem Is to
incorporate dead-zone technique in the adaptive

networks are utilized in the AIMCS discussed in ; : .
. controller. With this approach, the controller will
[16]. An adaptive-neuro-fuzzy-based sensor Iess[ dati h trol i h th
control of a smart-material actuator is presented plop updating the control. parameters: when the
[17] |dent|f|¢r error is smaller _than some threshold.
Thus, it can prevent the estimated parameters from
It is well known that fuzzy technique has beeteing infinity. However, the regulation error okth
widely used in many physical and engineeringystem will only be asymptotically bounded if large
systems, especially for systems with incompletthreshold is used, resulting in undesirable closed-
plant information [18]-[23]. In addition to fuzzy loop performance. All control techniques have their
logic, it has been widely applied to controllerindividual characteristics. Hence, combining the
designs for nonlinear systems [24]-[28]. A novemerits of the adaptive control with that of the rau
fuzzy model reference based controller fonetwork control theories and then designing a new
controlling nonlinear plants can be found in [29]stabilizing controller will have better performance
Hugang Han [30] proposed an adaptive fuzzthan that based on one control theory
controller for a class of nonlinear system with
disturbance. A problem of Fuzzy-Approximation-
Based adaptive control for a class of nonlineaetim

delay systems with unknown nonlinearities an

In this paper, this point is addressed by
presenting a novel intelligent model reference
gdaptive control schemes is proposed to replace the

strict-feedback structure is discussed  in [31]neural network controller used in conventional

. model reference adaptive scheme by a fuzzy logic
Cheng-Wu Chen et al [32] discussed a proposedn%\ )
method of stability analysis for a GA-BasedcontrO”er' A FLC- MRAC scheme is proposed to

reference ANNC which is capable of handlind™Prove the tracking performance. The fuzzy logic
. : P Sontroller is used to compensate the disturbande an
problems in a nonlinear system.

nonlinearity of the plant that is not taken into
FL technique has been proposed to replace Pbonsideration in the conventional MRAC. The role

controllers in different error minimization of model reference adaptive controller is to perfor

applications [33], [34]. Various applications of FLthe model matching for the uncertain linearized

have shown a fast growth in the past few yearsystem to a given reference model.

FLC has become popular in the field of industrial

control applications for solving control, estimatjo . .
and opti?ﬁization problems 9[35] AN adaptivepmposes the structure of an MRAC design. Section
) 3 describes the neural network -based model

control approach for time-varying permanent: . )
magnet synchronous motor (PMSM) systems wit eference adaptive controller and 4 describe fuzzy
chaotic behavior is discussed in [36]. Observer-9' controller-based model reference adaptive

based model reference output feedback trackincontroller schemes. Section 5 analyses the result

control design for switched linear systems Withdimigcﬂlsﬁ)%ssszg ﬁ{/;g?ngrgg?osfg schemes and the
delay is investigated in [37]. A learning approath 9 '

The paper is organized as follows. Section 2
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2. STRUCTURE OF AN MRAC DESIGN 2.2 Relative Degreen =1

As in Ref [1] the following input and output
The MRAC is one of the major approaches filters are used,
in adaptive control. The desired performance ig, = F¢. + gu (4)
expressed as a reference model, which gives the 1 P
wished response to an input signal. The adjustmenp), = Fa_)2 + gy
. 2 p
mechanism changes the parameters of the regulator .
by minimizing the error between the system outputvhereF is an (=2 *(n-D stanle matrix such that

d the ref del. - . . .
and the reference mode det(Sl F) is a Hurwitz polynomial whose roots

include the zeros of the reference model and that

2.1 The Plant Model and Reference Model (F,9) is a controllable pair. It is defined as the

System u " t
Sections To consider a Single Input andregressTor \4ec or T
Single Output (SISO), Linear Time Invariant (LTl) w=[d] , &, , Yos r] (5)

plant with strictly proper transfer function In the standard adaptive control scheme, the

G (s) = Ye(s) _ Z,(s) (1) controlUy, is structured as
u,(s) " Re(s) U =6"w ©)

mr

— T H
whereu, is the plant input ang, is the where 6 =[6,.6,,6,,C,]" s a vector of

plant output .Also, the reference model is given by adjustable parameters, and is considered as an
estimate of a vector of unknown system parameters

0.
G,(s)= Y (S) =K, Zn(S) (2) The dynamic of tracking error
r(s) Rm(S) e:Gm(S)p*eTw (7)

wherer andy;, are the model’s input and

output. Define the output error as . Kp - X
_ _ Where P =——and § = 4(t)- 8" represents
€= yp ym (3) Km
Now the objective is to design the controlparameter error. Now in this case, since the teansf
input Uy, such that the output erraz,goes 1o zero ¢ netion hetween the parameter err@r and the

asymptotically for arbitrary initial condition, whee tracking errore is strictly positive real (SPR) [1],

theT reference signalt) is piecewise continuous andt e adaptation rule for the controller gdiis given
uniformly bounded. The plant and reference mod

; ; ; y

satisfy the following assumptions. :

Assumptions: 0 =-Tewsgn(") (8)
1. Zy(s) is a monic Hurwitz polynomial wherel is a positive gain.

of degree m

2. An upper bound of degreen, of 2.3 Relative Degreen =1

In the standard adaptive control scheme, the cbntro

RD(S) Unr is structured as
3. The relative degree i, -m, of N
G(s) U, =0w+0 d=6 w-6'Tgsgnk,/K,)
4. The sign of the high frequency gain 9)
K, are known where 6 =[6,,6,,6,,C,]" is a vector of
5. Zn(S),Rn(S) are monic Hurwitz adjustable parameters, and is considered as an
polynomials of degreefpm estimate of a vector of unknown system parameters
respectively, where 6" .
Bh<n The dynamic of tra~cking error is
6. The relative degreg,fv pm.gm Of e=G,(9)(s+p,)p 0@ (10)
Gm(s) is the same as that G[S), i.e.,
Nm*= N*
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. K N Let the state model of linear time invariant system
where P* =—" andg = 6(t) - 6" represent the is given by the following form

m X(t) = AX(t) + BU(t)
parameter errorG_ (S)(S+ p,) is strictly proper Y(t) = CX(t) + DU (1)

and Strictly Positive Real(SPR). Now in this Caser.c scheme is restricted to a case of Si(12)

. ; ngle input
since the transfer function between the parametgrngle output control, noting that the extension to

error 8 and the tracking erragis SPR, [1] and the multiple input multiple output is possible. To keep

adaptation rule for the controller gafris given the plant output yconverges to the reference model
=T san(K /K 11 output y,, we synthesize the control inputby the
%39 (r P n) (1) following equation,
wheree;- Y, ym andl is a positive gain. —
The adaptive laws and control schemesU =U m ¥ U nn (13)

developed are based on a plant model that is freéhereUy, is the output of the adaptive controller,
from disturbances, noise and unmodelled dynamickl,, is the output of neural network andis the
These schemes are to be implemented on actudisturbance signal

plants that most likely to deviate from the plant 6w
models on which their design is based. An actual ™
P . . . _ T
plant may be infinite in dimensions, nonlinear and@ =[§,,6,,6;,C] (14)

its measured input and output may be corrupted by -

noise and external disturbances. It is shown by =[@, @,, Y, ]

using conventional MRAC that adaptive scheme itapility of the system and adaptability are then
designed for a disturbance free plant model angchieved by an adaptive control law,Uracking
may go unstable in the presence of smathe system output to a suitable reference model,

disturbances. such that error e =y ym-o asymptotically. The
controller design concept is illustrated using the
3. NEURAL NETWORK-BASED MODEL following state equation of the second order
REFERENCE ADAPTIVE CONTROL system, which can be expanded to higher order
system comfortably.

To make the system adapt more quickly and morg( = x

efficiently than conventional MRAC system, a new”1 = 72

idea is proposed and implemented. The new ideg _

which is proposed in this paper is the neural 2 _aX1+bX2 +cU

network based model reference adaptive contrdfhere v is an external disturbance acts on the

scheme (NN-MRAC). In this scheme, the controllefystem and let the output,

is designed by using parallel combination of = X4

conventional MRAC system and neural network (16)

controller. The block diagram of the proposedifferentiating

MRAC with neural network is shown in fig.1. The y = X, =X, =ax, +bx, +cU

theoretical basis for the proposed scheme is as’

follows, U =c™(x, —ax, —bx,) (17)
Suppose a controllddy can be established which

(15)

%0 :
Madel should track a desired signal sa&¥»q then the
controller equation can be written as
esired _y|  Newral 3 1.
Sam 3] Newrk (— Yas=c YKy —ax, —bX,y) (18)
P . i which is the same as,
Adaptive Une Y% r Nonlinear Ud = D(yp1X2d’X2d) (19)
Contrller e fn %»® | where D is functional relation between states,
control and output. Thus it possible to have a
system response equals to desired value if the
fmp controller U can effectively inverse the system
Figure L. Block diagram of the NN-MRAC dynamics. In other words the controller U should
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- 3.2 Learning of NN
track the system such th&= 0, However due to The relations between inputs and output of NN is
system dynamics, the error equation has to hexpressed as,
written as,

n

e=(x-x)=0 Z i =Vy +Z‘,XiVij
Thus the controller U should be written as i=1 (23)

— ~ 1y
U=c (XZd max bX?d ) +U nr (20) Yiink =V\61+Z|13=121le
The neural network control law now becomes _ (24)
Uy =D (YpiXea1 %oa) @y Z=FE,) (25)
where y is the plant output .from the above Y, = F(Y.ik)
discussion it can be seen that the input to theaheu ) o ) (26)
network should be where F (.) is the activation function.

we chose sigmoid function for the activation

X =[Yp: Xag: Xpq] (22) function as follow
The design procedure multilayer back propagation . 2a .
neural network controller and derivation are T axnn)
1+exp(
discussed next expt ,ux ) 3 (27)
where 4 > 0,ais a specified constant such that
3.1 Structured of Proposed Multilayer Back a<0, and F(x) satisfies —a<F(x) <a
propagation Neural Network Controller The aim of training to minimize the sum of square
Design error energy function,
The inputs of the neural network are the desire% K) = 1 2
system states, its derivatives, and the plant. W (k) = E[ym B yp]
used multilayer back propagation networks for the i i (28)
proposed method. The weight are updated by using
_ 0E
Wi = 5w
g (29)
=y O0E
: 01~ 1
A" 0Wp, (30)
o x
AV = —
oV;;
. (31)
AV, =1 0E
oi = —o
Figure 2.Sructure of Neural Network : avOj (32)
. . . i |
The multilayer back propagation network is Where' is the learning role,
especially useful for this purpose, because of its OE 0E OE and oE are derived as
inherent noplinear mappingl capabili}ies, which cara\/\/_l ' an 'a\/i_ GVO-
deal effectively for real-time online computer, ! ! !
control. The NN of the proposed method has thre@!lOW:
layers: an input layer with neurons, a hidden layer 0E _ JE OYp OUy  AF(Yink) OYoin
with n neurons and an output layer with one neurorgy ou. F(v.. » dw.
as shown Fig 2. Let be the input to thé" node in Oy Oty F(Yoime) - ¥ = (39)

the input layerz be the input to thg" node inthe  9E  OE oy, Ou, OF(Y.y)
hidden layer,y be the input to the node in the =
output layers. FurthermoreV; be the weight 0\%1 ayp aup I:(y—ink) aY—ink (34)
between the input layer and hidden lay¢r is the &, pe dz, ),
weight between the hidden layer and the outpuézfip a‘b (Oind_ BYini Z*”})J

layer. N O Hyind A HZiy) Ziy M

(39)

292



Journal of Theoretical and Applied Information Technology

10" April 2014. Vol. 62 No.1 B
© 2005 - 2014 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

E_EYW My K dyn ¥y

‘No]' Wp d"p F(y—ink) d)Link aF(Z—inj) Z-inj

(36)
where
oE
Y =~(Ym = Yp)
P (37)
ou
P4
of (Y-ink) e
(z)y\;\i/nk = F(Zi)
: (39)
0Y-ink  _ ,
of (i) J (40)
aZir.“: =X
oVij 41)
oF(y_.
PO = A y(a-F(y,, Yo+ Fy )
oY) 2a (42)
OF(z) _ pt,
a(Zfin,-) N 2a (a F(Z_i”j))(a+ I:(Z—inj )) (43)
Oy _ 0y 0Uy
3U  auU,, oU )
= i / a_U
U, o,
U :Umr +Unn (45)
U . AU,
2 14— m
U, ~ au,,
(46)
OUp, _ OF(Yoin) Yo OF (Ziny) 024y
Uy Oy OF(Ziyy 0zZiy  OX; @7)
% (48)
le(new) :le(old) +AW), (49)
Woa(new) =W, (old) + AWy, (50)
V;; (new) =V;; (old) + AVj; (51)
Voj (new) =V (old) + AVy; (52)

4. FUZZY LOGIC CONTROLLER-BASED

MODEL REFERENCE ADAPTIVE

CONTROL
In this section FLC is proposed to replace the
neural network controller of NN-MRAC scheme
and it used for error minimization. For the NN-
MRAC scheme, the NN controller is generating a
quantity, in such a way so as to minimize a
specified error. Therefore, FLC can replace the
conventional NN controller to solve the
optimization problem. A Fuzzy Logic Controller-
based Model Reference Adaptive Control (FLC-
MRAC) scheme is proposed to improve the system
performance. The controller structure proposed in
this paper for the FLC-MRAC is shown in Figure 3
which consists of a parallel MRAC, and a FLC.
While the MRAC forces the plant output to follow
closely the output of the model which represents
the desired closed loop behavior, and the FLC used
for various operating conditions, the objective of
the fuzzy logic control is to determine the control
signal for controlling nonlinear processes and
disturbance. The error and the change in error are
given input to the FLC. The rules and membership
function of FLC are formed from the input and
output waveforms of NN controller of designed
NN-MRAC. The block diagram of FLC-MRAC
scheme is shown in Fig. 3.

Iulf)
Reference
Model

Dested | Fomr C
Siates —p)  Controller ¥
7 g
‘() +
Ul _— Up ! U [ o

Comroller

/ Adaptive
law

Figure. 3 Block diagram of the proposed FLC-
MRAC

To keep the plant output, converges to the
reference model outpuy, it is synthesize to
control inputU,¢ by the following equation,

U :Umr+Ufz (53)

whereU,, is the output of the adaptive controller
Uy, is the output of the fuzzy logic controller and
is the disturbance signal

U, =0'w
6 :[(91,(92,03,C0]T
w=[w,w,y,

System o
3

(54)

293



Journal of Theoretical and Applied Information Technology
10" April 2014. Vol. 62 No.1 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

whered is the update law vector, anadis the

parameter vector. : _

The proposed FLC is a Mamdani-type rule base | '";":'1" i
where the inputs are the error (e) and error change |
(ce) which can be defined as

e(k) = yn, (k) —y, (k)
ce(k) =e(k) —e(k 1)
wherey(K) is the response of the reference model

[T}
'

input 1
3 =

at K" sampling intervaly,(k ) is the response of the  l.c.bobe bbbl 0 i -

plant output at Rsampling intervale(k) is the error
signal at K sampling intervalce(K) is the error

change signal at'ksampling interval. | ; T ; . o T T
FLC consists of three stages: fuzzification, rule * A H T L T RO

execution, and defuzzification. In the first stathe ] 7 e S

crisp variables(kT) andce(kT) are converted into ° ' P S ' : T

fuzzy variables error (€) and change in error (ceg o1

using the triangular membership functions. Eaclgﬂ_‘_
fuzzy variable is a member of the subsets with

(]
E
[y}
A~

degree of membership varying between ‘0’ (non

member) and ‘1’ (full member).In the second stag

of the FLC, the fuzzy variables error (¢) anc - i_‘ - - 5 i., : - |
change in error (ce) are processed by an inferen
engine that executes a set of control rule .

containing in a rule base. In this paper the cdntrc ‘
rules are formulated using the input and OUtpL =0 . SR - . N S
waveforms of the PI controller of designed PI- ¢, T
MRAC System behaVIOr and the eXperlence 0‘5I B 5 i A b b 4 e R S b e
control engineers. The reverse of fuzzification i<& | .
called defuzzification. The FLC produces the®" 1 7
required output in a linguistic variable (fuzzy ¢
number). According to real-world requirements, the | B, |
linguistic variables have to be transformed togris
output. As the centroid method is considered to k oo r (:)
the best well-known defuzzification method, it is
utilized in the proposed method. The feature of the
proposed scheme is that the FLC can compensate

for the nonlinearity of the system to linearize the Table 1 Linguistic Rule Base
dynamics from the output of the adaptive controllgr
to the system output, while the role of the adaptiv 4 | ferroris A’and change in error is ‘A’ then the
controller is to perform the model-matching for the output is ‘D’

linearized system.

o

Figure. 4 NN controller inputs: (a) input 1, (b) input 2,
(c) NN controller output

If error is ‘B’ and change in error is ‘B’ then the
output is ‘F’

4.1. Construction of Fuzzy Rules
In this paper the fuzzy rules are formulated by 3 If error is ‘C’ and change in error is ‘D’ then the
using the input and output waveforms of the neura ' output is ‘H’

controller of designed NN-MRAC and the
experience of control engineers. Let us consider an 4.
example of a NN controller inputs: input 1, input 2
and NN controller output waveforms are given by If error is ‘E’ and change in error is ‘C’ then the
Fig.4. Fuzzy rules and membership for error (e) and ' output is ‘A’

change in error (ce) and output;{lare created by
using the Fig. 4.The developed fuzzy rules ai
given in Table.1

If error is ‘D’ and change in error is ‘F’ then the|
output is ‘J’

If error is ‘F’ and change in error is ‘I' then the
output is ‘K’

D
o
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7 If error is ‘G’ and change in error is ‘C’ then the
' output is B
8 If error is ‘H’ and change in error is ‘H’ then the|
' output is ‘I
9 If error is ‘I' and change in error is ‘C’ then the
' output is ‘C’
If error is ‘J’ and change in error is ‘E’ then the
10. e
output is ‘E
If error is ‘K’ and change in error is ‘G’ then the|
11. .
output is ‘G

The membership functions for fuzzy variable
input 1,input 2 and output are shown in Fig .5

I
1TK

g A / >{ A
\// \\\J/ \\// \\/ \/ / \/ \/ \\ \

I I [
3 i 10 Duput 150 a0 il

Fig. 5 Fuzzy Controller Input And Output
Membership Functions. (A) Input 1. (B) Input 2. (C)
Output

5. RESULTSAND DISCUSSION

MRAC scheme is evaluated by applying inputs of
varying magnitude plus nonlinearities and
disturbance in the plant. The same series of noise
disturbance and nonlinearities has been applied for
each simulation. The results show the effectiveness
of the proposed schemes and reveal its performance
superiority to the conventional MRAC technique. A
detailed simulation comparison has been carried out
using with an example. The simulation was carried
out for the conventional MRAC, NN-MRAC and
FLC-MRAC schemes with MATLAB for time
duration t=[0, 30] s

5.1. System Data

The system set of data is as follows:
Transfer functions of the plant and reference
models

_ sS+25
G = S*+6S2+9S+1

S+25
Gy (5=

S +6S2+11S+6

which has relative degree n*= 2 The input to the
reference model is chosen as r(t)= 2.4 The initial
value of conventional MRAC scheme the controller
parameters are chosen@®) = [3, 18,-8, 3|. Uy,

is the control input of the plant for
conventionalMRAC

A
U, =0'w+0 ©=60"w-60'T ¢ sgnK,/K,)

6 =[61’92163’Co]T

where is the update law

_ T
vector, W=[w, @, Y 1] is the regressor vector

and @, =Fa+gu,

o N
w, =Faw; +ay, where F is an

(=D *(n-1) staple matrix such that d(§ -F)

is a Hurwitz polynomial whose roots include the
zeros of the reference model and thdt,g) is a
controllable pair.

In this example, the nonlinearity of backlash and
disturbance are given by linear system is shown in
Fig. 6

In this section, the results of computer simulation
for the conventional MRAC,NN-MRAC and FLC-
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Linear
Plant

.F+

v

Backlash

Fig. 6. Nonlinear System

In the neural network based model reference
adaptive controller, the NN has three layers: a

Exctafion Bignal b

input layer with 4 neurons, a hidden layer with <
neurons and an output layer with one neuron. Tt
input to the neural network should be
X :[yp’xzd’XZd’XZd]

TheU is the control input of the nonlinear for
the NN-MRAC scheme.
U = U mr +U nn

The simulink model of the proposed NN-MRAC
developed is given in fig .7

To obtain optimal performance compared to
NN-MRAC scheme, FLC-MRAC is employed.

¥

Refirancs model

-

nutput

-

L

Fiter
(generate omega)

Fdapfve
Controller

b

Newal ok
bl

+
+
+

simmer

Nonlinear

Bystem i

Distubancs }

i

Tratk Emr

Edtimator

t

o

U To Yindgpace

—

Figure. 7. Smulink Model of the NN- MRAC system

TheU, is the control input of the plant for the

The fuzzy system structure consists of four inputs FLC-MRAC scheme.

and one output. These inputs can be represented
asX :[yp’ Xog 1 Xoq s Xpq] -

In this paper, a multiple-input single-output fuzzy §
system has been used. In this case where the fuzz % -|
rule base consists of rules in the following form: ;
B

RB;: IF X is A) AND X, is A/ ... Xyis A/ T wis I s T
THEN uis B £
Where | 1.2,......... M os|

Xi i=(1,2,......... ,Minput

variables to the fuzzgystem; oe = == — — —
u output variable of the fuzzy - = S ~

_ _ system;

A/ and B linguistic terms characterized by fuzzy
membership functions and , respectively.

There are 60 rules that have been developed
based on these input vector and membership
functions. The details of the input and output
membership functions are shown in Fig. 7.

The fuzzy rules and membership functions are
formulated using the input and output waveforms a
the NN of designhed NN-MRAC scheme and the
experience of control engineers. Each variable of
the FLC has five membership functions. The
following fuzzy sets are used: VVS (Very Very
Small), VS (Very Small), S (Small), M (Medium)
and L (Low)

Umf :Umr +Ufz
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Figure.8 Membership function for inputs and output
The simulink model of the FLC-MRAC scheme
is given in Fig .9 s
| Reterence model B
Nl
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Figure.. 10 Response of the conventional MRAC scheme

without disturbance : (a) Plant and model reference

L Estimator
to
O T responsg; (b) Tracking error
: e Rggeares rodel cuput (V)

1 [ ——

Figure. 9 Smulink Model of the FLC- MRAC system

5.2. Disturbance and nonlinearities-Free Case
with input r(t) =2.4 s
Fig. 10 show the performance of the MRAC: e
with input r(t)= 2.4.In this case there is no: | :
disturbance and nonlinearities are given in thetpla : |-
5.3. Disturbance and nonlinearitiess Present 3.|-
Casewith input r(t) =2.4
While an external disturbancg ¥ 2 cos (0.7t) ! ;
and nonlinearity component backlash with dea.
bandwidth M=10 are acts on the system. Figs. 11— (@)
13 show the performance of the MRAC, NN-
MRAC and FLC-MRAC scheme for example 1 ,
with input r(t)= 2.4 plus disturbance and
nonlinearities in the plant

o
4

va’(s‘,

&
; ) 5 12 15 0 5 30 E] Ll €
Tire ()

£ / /( Figure.. 11 Response of the conventional MRAC scheme
. I with disturbance and nonlinearities : (a) Plant and model
) reference response; (b) Tracking error
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2 e
A
:

me][s)
' (b)
. Figure. 14 Response Of The MRAC Scheme With No
Disturbance And Nonlinearities :(A) Plant And Model
Reference Response; (B) Tracking Error

5.5. Disturbance and nonlinearities -Present
Casewith input r(t)= 20sin0.5t

? : k o ! # : Figs. 15-17 show the performance of the

(b) MRAC, NN-MRAC and FLC-MRAC scheme with

Figure. 12 Response Of The NN- MRAC Scheme With input r(t)= 20sin0.5t  plus disturbance v(t)=

Disturbance And Nonlinearities : (A) Plant And Model 21sin0.7t+30c0s0.9t and nonlinearity component
Reference Response; (B) Tracking Error backlash with dead bandwidth M=15 are given in

the plant

gt (vrm)

| ®)

‘ ‘ ‘ ‘ ‘ ‘ ‘ Figure.. 15 Response Of The Conventional Mrac

4 5 0 [5 B X ¥ a 5 Ei Scheme With Disturbance And Nonlinearities : ( A)

Plant And Model Reference Response; (B) Tracking

(b)
Figure. 13 Response Of The FLC- MRAC Scheme With Error

Disturbance And Nonlinearities :(A) Plant And Model
Reference Response; (B) Tracking Error.

5.4. Disturbance-Free Case with input r(t) =
r(t)=20sin0.5t
Fig. 14 show the performance of the MRAC
with input r(t)= 20sin0.5t and no disturbance and
nonlinearities are given in the plant
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s il MRAC and FLC-MRAC scheme is evaluated by
: applying inputs plus disturbance and nonlinearities
: T in the plant. The results show the effectiveness of
the proposed schemes to force the plant to follow
: . - the model, under uncertainties. Extensive
simulation tests were carried out to compare the
three adaptation schemes: conventional MRAC,
NN- MRAC scheme and FLC-MRAC. In the
‘ ‘ ! o ! ¢ i simulation results of conventional MRAC, NN-
@ MRAC and FLC-MRAC schemes, the dotted line
and solid line represents the model reference
trajectory and plant trajectory respectively. In
conventional MRAC scheme, the plant output is
L poor with large overshoots and oscillations as
shown in Figs. 11 and 15.
In the proposed NN-MRAC scheme, the overshoots
and the oscillations are much smaller, yielding a
much better performance than the conventional
MRAC scheme as shown in Figs.12 and 16.
However, the application of the NN-MRAC scheme
does not considerably improve the steady-state
performance. In the proposed FLC- MRAC
scheme the plant output has tracked with the
reference model output and the tracking error
becomes zero within 4 seconds with less control
effort as shown in Figs.13 and 17 and which gives
i the optimal performance than the other methods.
:, . The FLC- MRAC scheme improves the transient
; p / and steady state performance.
i : / The responses performed by the MRAC scheme are
observed to be inferior to that of the NN-MRAC
‘ and FLC-MRAC schemes. Also, the response of the
MRAC shows large overshoot and oscillation.
o . Further, the response of the output performed by
@ the NN-MRAC and FLC-MRAC scheme shows
more satisfactory results for the bounded
disturbances with unknown as well as time-varying
. characteristics than that of the MRAC.
From the above simulations, it is shown that the
control algorithm using only MRAC scheme can
guarantee that the tracking error approaches the
zero if there are no disturbances and uncertajnties
and plant output converges to the reference model
output. However, it is said that only using the
Fiqure 17 R%ponseOf'I('E)eNN vRAC Shamewin  MRAC scheme will not stabilize the controlled
Disturbance And Nonlinearities: (A) Plant And Mode IS:)rlgtriTr?eV\gitrzglliil:)rr? arlggﬁis because of the exgstin
Reference Response; (B) Tracking Error . ’ - .-
bounded disturbances and nonlinearities, the
controlled system using the control algorithm only

Figs. 10 and 14 show the response of thesing the model reference adaptive controller will
conventional MRAC scheme without disturbancd’€ unstable. When using the neural network and the
and nonlinearities. It is shown that the plant otitp model reference adaptive controller in coordination
is tracks with the reference model output and th§ Which the control law is provide better
tracking error approaches the zero. Theerformance and improve the steady state
performance of the conventional MRAC, NN-Performance. But when using the fuzzy logic

E[ ) . T‘J:(S: 0 x N
(b)
Figure. 16 Response Of The NN- MRAC Scheme With

Disturbance And Nonlinearities: (A) Plant And Model
Reference Response; (B) Tracking Error

0 5 0 1 El E Ell
Tims {5)
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controller and the model reference adaptivecheme is more robust performance than the other
controller in coordination in which the control law schemes.
is used to cope with bounded disturbances ardn the contrary, the proposed method has much
nonlinearities, the controlled system can be rdpustless error than the conventional method in spite of
stabilized all the time. From the above discussionsionlinearities and disturbance. The simulation
the proposed control algorithm both with the fuzzyesults have confirmed the efficiency of the
logic controller and the conventional modelproposed FLC-MRAC scheme for applying
reference adaptive controller can be a promisindisturbances and nonlinearities.
way to tackle the problem of controlling the
systems with bounded time-varying disturbance5.6. Implementation issue
and nonlinearities. The proposed method can be widely used in most
From the above simulations, it is shown that thef the industrial nonlinear and complex applicasion
control algorithm using only the model referencesuch as machine tools, industrial robot control,
adaptive controller will not stabilize the conteadl position control, and other engineering practices.
systems with disturbances and nonlinearities. Frofhe proposed FLC-MRAC is relatively simple and
Figs.12 and 16, it is seen that the control alparit does not require complex mathematical operations.
both with the neural network control and the modedlt can be readily implemented using conventional
reference  adaptive controller working inrnicroprocessors or microcontrollers. The execution
coordination to improve the steady statespeed of the FLC-MRAC scheme can be improved
performance. From Figs.13 and 17, it is seen thaly using advanced processors such as reduced
the control algorithm both with the fuzzy logicinstruction set computing (RISC) processors or
control and the model reference adaptive controllatigital signal processors (DSP's) or ASIC's
working in coordination can cope up with the(application specific integrated circuits).
uncertain  dynamic system and bounded
disturbances, but the control algorithm without th&. CONCLUSION.
neural network or fuzzy logic network
compensating control cannot. The proposed NN- In FLC-MRAC the fuzzy rules and membership
MRAC scheme shows better control resultgunctions are formed from the input and output
compared to those by the conventional MRAGvaveforms of NN controller of NN- MRAC
.Moreover, the FLC- MRAC scheme shows fastescheme. A detailed simulation comparison has been
and optimal response compared to the MRAGarried out using with example. The proposed FLC-
scheme and NN-MRAC scheme. MRAC controller shows very good tracking results
From these simulation results it is observe that:  when compared to the conventional MRAC and the
1. In conventional MRAC the plant output is notNN-MRAC scheme. Simulations and analyses have
tracked with the reference model output. Thehown that the steady state performance and
conventional MRAC fails completely under thetransient performance can be substantially
action of the external disturbance andmproved by proposed FLC-MRAC scheme In
nonlinearities, where a degradation in thgroposed FLC-MRAC scheme, the system output
performance due to overshoot is observed. tracks very closely the reference model in spite of
2. The proposed NN- MRAC scheme shows betteéhe disturbances and nonlinearities. Thus the FLC-
control results compared to those by théVRAC controller is found to be extremely
conventional MRAC. The NN-MRAC scheme iseffective, efficient and useful. Due to its simple
improve the transient performance. However, theperation, the proposed FLC-MRAC can be readily
NN-MRAC scheme does not considerably improvémplemented using conventional microprocessors.
the steady-state performance.
4. The proposed FLC-MRAC design approach can
keep the plant output in track with the referencREFERENCES
model and tracking error becomes zero within 41] loannou, P. A. and J. Sun, Robust Adaptive
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