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ABSTRACT 
 
This paper presents a comparison in the performance analysis between a newly developed crossover 
operator called Rayleigh Crossover (RX) and an existing crossover operator called Laplace Crossover 
(LX).  Coherent to the previously defined Scaled Truncated Pareto Mutation (STPM) operator to form two 
(2) generational RCGAs called RX-STPM and LX-STPM, both crossovers are utilized. A set of ten (10) 
benchmark global optimization test problems is used to investigate the reliability, efficiency, accuracy and 
quality of solutions of both optimization algorithms.  Based on computational results, the RX-STPM has 
yield a significant better performance as compared to LX-STPM. 
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1. INTRODUCTION 
 
 Many real life problems in engineering, 
economics and science are modeled as a global 
optimization problems and this study seeks to find 
the set of variables that achieves the best possible 
value of the objective, among all those values that 
satisfy the constraints.  Among the two major 
categories of global optimization algorithms are 
deterministic and stochastic approaches.  The 
deterministic techniques obtain an approximate 
global minimum to the given accuracy.  Stochastic 
techniques involved random search procedure, and 
it only offers a guarantee in probability and has no 
means to estimate the accuracy of the results 
obtained.  As reported in the literature, stochastic 
techniques have satisfactorily provided answers to 
various problems.  It is also the preferred 
algorithms when the size of the search space grows 
exponentially and other exact methods and 
effective algorithms are incapable of finding an 
optimal solution [1]. 
 
 Evolutionary algorithm (EA) is a stochastic 
search algorithm and a general-purpose 
optimization method.  Genetic algorithms (GA) [2], 
evolutionary programming [3] and evolutionary 

strategies [4] are the three (3) parent methods of 
EA.  These methods are based on the basic 
principles of Darwinian evolution, but they have 
different strategies of computational 
implementation of these evolutionary principles [5].  
Figure 1 shows the general scheme for EAs. 
 

S ← Initialize population of starting  
 solutions() 

Evaluate(S) 
Repeat 

S' ← Crossover(S) 
S'' ← Mutate(S') 
Evaluate(S'') 
S ∪← Select (S''   S) 

 Until satisfy the termination condition 
 
 

Figure 1: Basic Common Structure Used By EAs For 
Problem Solving 

 The GA is a generic adaptive strategy and a 
widely used optimization procedures [6].  Similar 
to the Mendelian understanding of the 
chromosomes, genes and alleles structure, GAs are 
moved by population genetics and evolution at the 
population level.  GAs mechanisms are 
reproduction, crossover and mutation on 
populations.  Each individual of a population 
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contributes their genotype to their suitability of 
their expressed phenotype in the form of offspring.  
The next generation is produced through a process 
of mating whereby the crossover operator takes two 
genotypes and combines them to form a new one 
either by merging or by exchanging the values of 
the genes.  The mutation operator subsequently 
modifies one or multiple genes.  This repeated 
process will develop an adaptive-fit between the 
phenotypes of individuals in a population.   
 
 GAs is typically represented in binary 
encodings.  Having said that, the binary genetic 
representation does have its drawbacks [7].  Real 
encoding of chromosomes representations are 
developed to overcome the limitations of binary 
encoding.  GAs which using the real number vector 
representation of chromosomes are termed as Real 
Coded GA (RCGA).  There are many advantages of 
RCGAs over binary encoding GAs in numerical 
function optimization. Among them are that the 
conversion of chromosomes to the binary type is 
unnecessary hence efficiency of the GA escalates; 
efficient floating-point internal computer 
representations can be used directly thus memory 
prerequisite is lower; there is no loss in precision by 
discretisation to binary or other values; freedom to 
choose different genetic operators [8].  Herrera and 
Ono et al [9, 10] testified in recent years that 
RCGA has proven to outperform traditional bit 
string based representation for function 
optimization.  Therefore, RCGA is endorsed for 
optimization problems where the parameter space is 
continuous; it is also being pervasively 
implemented in a wide range of applications [11].   
 
 The objective of the present study is to 
introduce a newly designed crossover operator 
called Rayleigh Crossover which uses Rayleigh 
Distribution.  The subsequent section encompasses 
the literature review on real coded crossover 
operators.  Section 3 defines the proposed RX and 
other operators used in this study. Section 4 
involves a thorough discussion about the proposed 
new RCGAs. Section 5 deliberates the experimental 
setup while Section 6 discusses and explains the 
results.  Section 7 reaffirms previous notions with a 
conclusion.  Appendix A provides the 10 
benchmarking functions.   
 
2. LITERATURE REVIEW ON 

CROSSOVER OPERATORS 
 
 The key search operator in GA is the crossover 
operator.  It is used to exploit the available 

information from the population about the search 
space and thus improve the behavior of the GA.  
Efforts of the RCGA are channeled toward 
designing new crossover operators to heighten the 
performance of function optimization [12].  
Different operation of different crossover operators 
according to the literature is deliberated as follows: 
Single point crossover [2, 13]: This operator 
randomly identify one crossover point, then split 
parents at this crossover point and create children 
by exchanging tails.  The typical crossover 
probability is in the range of 0.6 - 0.9.  n-point 
crossover [14]: This operator is a generalization of 
the single point crossover.  Randomly identify n 
crossover points.  Then split along those points and 
glue parts then alternating between parents.  
Uniform crossover [15]: This operator assigns 
'heads' to one parent, 'tails' to the other.  Then flip a 
coin for each gene of the first child and make an 
inverse copy of the gene for the second child.  
Inheritance is independent of position.  Single 
point, n-point and uniform crossover operators have 
been used on binary and real-coded GAs.  
Arithmetical crossover [11]: Some arithmetic 
operations are performed to make a new offspring.  
Flat crossover (BLX-0.0)[16]: Offspring was 
generated randomly between the genes of the 
parents.   
 
 The five (5) operators mentioned above were 
among the first attempts which implemented an 
exploitative search.  These operators' generated 
offspring only in the region bounded by the parents 
thus causing premature convergence.  This problem 
was overcome by the other crossover operators 
whereby they generate offspring in the exploration 
region near the parents, and not only within the 
region bounded by them.  
 
 Discrete crossover [17]: It is an analog to 
consider the classical one-point and uniform 
crossover.  Simulated binary crossover (SBX) [18]: 
It is devised to simulate the effect of one-point 
crossover.  Blend crossover (BLX-α) [19]: BLX-α is 
an extension of flat crossover.  BLX-α is further 
extended to BLX-α-β and BLX- α-β-γ [14].  
Geometrical crossover [20]: It is a representation-
independent operator defined over the distance of 
the solution space.  Unimodal normal distribution 
crossover (UNDX) [10]:  UNDX generates 
offspring using a normal distribution defined by 
three parents to create two or more offspring 
solutions around the center of mass of multiple 
parents.  Simplex crossover (SPX) [21]: SPX 
generates offspring vector values by uniformly 
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sampling values from simplex formed by k (2 ≤ k ≤ 
number of parameters + 1) parent vectors.  Linear 
crossover [8]: Three (3) offspring are generated.  
An offspring selection mechanism will choose the 
two (2) most promising offspring among the three 
to substitute their parents in the population.  
Wright's heuristic crossover [8]: An offspring is 
formed from a pair of parents with a bias towards 
the better one.  Extended line crossover and 
extended intermediate crossover [22]: A special 
case of Blend-α crossover for α = 0.25.  Linear 
BGA crossover [17]:  Generate offspring closer to 
the best parents.  Fuzzy recombination, FR [23]: It 
is based on parent-centric approach. 
 
3. THE PROPOSED RAYLEIGH 

CROSSOVER (RX) AND OTHER 
OPERATORS USED  HEREIN 

 
3.1 RX  
 A new crossover which uses Rayleigh 
Distribution is proposed. This is a continuous 
probability distribution, which randomly populate 
offspring for a real-number GA.  
 
The Rayleigh density function is given as: 
 
 ���; �� � �

��
����/��� 		, � � 0   ------- (1) 

 
Where s > 0 is the scale parameter of the 
distribution.  By experiment, s is best kept at 3.0. 
 
The distribution function is: 
 
  ���� � 1 �	����/���							------- (2) 
 
To use Rayleigh Distribution, two parents ��  and 
�� are taken to produce two offsprings �� and �� in 
the following equations: 
 
�� = �� * log(x) + �� * (1-log(x))  ------- (3) 
�� = �� * log(x) + �� * (1-log(x))  ------- (4) 

 
From equation (3), offspring ��  is set closer to 
parent 1, ��; yet at the same time inherit elements 
from parent 2, �� .  This is the same for �� , 
offspring �� is set closer to parent 2, �� yet inherit 
from ��  as well.  Log is introduced to set the 
boundary of x, for |x|,{ 0 > x > 1}.  The Rayleigh 
Distributed number, x is generated by inverting the 
distribution function of the Rayleigh Distribution as 
follows: 
 

 |x| = ��2��. log��1 � �� 

x is suggested to take only the positive values.  
Hence: 

 � � ����2 ln�1 � ������ 
 
3.2 Scale Truncated Pareto Mutation (STPM) 
 We had previously defined a mutator based on 
Pareto random variables.  The details of this 
operator are reported in [24].   
 
3.3 Laplace Crossover (LX) 
 LX is a parent centric real coded crossover 
operator.  This operator was suggested by Deep and 
Thakur.  The particulars of this operator can be 
retrieved from [25].   
   
4. THE PROPOSED NEW RCGAS 
 
 The objective of this paper is to propose a new 
crossover operator called Rayleigh crossover (RX).  
RX implements the Scale Truncated Pareto 
Mutation (STPM) as discussed in section 3.2 to 
design a new generational RCGA called RX-
STPM.  The performance of RX crossover is put up 
against an existing crossover from the literature 
called Laplace crossover (LX).  To safeguard a 
justified crossover performance, LX also makes use 
of STPM to form a generational GA called LX-
STPM.  Computational steps of both algorithms are 
as follows: 
 
1. Generate an initial population of chromosomes 
 randomly.  Set Generation = 0.  
2. Evaluate the fitness of each individual of the 
 current population. 
3. If any member of the current population meets  

the termination criteria then stop.  Else, go to     
the next step. 

4. Use Tournament selection operator to extract 
  members from the current population to  
  generate a mating pool. 
5. Crossover and mutate the population in the 
  mating pool with optimum probability and 
  apply elitism with size one. 
6.  Repeat the loop by going back to step 2. 
 
5.  EXPERIMENTAL SETUP 
 
 The performance analysis of RX-STPM and 
LX-STPM are observed on ten (10) benchmarking 
functions of various difficulty levels.  Both 
algorithms employ tournament selection and are 
elite preserving with elitism size one.  Table 1 
shows the final optimal parameter settings for 
crossover probability, mutation rate and tournament 
size which are represented by Pc, Pm and Ts 
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respectively.  The setting of population size and 
termination conditions is similar to [26].  The 
termination conditions rely on either an optimum 
solution found by the algorithm underlying the 
specified accuracy (0.01) of known optimum or the 
predetermined maximum number of generations 
(3,000) reached, or whichever occurs earlier.  
Population size is set as ten (10) times the number 
of variables.  We run each GA 100 times with same 
initial populations; each run is initiated using a 
different set of initial population. 
 
 It is worth mentioning that the experimental 
setup is suggested for the current study in 
accordance with the positive results gathered for the 
majority of the problems. However, the parameters 
of these findings may not necessary be generalized 
for other context of problems. Both algorithms are 
implemented in MATLAB 2012 and the 
experiments are performed on a Core i5 Processor 
with 2.40GHz speed and 4.00GB RAM under 
Windows 7 platform.   
 
6. RESULTS AND DISCUSSIONS 
 
 The performance of the newly designed 
mutator, STPM is measured for its accuracy, 
efficiency, reliability (robustness) and quality of 
solutions found.  Measuring accuracy helps 
determine the degree of precision in locating global 
minima.  Efficiency refers to the measurement of 
the number of function evaluations required.  
Reliability (robustness) alludes to the number of 
successes in finding the global minimum, or at least 
approaching it approximately.  All the performance 
evaluation criteria are calculated based on success 
run only and they are logged for each algorithm and 
benchmark function.  
  
When f(x)found_opt - f(x)known_opt ≤ 0.01, it is 
considered as a success run.  Where f(x)found_opt is 
the optimum value found when the algorithm 
terminates and f(x)known_opt is the known global 
minimum of the problem.    
 

Success rate (SR) = 
�	
���	��	�	������	�	�	��

�����	�	
���	��	�	��
 x 100 

 

Average error (AE) = 
∑ �������	��_����	���������_�����

�
   

where, n is the total number of runs. 
 
Average number of function evaluations (AFE). 
 
 Table 2 shows the numerical results of AFE 
and SR obtained when both algorithms were 

applied to a set of ten (10) benchmark problems.  It 
is observed that both algorithms are able to achieve 
the known optimal values for all the problems.  
RX-STPM is proven to be more efficient than LX-
STPM as it requires less function evaluation to 
converge near global minima on seven (7) of the 
problems (function no. 1, 2, 4, 6, 7, 8, 10).  RX-
STPM is also found to be more reliable (robust) as 
it produces overall more significant success rate.  
RX-STPM completely outperforms LX-STPM on 
seven (7) of the problems (function no. 1, 2, 4, 6, 7, 
8, 10) on all the criteria.      
 
 Table 3 depicts the findings of average error, 
mean and standard deviation of the best objective 
function values.  These performance measures are 
aimed at comparing the quality of the solutions 
found.  RX-STPM achieved lower mean objective 
function values while the corresponding standard 
deviations for all the problems except function no 
1, and 5.  Furthermore, it is apparent that RX-
STPM performs far better than LX-STPM on 
average error for all the problems except function 
no. 3.  Table 3 results indicate the supremacy of 
RX-STPM over LX-STPM.  It proved RX-STPM 
to be a far more accurate algorithm.  
 
7. CONCLUSIONS 
 
 This paper purports a real coded crossover 
operator based on Rayleigh distribution called 
Rayleigh Crossover (RX).  An existing real coded 
crossover called Laplace Crossover (LX) is 
compared with the performance of RX.  To justify 
the comparison, both of the crossover operators 
made use of the same mutator we defined earlier 
called Scale Truncated Pareto Mutator, STPM.  
Hence, two (2) generational real coded genetic 
algorithms (RCGAs) are designed called RX-STPM 
and LX-STPM.  We set up the optimal parameters 
and used Ten (10) diverse and unbiased chosen set 
of standard benchmark functions to examine the 
performance analysis of RX-STPM and LX-STPM.   
 
 The performance measures of average number 
of function evaluations and success rate is used to 
judge the reliability (robustness) and efficiency of 
the algorithms.  Table 2 shows the numerical 
indications of the analysis.  The results clearly 
indicate that RX-STPM is performing better in all 
aspects.  We used average error, mean of objective 
function and its corresponding standard deviation to 
judge the accuracy of the algorithms.  The results 
are presented in Table 3.  There is no doubt that 
RX-STPM performs far better than LX-STPM in all 
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the criteria.  In summary, the experimental results 
demonstrated that RX-STPM is a more efficient, 
reliable and accurate algorithm as compared to LX-
STPM.  The present study compared the 
performance between RX and LX.  Future studies 
can look into many aspects to improve the 
performance of RX.      

APPENDIX A: TEN (10) BENCHMARKING 
FUNCTIONS 

 Function no. 1 to 5 are nonscalable and 
function no. 6 to 10 are scalable.  All the ten (10) 
benchmarking functions which are used to perform 
the current study have varying properties in terms 
of complexity and modality.  The number of 
variables for all the scalable benchmarking 
functions is fixed at 30.  In a scalable function, the 
number of decision variable can be heightened or 
reduced as required. A multimodal function only 
has one global optimum but has many local optima.  
When the dimensionality of a problem escalates, 
the search space will increase exponentially to the 
difficulty of a problem.  As such, the potential for 
separation is a gauge of the difficulty of benchmark 
functions.  The properties involved in said 
processes to determine the optimization level is 
elaborated in [27]. 

A)  The Formulas And Features Of Five (5) 
Nonscalable Functions Are Given Below: 
 
1. Easom 2D (Unimodal) 
 
The global minimum has a small area relative to the 
search space. 
 
Min f (x) = -cos(x1)cos(x2)exp(-(x1-π)2-( x2-π)2) 
 
subject to -10 ≤ x1, x2 ≤ 10.  The global minimum 
is located at x* = f (π, π) and f (x*) = -1 
 
2. Becker and Lago  (Unimodal) 

Min f (x) = (|x1| - 5)2 + (|x2| - 5)2 
 
subject to -10 ≤ x1,  x2 ≤ 10.  The function has four 
minima located at x* = f (±5, ±5), all with f (x*) = 
0 
 
3. Bohachevsky 1 (Continuous, differentiable, 
separable, non-scalable, multimodal) 
 
Min f (x) = x12 + 2x22 - 0.3cos(3πx1) - 
0.4cos(4πx2) +        0.7 
 

subject to -50 ≤ x1,  x2 ≤ 50.  The global minimum 
is located at x* = f (0, 0) and  f (x*) = 0 
 
4. Eggcrate (Continuous, separable, non-scalable) 
 
Min f (x) = x12 + x22 + 25(sin2x1 + sin2x2) 
 
subject to -2π ≤ x1,  x2 ≤ 2π.  The global minimum 
is located at x* = f (0, 0) and  f (x*) = 0 
  
5. Periodic (Separable) 
 
Min f (x) = 1 + sin2x1 + sin2x2 - 0.1exp(-x12 - 
x22) 
 
subject to -10 ≤ x1,  x2 ≤ 10.  The global minimum 
is located at x* = f (0, 0) and  f (x*) = 0.9 
 
B) The Formulas And Features Of Five (5) 
Scalable Functions Are Given Below: 
 
6. Sphere (Continuous, differentiable, separable,   
scalable, multimodal.  This function is easily 
converge to the global optimum) 

Min	f�x� � 	 x �
n

i=1

    

subject to -5.12 ≤ xi ≤ 5.12.  The global minimum 
is located at x* = f (0, 0, ..., 0) and  f (x*) = 0 
 
7. Rosenbrock (Continuous, differentiable, non-
separable, scalable, unimodal) 
 

Min	f�x� � 	 �100�x !�	 �	x ��� !	�x � 1���
n-1

i=1

     

subject to -30 ≤ x1 ≤ 30.  The global minimum is 
located at x* = f (1, 1, 1, ..., 1) and  f (x*) = 0 
 
8. Rastrigin (Non-linear multimodal.  This function   
is fairly difficult due to the large search space and 
large number of local minima.) 
 

Min	f�x� � 10n ! �x � � 10cos	�2πx ��
n

i=1

     

 
subject to -5.12 ≤ xi ≤ 5.12, i = 1, ..., n.  The global 
minimum is located at x* = f (0, 0, ... , 0) and f (x*) 
= 0   
 
9. Schewefel problem 3 (Continuous, differentiable, 
non-separable, scalable, unimodal) 
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Min	f�x� � |x | !%x 
�

 "�

n

i=1

     

subject to -10 ≤ x1 ≤ 10.  The global minimum is 
located at x* = f (0, 0, ... , 0) and  f (x*) = 0 
 
10. Griewank (Continuous, differentiable, non-    
separable, scalable, multimodal) 
 

Min	f�x� � 1 ! 14000 x 
� �%cos 'x √i) 	

�

 "�

n

i=1

     

 
subject to -600 ≤ xi ≤ 600.  The global minimum is 
located at x* = f (0, 0, ..., 0) and  f (x*) = 0 
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Table 1: Parameter Setting For RX-STPM And LX-STPM 

GA name Nonscalable Scalable 
 Pc Pm Ts Pc Pm Ts 

RX-STPM 0.70 0.01 2 0.60 0.03 2 
LX-STPM 0.65 0.02 3 0.70 0.003 5 

 

Table 2: Computational Results Of AFE And SR For All Ten (10) Problems 

Function 
number 

Average Function Evaluation Success Rate 
RX-STPM LX-STPM RX-STPM LX-STPM 

F1 89 129 100 100 
F2 156 183 100 100 
F3 897 636 100 100 
F4 220 249 100 100 
F5 185 103 100 80 
F6 27,143 29,036 100 100 
F7 123,879 152,254 90 85 
F8 104,145 111,848 100 100 
F9 62,158 40,573 78 95 
F10 57,159 60,392 100 100 

 

Table 3: Computational Results Of Average Error, Mean Of Objective Function And Its Corresponding Standard 
Deviation For All Ten (10) Problems. 

Function 
number 

Mean Standard deviation  Average Error 
RX-STPM LX-STPM RX-STPM LX-STPM RX-STPM LX-STPM 

F1  -9.81214E-01 -9.98719E-01 3.52478E-03 3.32749E-03 0.00413 0.00528 
F2 5.35471E-03 6.17831E-03 2.12345E-03 2.87192E-03 0.00402 0.00418 
F3 3.98747E-03 4.10057E-03 1.96544E-03 2.89004E-03 0.00843 0.00610 
F4 3.00012E-03 3.06635E-03 1.00456E-03 1.51638E-03 0.00427 0.00446 
F5  9.31561E-01 9.00470E-01 1.94574E-03 1.68268E-03 0.00035 0.00047 
F6 4.18547E-03 5.65324E-03 1.23478E-03 3.53404E-03 0.00341 0.00565 
F7 4.36987E-03 6.38204E-03 1.87622E-03 2.95392E-03 0.00612 0.00638 
F8 2.97291E-03 7.44700E-03 1.33275E-03 1.55854E-03 0.00297 0.00545 
F9 6.00257E-03 6.53018E-03 2.00784E-03 2.17720E-03 0.00572 0.00653 
F10 6.36987E-03 7.92909E-03 3.69891E-05 5.16224E-05 0.00482 0.00921 

 
 


