
Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

A NEW REAL CODED GENETIC ALGORITHM CROSSOVER:
RAYLEIGH CROSSOVER

*1SIEW MOOI LIM, 2MD. NASIR SULAIMAN, 3ABU BAKAR MD. SULTAN, 4NORWATI
MUSTAPHA, 5BIMO ARIO TEJO

1,2,3,4 Faculty Of Computer Science And Information Technology, Universiti Putra Malaysia, Malaysia
5 Centre For Infectious Diseases Research, Surya University, Indonesia

E-mail:*1limsm66@gmail.com & (2nasir, 3abakar, 4norwati)@fsktm.upm.edu.my & 5bimo.tejo@surya.ac.id

* Corresponding author

ABSTRACT

This paper presents a comparison in the performance analysis between a newly developed crossover
operator called Rayleigh Crossover (RX) and an existing crossover operator called Laplace Crossover
(LX). Coherent to the previously defined Scaled Truncated Pareto Mutation (STPM) operator to form two
(2) generational RCGAs called RX-STPM and LX-STPM, both crossovers are utilized. A set of ten (10)
benchmark global optimization test problems is used to investigate the reliability, efficiency, accuracy and
quality of solutions of both optimization algorithms. Based on computational results, the RX-STPM has
yield a significant better performance as compared to LX-STPM.

Keywords: Genetic Algorithms, Mutation Operator, Crossover Operator, Global Optimization

1. INTRODUCTION

 Many real life problems in engineering,
economics and science are modeled as a global
optimization problems and this study seeks to find
the set of variables that achieves the best possible
value of the objective, among all those values that
satisfy the constraints. Among the two major
categories of global optimization algorithms are
deterministic and stochastic approaches. The
deterministic techniques obtain an approximate
global minimum to the given accuracy. Stochastic
techniques involved random search procedure, and
it only offers a guarantee in probability and has no
means to estimate the accuracy of the results
obtained. As reported in the literature, stochastic
techniques have satisfactorily provided answers to
various problems. It is also the preferred
algorithms when the size of the search space grows
exponentially and other exact methods and
effective algorithms are incapable of finding an
optimal solution [1].

 Evolutionary algorithm (EA) is a stochastic
search algorithm and a general-purpose
optimization method. Genetic algorithms (GA) [2],
evolutionary programming [3] and evolutionary

strategies [4] are the three (3) parent methods of
EA. These methods are based on the basic
principles of Darwinian evolution, but they have
different strategies of computational
implementation of these evolutionary principles [5].
Figure 1 shows the general scheme for EAs.

S ← Initialize population of starting
 solutions()

Evaluate(S)
Repeat

S' ← Crossover(S)
S'' ← Mutate(S')
Evaluate(S'')
S ∪← Select (S'' S)

 Until satisfy the termination condition

Figure 1: Basic Common Structure Used By EAs For
Problem Solving

 The GA is a generic adaptive strategy and a
widely used optimization procedures [6]. Similar
to the Mendelian understanding of the
chromosomes, genes and alleles structure, GAs are
moved by population genetics and evolution at the
population level. GAs mechanisms are
reproduction, crossover and mutation on
populations. Each individual of a population

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

contributes their genotype to their suitability of
their expressed phenotype in the form of offspring.
The next generation is produced through a process
of mating whereby the crossover operator takes two
genotypes and combines them to form a new one
either by merging or by exchanging the values of
the genes. The mutation operator subsequently
modifies one or multiple genes. This repeated
process will develop an adaptive-fit between the
phenotypes of individuals in a population.

 GAs is typically represented in binary
encodings. Having said that, the binary genetic
representation does have its drawbacks [7]. Real
encoding of chromosomes representations are
developed to overcome the limitations of binary
encoding. GAs which using the real number vector
representation of chromosomes are termed as Real
Coded GA (RCGA). There are many advantages of
RCGAs over binary encoding GAs in numerical
function optimization. Among them are that the
conversion of chromosomes to the binary type is
unnecessary hence efficiency of the GA escalates;
efficient floating-point internal computer
representations can be used directly thus memory
prerequisite is lower; there is no loss in precision by
discretisation to binary or other values; freedom to
choose different genetic operators [8]. Herrera and
Ono et al [9, 10] testified in recent years that
RCGA has proven to outperform traditional bit
string based representation for function
optimization. Therefore, RCGA is endorsed for
optimization problems where the parameter space is
continuous; it is also being pervasively
implemented in a wide range of applications [11].

 The objective of the present study is to
introduce a newly designed crossover operator
called Rayleigh Crossover which uses Rayleigh
Distribution. The subsequent section encompasses
the literature review on real coded crossover
operators. Section 3 defines the proposed RX and
other operators used in this study. Section 4
involves a thorough discussion about the proposed
new RCGAs. Section 5 deliberates the experimental
setup while Section 6 discusses and explains the
results. Section 7 reaffirms previous notions with a
conclusion. Appendix A provides the 10
benchmarking functions.

2. LITERATURE REVIEW ON

CROSSOVER OPERATORS

 The key search operator in GA is the crossover
operator. It is used to exploit the available

information from the population about the search
space and thus improve the behavior of the GA.
Efforts of the RCGA are channeled toward
designing new crossover operators to heighten the
performance of function optimization [12].
Different operation of different crossover operators
according to the literature is deliberated as follows:
Single point crossover [2, 13]: This operator
randomly identify one crossover point, then split
parents at this crossover point and create children
by exchanging tails. The typical crossover
probability is in the range of 0.6 - 0.9. n-point
crossover [14]: This operator is a generalization of
the single point crossover. Randomly identify n
crossover points. Then split along those points and
glue parts then alternating between parents.
Uniform crossover [15]: This operator assigns
'heads' to one parent, 'tails' to the other. Then flip a
coin for each gene of the first child and make an
inverse copy of the gene for the second child.
Inheritance is independent of position. Single
point, n-point and uniform crossover operators have
been used on binary and real-coded GAs.
Arithmetical crossover [11]: Some arithmetic
operations are performed to make a new offspring.
Flat crossover (BLX-0.0)[16]: Offspring was
generated randomly between the genes of the
parents.

 The five (5) operators mentioned above were
among the first attempts which implemented an
exploitative search. These operators' generated
offspring only in the region bounded by the parents
thus causing premature convergence. This problem
was overcome by the other crossover operators
whereby they generate offspring in the exploration
region near the parents, and not only within the
region bounded by them.

 Discrete crossover [17]: It is an analog to
consider the classical one-point and uniform
crossover. Simulated binary crossover (SBX) [18]:
It is devised to simulate the effect of one-point
crossover. Blend crossover (BLX-α) [19]: BLX-α is
an extension of flat crossover. BLX-α is further
extended to BLX-α-β and BLX- α-β-γ [14].
Geometrical crossover [20]: It is a representation-
independent operator defined over the distance of
the solution space. Unimodal normal distribution
crossover (UNDX) [10]: UNDX generates
offspring using a normal distribution defined by
three parents to create two or more offspring
solutions around the center of mass of multiple
parents. Simplex crossover (SPX) [21]: SPX
generates offspring vector values by uniformly

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

sampling values from simplex formed by k (2 ≤ k ≤
number of parameters + 1) parent vectors. Linear
crossover [8]: Three (3) offspring are generated.
An offspring selection mechanism will choose the
two (2) most promising offspring among the three
to substitute their parents in the population.
Wright's heuristic crossover [8]: An offspring is
formed from a pair of parents with a bias towards
the better one. Extended line crossover and
extended intermediate crossover [22]: A special
case of Blend-α crossover for α = 0.25. Linear
BGA crossover [17]: Generate offspring closer to
the best parents. Fuzzy recombination, FR [23]: It
is based on parent-centric approach.

3. THE PROPOSED RAYLEIGH

CROSSOVER (RX) AND OTHER
OPERATORS USED HEREIN

3.1 RX
 A new crossover which uses Rayleigh
Distribution is proposed. This is a continuous
probability distribution, which randomly populate
offspring for a real-number GA.

The Rayleigh density function is given as:

 ���; �� � �

��
����/��� 		, � � 0 ------- (1)

Where s > 0 is the scale parameter of the
distribution. By experiment, s is best kept at 3.0.

The distribution function is:

 ���� � 1 �	����/���							------- (2)

To use Rayleigh Distribution, two parents �� and
�� are taken to produce two offsprings �� and �� in
the following equations:

�� = �� * log(x) + �� * (1-log(x)) ------- (3)
�� = �� * log(x) + �� * (1-log(x)) ------- (4)

From equation (3), offspring �� is set closer to
parent 1, ��; yet at the same time inherit elements
from parent 2, �� . This is the same for �� ,
offspring �� is set closer to parent 2, �� yet inherit
from �� as well. Log is introduced to set the
boundary of x, for |x|,{ 0 > x > 1}. The Rayleigh
Distributed number, x is generated by inverting the
distribution function of the Rayleigh Distribution as
follows:

 |x| = ��2��. log��1 � ��

x is suggested to take only the positive values.
Hence:

 � � ����2 ln�1 � ������

3.2 Scale Truncated Pareto Mutation (STPM)
 We had previously defined a mutator based on
Pareto random variables. The details of this
operator are reported in [24].

3.3 Laplace Crossover (LX)
 LX is a parent centric real coded crossover
operator. This operator was suggested by Deep and
Thakur. The particulars of this operator can be
retrieved from [25].

4. THE PROPOSED NEW RCGAS

 The objective of this paper is to propose a new
crossover operator called Rayleigh crossover (RX).
RX implements the Scale Truncated Pareto
Mutation (STPM) as discussed in section 3.2 to
design a new generational RCGA called RX-
STPM. The performance of RX crossover is put up
against an existing crossover from the literature
called Laplace crossover (LX). To safeguard a
justified crossover performance, LX also makes use
of STPM to form a generational GA called LX-
STPM. Computational steps of both algorithms are
as follows:

1. Generate an initial population of chromosomes
 randomly. Set Generation = 0.
2. Evaluate the fitness of each individual of the
 current population.
3. If any member of the current population meets

the termination criteria then stop. Else, go to
the next step.

4. Use Tournament selection operator to extract
 members from the current population to
 generate a mating pool.
5. Crossover and mutate the population in the
 mating pool with optimum probability and
 apply elitism with size one.
6. Repeat the loop by going back to step 2.

5. EXPERIMENTAL SETUP

 The performance analysis of RX-STPM and
LX-STPM are observed on ten (10) benchmarking
functions of various difficulty levels. Both
algorithms employ tournament selection and are
elite preserving with elitism size one. Table 1
shows the final optimal parameter settings for
crossover probability, mutation rate and tournament
size which are represented by Pc, Pm and Ts

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

respectively. The setting of population size and
termination conditions is similar to [26]. The
termination conditions rely on either an optimum
solution found by the algorithm underlying the
specified accuracy (0.01) of known optimum or the
predetermined maximum number of generations
(3,000) reached, or whichever occurs earlier.
Population size is set as ten (10) times the number
of variables. We run each GA 100 times with same
initial populations; each run is initiated using a
different set of initial population.

 It is worth mentioning that the experimental
setup is suggested for the current study in
accordance with the positive results gathered for the
majority of the problems. However, the parameters
of these findings may not necessary be generalized
for other context of problems. Both algorithms are
implemented in MATLAB 2012 and the
experiments are performed on a Core i5 Processor
with 2.40GHz speed and 4.00GB RAM under
Windows 7 platform.

6. RESULTS AND DISCUSSIONS

 The performance of the newly designed
mutator, STPM is measured for its accuracy,
efficiency, reliability (robustness) and quality of
solutions found. Measuring accuracy helps
determine the degree of precision in locating global
minima. Efficiency refers to the measurement of
the number of function evaluations required.
Reliability (robustness) alludes to the number of
successes in finding the global minimum, or at least
approaching it approximately. All the performance
evaluation criteria are calculated based on success
run only and they are logged for each algorithm and
benchmark function.

When f(x)found_opt - f(x)known_opt ≤ 0.01, it is
considered as a success run. Where f(x)found_opt is
the optimum value found when the algorithm
terminates and f(x)known_opt is the known global
minimum of the problem.

Success rate (SR) =
�	
���	��	�	������	�	�	��

�����	�	
���	��	�	��
 x 100

Average error (AE) =
∑ �������	��_����	���������_�����

�

where, n is the total number of runs.

Average number of function evaluations (AFE).

 Table 2 shows the numerical results of AFE
and SR obtained when both algorithms were

applied to a set of ten (10) benchmark problems. It
is observed that both algorithms are able to achieve
the known optimal values for all the problems.
RX-STPM is proven to be more efficient than LX-
STPM as it requires less function evaluation to
converge near global minima on seven (7) of the
problems (function no. 1, 2, 4, 6, 7, 8, 10). RX-
STPM is also found to be more reliable (robust) as
it produces overall more significant success rate.
RX-STPM completely outperforms LX-STPM on
seven (7) of the problems (function no. 1, 2, 4, 6, 7,
8, 10) on all the criteria.

 Table 3 depicts the findings of average error,
mean and standard deviation of the best objective
function values. These performance measures are
aimed at comparing the quality of the solutions
found. RX-STPM achieved lower mean objective
function values while the corresponding standard
deviations for all the problems except function no
1, and 5. Furthermore, it is apparent that RX-
STPM performs far better than LX-STPM on
average error for all the problems except function
no. 3. Table 3 results indicate the supremacy of
RX-STPM over LX-STPM. It proved RX-STPM
to be a far more accurate algorithm.

7. CONCLUSIONS

 This paper purports a real coded crossover
operator based on Rayleigh distribution called
Rayleigh Crossover (RX). An existing real coded
crossover called Laplace Crossover (LX) is
compared with the performance of RX. To justify
the comparison, both of the crossover operators
made use of the same mutator we defined earlier
called Scale Truncated Pareto Mutator, STPM.
Hence, two (2) generational real coded genetic
algorithms (RCGAs) are designed called RX-STPM
and LX-STPM. We set up the optimal parameters
and used Ten (10) diverse and unbiased chosen set
of standard benchmark functions to examine the
performance analysis of RX-STPM and LX-STPM.

 The performance measures of average number
of function evaluations and success rate is used to
judge the reliability (robustness) and efficiency of
the algorithms. Table 2 shows the numerical
indications of the analysis. The results clearly
indicate that RX-STPM is performing better in all
aspects. We used average error, mean of objective
function and its corresponding standard deviation to
judge the accuracy of the algorithms. The results
are presented in Table 3. There is no doubt that
RX-STPM performs far better than LX-STPM in all

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

the criteria. In summary, the experimental results
demonstrated that RX-STPM is a more efficient,
reliable and accurate algorithm as compared to LX-
STPM. The present study compared the
performance between RX and LX. Future studies
can look into many aspects to improve the
performance of RX.

APPENDIX A: TEN (10) BENCHMARKING
FUNCTIONS

 Function no. 1 to 5 are nonscalable and
function no. 6 to 10 are scalable. All the ten (10)
benchmarking functions which are used to perform
the current study have varying properties in terms
of complexity and modality. The number of
variables for all the scalable benchmarking
functions is fixed at 30. In a scalable function, the
number of decision variable can be heightened or
reduced as required. A multimodal function only
has one global optimum but has many local optima.
When the dimensionality of a problem escalates,
the search space will increase exponentially to the
difficulty of a problem. As such, the potential for
separation is a gauge of the difficulty of benchmark
functions. The properties involved in said
processes to determine the optimization level is
elaborated in [27].

A) The Formulas And Features Of Five (5)
Nonscalable Functions Are Given Below:

1. Easom 2D (Unimodal)

The global minimum has a small area relative to the
search space.

Min f (x) = -cos(x1)cos(x2)exp(-(x1-π)2-(x2-π)2)

subject to -10 ≤ x1, x2 ≤ 10. The global minimum
is located at x* = f (π, π) and f (x*) = -1

2. Becker and Lago (Unimodal)

Min f (x) = (|x1| - 5)2 + (|x2| - 5)2

subject to -10 ≤ x1, x2 ≤ 10. The function has four
minima located at x* = f (±5, ±5), all with f (x*) =
0

3. Bohachevsky 1 (Continuous, differentiable,
separable, non-scalable, multimodal)

Min f (x) = x12 + 2x22 - 0.3cos(3πx1) -
0.4cos(4πx2) + 0.7

subject to -50 ≤ x1, x2 ≤ 50. The global minimum
is located at x* = f (0, 0) and f (x*) = 0

4. Eggcrate (Continuous, separable, non-scalable)

Min f (x) = x12 + x22 + 25(sin2x1 + sin2x2)

subject to -2π ≤ x1, x2 ≤ 2π. The global minimum
is located at x* = f (0, 0) and f (x*) = 0

5. Periodic (Separable)

Min f (x) = 1 + sin2x1 + sin2x2 - 0.1exp(-x12 -
x22)

subject to -10 ≤ x1, x2 ≤ 10. The global minimum
is located at x* = f (0, 0) and f (x*) = 0.9

B) The Formulas And Features Of Five (5)
Scalable Functions Are Given Below:

6. Sphere (Continuous, differentiable, separable,
scalable, multimodal. This function is easily
converge to the global optimum)

Min	f�x� � 	 x �
n

i=1

subject to -5.12 ≤ xi ≤ 5.12. The global minimum
is located at x* = f (0, 0, ..., 0) and f (x*) = 0

7. Rosenbrock (Continuous, differentiable, non-
separable, scalable, unimodal)

Min	f�x� � 	 �100�x !�	 �	x ��� !	�x � 1���
n-1

i=1

subject to -30 ≤ x1 ≤ 30. The global minimum is
located at x* = f (1, 1, 1, ..., 1) and f (x*) = 0

8. Rastrigin (Non-linear multimodal. This function
is fairly difficult due to the large search space and
large number of local minima.)

Min	f�x� � 10n ! �x � � 10cos	�2πx ��
n

i=1

subject to -5.12 ≤ xi ≤ 5.12, i = 1, ..., n. The global
minimum is located at x* = f (0, 0, ... , 0) and f (x*)
= 0

9. Schewefel problem 3 (Continuous, differentiable,
non-separable, scalable, unimodal)

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

Min	f�x� � |x | !%x
�

 "�

n

i=1

subject to -10 ≤ x1 ≤ 10. The global minimum is
located at x* = f (0, 0, ... , 0) and f (x*) = 0

10. Griewank (Continuous, differentiable, non-
separable, scalable, multimodal)

Min	f�x� � 1 ! 14000 x
� �%cos 'x √i) 	

�

 "�

n

i=1

subject to -600 ≤ xi ≤ 600. The global minimum is
located at x* = f (0, 0, ..., 0) and f (x*) = 0

REFERENCES
[1] Liberti L, Kucherenko S. Comparison of

deterministic and stochastic approaches to
global optimization. International
Transactions in Operational Research 2005;
12: 263-285

[2] Holland JH. Adaption in Natural and Artificial
Systems: University of Michigan press. 1975

[3] Fogel LJ. Toward Inductive Inference
Automata. In Proceedings of the International
Federation of Information Processing
Congress. Munich 1962: 395-399

[4] Rechenberg I. Cybernetic solution path of an
experimental problem 1965

[5] Darwin C, Beer G. The origin of species:
Oxford University Press. 1951

[6] De Jong KA. Genetic Algorithms are NOT
Function Optimizers. 1992: 5-17

[7] J. Antonisse. A new interpretation of schema
notation that overturns the binary encoding
constraint, in J.David Schaffer (Ed.) 1989, pp.
86-91

[8] Wright AH. Genetic Algorithms for Real
Parameter Qptimization, in: G.J.E. Rawlins
(Ed.). Foundations of Genetic algorithms I,
1990: 205-218

[9] Herrera F, Lozano M, Verdegay JL. Tackling
real-coded genetic algorithms: Operators and
tools for behavioural analysis. Artificial
Intelligence Review 1998; 12: 265-319

[10] Ono I, Satoh H, Kobayashi S. A real-coded
genetic algorithm for function optimization
using the unimodal normal distribution
crossover. Transactions of the Japanese
Society for Artificial Intelligence 1999; 14:
1146-1155

[11] Z. Michalewicz. Genetic algorithms + data
structures = evolution programs: Springer.
1996

[12] Deep K, Thakur M. A new crossover operator
for real coded genetic algorithms. Applied
Mathematics and Computation 2007; 188:
895-911

[13] Goldberg DE. Genetic Algorithms in Search,
Optimization and Machine Learning. New
York: Addison-Wesley. 1989

[14] Eshelman LJ. Crossover operator biases:
Exploiting the population distribution 1997:
354-361

[15] Syswerda G. Uniform crossover in genetic
algorithms 1989

[16] Radcliffe NJ. Equivalence class analysis of
genetic algorithms. Complex Systems 1991;
5: 183-205

[17] Schlierkamp-Voosen D. Predictive models for
the breeder genetic algorithm. Evolutionary
computation 1993; 1: 25-49

[18] Agrawal RB, Deb K, Agrawal RB. Simulated
binary crossover for continuous search space
1994

[19] Eshelman LJ. chapter Real-coded Genetic
Algorithms and Interval-Schemata.
Foundations of genetic algorithms 1993; 2:
187-202

[20] Moraglio A, Poli R. Topological interpretation
of crossover 2004: 1377-1388

[21] Tsutsui S, Yamamura M, Higuchi T. Multi-
parent recombination with simplex crossover
in real coded genetic algorithms 1999; 1: 657-
664

[22] Mühlenbein H, Schlierkamp-Voosen D.
Predictive models for the breeder genetic
algorithm i. continuous parameter
optimization. Evolutionary computation 1993;
1: 25-49

[23] Voigt H, Mühlenbein H, Cvetkovic D. Fuzzy
recombination for the breeder genetic
algorithm 1995

[24] Lim SM, Sulaiman MN, Md Sultan AB,
Mustapha N, Ario Tijo B. Real coded genetic
algorithm (RCGA): a new RCGA mutator
called Scale Truncated Pareto Mutation.
Journal of Theoretical and Applied
Information Technology 2014; Volume 60,
Issue 2

[25] Deep K, Thakur M. A new crossover operator
for real coded genetic algorithms. Applied
Mathematics and Computation 2007; 188:
895-911

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

268

[26] Deep K, Katiyar V. A new real coded genetic
algorithm operator: log logistic mutation
2012: 193-200

[27] Jamil M, Yang X. A literature survey of
benchmark functions for global optimisation

problems. International Journal of
Mathematical Modelling and Numerical
Optimisation 2013; 4: 150-194

Table 1: Parameter Setting For RX-STPM And LX-STPM

GA name Nonscalable Scalable
 Pc Pm Ts Pc Pm Ts

RX-STPM 0.70 0.01 2 0.60 0.03 2
LX-STPM 0.65 0.02 3 0.70 0.003 5

Table 2: Computational Results Of AFE And SR For All Ten (10) Problems

Function
number

Average Function Evaluation Success Rate
RX-STPM LX-STPM RX-STPM LX-STPM

F1 89 129 100 100
F2 156 183 100 100
F3 897 636 100 100
F4 220 249 100 100
F5 185 103 100 80
F6 27,143 29,036 100 100
F7 123,879 152,254 90 85
F8 104,145 111,848 100 100
F9 62,158 40,573 78 95
F10 57,159 60,392 100 100

Table 3: Computational Results Of Average Error, Mean Of Objective Function And Its Corresponding Standard
Deviation For All Ten (10) Problems.

Function
number

Mean Standard deviation Average Error
RX-STPM LX-STPM RX-STPM LX-STPM RX-STPM LX-STPM

F1 -9.81214E-01 -9.98719E-01 3.52478E-03 3.32749E-03 0.00413 0.00528
F2 5.35471E-03 6.17831E-03 2.12345E-03 2.87192E-03 0.00402 0.00418
F3 3.98747E-03 4.10057E-03 1.96544E-03 2.89004E-03 0.00843 0.00610
F4 3.00012E-03 3.06635E-03 1.00456E-03 1.51638E-03 0.00427 0.00446
F5 9.31561E-01 9.00470E-01 1.94574E-03 1.68268E-03 0.00035 0.00047
F6 4.18547E-03 5.65324E-03 1.23478E-03 3.53404E-03 0.00341 0.00565
F7 4.36987E-03 6.38204E-03 1.87622E-03 2.95392E-03 0.00612 0.00638
F8 2.97291E-03 7.44700E-03 1.33275E-03 1.55854E-03 0.00297 0.00545
F9 6.00257E-03 6.53018E-03 2.00784E-03 2.17720E-03 0.00572 0.00653
F10 6.36987E-03 7.92909E-03 3.69891E-05 5.16224E-05 0.00482 0.00921

