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ABSTRACT

This paper presents a comparison in the performamedysis between a newly developed crossover
operator called Rayleigh Crossover (RX) and antigscrossover operator called Laplace Crossover
(LX). Coherent to the previously defined Scaledridated Pareto Mutation (STPM) operator to form two
(2) generational RCGAs called RX-STPM and LX-STHMth crossovers are utilized. A set of ten (10)
benchmark global optimization test problems is useithvestigate the reliability, efficiency, accayaand
quality of solutions of both optimization algoritem Based on computational results, the RX-STPM has
yield a significant better performance as compaoddX-STPM.
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1. INTRODUCTION strategies [4] are the three (3) parent methods of
EA. These methods are based on the basic

Many real life problems in engineering,principles of Darwinian evolution, but they have

economics and science are modeled as a glotwifferent strategies of computational

optimization problems and this study seeks to finémplementation of these evolutionary principles [5]

the set of variables that achieves the best passilffigure 1 shows the general scheme for EAs.

value of the objective, among all those values that

satisfy the constraints. Among the two majoy S« Initialize population of starting

categories of global optimization algorithms are solutions()

deterministic and stochastic approaches. The Evaluate(S)

deterministic techniques obtain an approximat¢ Repeat

global minimum to the given accuracy. Stochastic¢ S'« Crossover(S)

techniques involved random search procedure, and S"«— Mutate(S")

it only offers a guarantee in probability and has n Evaluate(S")

means to estimate the accuracy of the resulis S« Select (S'U S)

obtained. As reported in the literature, stocleasti Until satisfy the termination condition
techniques have satisfactorily provided answers t

various problems. It is also the preferred

algorithms when the size of the search space grows igure 1: Basic Common Structure Used By EAs For
exponentially and other exact methods and Problem Solving

effective algorithms are incapable of finding an . The GA is a gen_eric adaptive strategy .an-d a
optimal solution [1]. widely used optimization procedures [6]. Similar

to the Mendelian understanding of the
Evolutionary algorithm (EA) is a stochasticChromosomeS’ genes and alleles structure, GAs are

search algorithm and a general—purpos@oved by population genetics and evolution at the

optimization method. Genetic algorithms (GA) [2],PoPulation level. GAs mechanisms  are

evolutionary programming [3] and evolutionary"€Production, — crossover and mutation on
populations.  Each individual of a population
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contributes their genotype to their suitability ofinformation from the population about the search
their expressed phenotype in the form of offspringspace and thus improve the behavior of the GA.
The next generation is produced through a proce&dforts of the RCGA are channeled toward
of mating whereby the crossover operator takes twaesigning new crossover operators to heighten the
genotypes and combines them to form a new omeerformance of function optimization [12].
either by merging or by exchanging the values dbifferent operation of different crossover operator
the genes. The mutation operator subsequentigccording to the literature is deliberated as fedo
modifies one or multiple genes. This repeate&ingle point crossoveq2, 13]: This operator
process will develop an adaptive-fit between theandomly identify one crossover point, then split
phenotypes of individuals in a population. parents at this crossover point and create children
by exchanging tails. The typical crossover
GAs is typically represented in binaryprobability is in the range of 0.6 - 0.9n-point
encodings. Having said that, the binary geneticrossover{14]: This operator is a generalization of
representation does have its drawbacks [7]. Retile single point crossover. Randomly identify n
encoding of chromosomes representations amossover points. Then split along those points an
developed to overcome the limitations of binarglue parts then alternating between parents.
encoding. GAs which using the real number vectddniform crossover[15]: This operator assigns
representation of chromosomes are termed as Réatads' to one parent, 'tails' to the other. Thera
Coded GA (RCGA). There are many advantages @bin for each gene of the first child and make an
RCGAs over binary encoding GAs in numericalinverse copy of the gene for the second child.
function optimization. Among them are that thelnheritance is independent of positionSingle
conversion of chromosomes to the binary type ipoint, n-pointanduniform crossoveoperators have
unnecessary hence efficiency of the GA escalatelseen used on binary and real-coded GAs.
efficient  floating-point  internal computer Arithmetical crossover [11]: Some arithmetic
representations can be used directly thus memooperations are performed to make a new offspring.
prerequisite is lower; there is no loss in preciddy Flat crossover (BLX-0.0)6]: Offspring was
discretisation to binary or other values; freeda@m tgenerated randomly between the genes of the
choose different genetic operators [8]. Herrerd arparents.
Ono et al [9, 10] testified in recent years that
RCGA has proven to outperform traditional bit  The five (5) operators mentioned above were
string based representation for functioramong the first attempts which implemented an
optimization. Therefore, RCGA is endorsed forexploitative search. These operators' generated
optimization problems where the parameter space @dfspring only in the region bounded by the parents
continuous; it is also being pervasivelythus causing premature convergence. This problem
implemented in a wide range of applications [11]. was overcome by the other crossover operators
whereby they generate offspring in the exploration
The objective of the present study is taegion near the parents, and not only within the
introduce a newly designed crossover operataegion bounded by them.
called Rayleigh Crossover which uses Rayleigh
Distribution. The subsequent section encompasses Discrete crossovell17]: It is an analog to
the literature review on real coded crossoveconsider the classical one-point and uniform
operators. Section 3 defines the proposed RX amdossover. Simulated binary crossover (SBMS]J:
other operators used in this study. Section # is devised to simulate the effect of one-point
involves a thorough discussion about the proposemiossover.Blend crossover (BLX) [19]: BLX-a is
new RCGAs. Section 5 deliberates the experimentah extension of flat crossover. Blodis further
setup while Section 6 discusses and explains tlextended to BLXe-f and BLX- o-f-y [14].
results. Section 7 reaffirms previous notions veith Geometrical crossovej20]: It is a representation-

conclusion. Appendix A provides the 10independent operator defined over the distance of
benchmarking functions. the solution space.Unimodal normal distribution
crossover (UNDX) [10]: UNDX generates
2. LITERATURE REVIEW ON offspring using a normal distribution defined by
CROSSOVER OPERATORS three parents to create two or more offspring

solutions around the center of mass of multiple
The key search operator in GA is the crossovegrarents. Simplex crossover(SPX) [21]: SPX
operator. It is used to exploit the availablegenerates offspring vector values by uniformly
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sampling values from simplex formed kY2 <k< x is suggested to take only the positive values.
number of parameters + 1) parent vectokinear Hence:
crossover[8]: Three (3) offspring are generated.

An offspring selection mechanism will choose the

two (2) most promising offspring among the three ,
to substitute their parents in the population3-2 Scalé Truncated Pareto Mutation (STPM)
Wright's heuristic crossovef8]: An offspring is We had previously defined a mutator based on
formed from a pair of parents with a bias toward§areto random variables. ~ The details of this
the better one. Extended line crossoveand ©OPerator are reported in [24].

extended intermediate crossovit?]: A special

case of Blend: crossover foro = 0.25. Linear 3-3 LaplaceCrossover (LX)

BGA crossovef17]: Generate offspring closer to X 1S @ parent centric real coded crossover

the best parentsFuzzy recombinatignFR [23]: It operator. This operator was suggested by Deep and
is based on parent-centric approach. Thakur. The particulars of this operator can be

retrieved from [25].

x=|—s[2In(1 - U)]%

3. THE PROPOSED RAYLEIGH
CROSSOVER (RX) AND OTHER 4. THE PROPOSED NEW RCGAS

OPERATORSUSED HEREIN — . .
The objective of this paper is to propose a new

31 RX crossover operator called Rayleigh crossover (RX).

A new crossover which uses RaerighRX implements the Scale Truncated Pareto
Distribution is proposed. This is a continuouglutation (STPM) as discussed in section 3.2 to
probability distribution, which randomly populate 9€Sign @ new generational RCGA called RX-

offspring for a real-number GA. STPM. The performance of RX crossover is put up
against an existing crossover from the literature
The Rayleigh density function is given as: called Laplace crossover (LX). To safeguard a

justified crossover performance, LX also makes use

of STPM to form a generational GA called LX-

STPM. Computational steps of both algorithms are

as follows:

Where s > 0 is the scale parameter of the

distribution. By experiment, s is bestkeptat3.0 1 Generate an initial population of chromosomes
randomly. Set Generation = 0.

fls) =572 x 20 e 1)

The distribution function is: 2. Evaluate the fitness of each individual of the
- current population.
fO)=1— /2" e 2) 3. If any member of the current population meets

the termination criteria then stop. Else, go to
To use Rayleigh Distribution, two parents and the next step.

p, are taken to produce two offspringsandy, in 4. Use Tournament selection operator to extract

the following equations: members from the current population to
generate a mating pool.
v =p; *log(x) +p, * (1-log(x)) ------- 3) 5. Crossover and mutate the population in the
¥, =p, *log(x) +p; * (1-log(x)) ------- 4) mating pool with optimum probability and

apply elitism with size one.
From equation (3), offspring, is set closer to 6. Repeat the loop by going back to step 2.
parent 1p;; yet at the same time inherit elements
from parent 2,p,. This is the same fop,, 5. EXPERIMENTAL SETUP
offspringy, is set closer to parent 2, yet inherit
from p, as well. Log is introduced to set the  The performance analysis of RX-STPM and
boundary of x, for |x|,{ 0 > x > 1}. The Rayleigh LX-STPM are observed on ten (10) benchmarking
Distributed number, x is generated by inverting théunctions of various difficulty levels.  Both
distribution function of the Rayleigh Distributias algorithms employ tournament selection and are
follows: elite preserving with elitism size oneTable 1
shows the final optimal parameter settings for
IX] :\/—Zsz.loge(l —0) crossover probability, mutation rate and tournament
size which are represented by, F?, and T
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respectively. The setting of population size andpplied to a set of ten (10) benchmark problents. |
termination conditions is similar to [26]. Theis observed that both algorithms are able to aehiev
termination conditions rely on either an optimunthe known optimal values for all the problems.
solution found by the algorithm underlying theRX-STPM is proven to be more efficient than LX-
specified accuracy (0.01) of known optimum or thesTPM as it requires less function evaluation to
predetermined maximum number of generationsonverge near global minima on seven (7) of the
(3,000) reached, or whichever occurs earlieproblems (function no. 1, 2, 4, 6, 7, 8, 10). RX-
Population size is set as ten (10) times the numb&TPM is also found to be more reliable (robust) as
of variables. We run each GA 100 times with sami¢ produces overall more significant success rate.
initial populations; each run is initiated using aRX-STPM completely outperforms LX-STPM on
different set of initial population. seven (7) of the problems (function no. 1, 2, 47,6,
8, 10) on all the criteria.
It is worth mentioning that the experimental

setup is suggested for the current study in Table 3depicts the findings of average error,
accordance with the positive results gatheredhfer t mean and standard deviation of the best objective
majority of the problems. However, the parameteriinction values. These performance measures are
of these findings may not necessary be generalizadimed at comparing the quality of the solutions
for other context of problems. Both algorithms ardound. RX-STPM achieved lower mean objective
implemented in MATLAB 2012 and the function values while the corresponding standard
experiments are performed on a Core i5 Processdeviations for all the problems except function no
with 2.40GHz speed and 4.00GB RAM underl, and 5. Furthermore, it is apparent that RX-

Windows 7 platform. STPM performs far better than LX-STPM on
average error for all the problems except function
6. RESULTSAND DISCUSSIONS no. 3. Table 3results indicate the supremacy of

RX-STPM over LX-STPM. It proved RX-STPM
The performance of the newly designedo be a far more accurate algorithm.
mutator, STPM is measured for its accuracy,
efficiency, reliability (robustness) and quality of 7. CONCLUSIONS
solutions found. Measuring accuracy helps
determine the degree of precision in locating globa  This paper purports a real coded crossover
minima. Efficiency refers to the measurement obperator based on Rayleigh distribution called
the number of function evaluations requiredRayleigh Crossover (RX). An existing real coded
Reliability (robustness) alludes to the number ofrossover called Laplace Crossover (LX) is
successes in finding the global minimum, or attleagompared with the performance of RX. To justify
approaching it approximately. All the performanceghe comparison, both of the crossover operators
evaluation criteria are calculated based on succesmde use of the same mutator we defined earlier
run only and they are logged for each algorithm anchalled Scale Truncated Pareto Mutator, STPM.
benchmark function. Hence, two (2) generational real coded genetic
algorithms (RCGAs) are designed called RX-STPM
When f(X)sound_opt = f(Xknown_opt < 0.01, it is and LX-STPM. We set up the optimal parameters
considered as a success run. WHéBoung optiS  and used Ten (10) diverse and unbiased chosen set
the optimum value found when the algorithmof standard benchmark functions to examine the
terminates andf(X)known_opt iS the known global performance analysis of RX-STPM and LX-STPM.
minimum of the problem.
The performance measures of average number
Success rate (SR)N_umber of successful runs . 4 4 _of function e\_/all_Jgtions and success rate i_s used to
Total number of runs judge the reliability (robustness) and efficiendy o
_ the algorithms. Table 2 shows the numerical
Average error (AE) Zn(f(x)found'omn {Wownopl  indications of the analysis. The results clearly
where, n is the total number of runs. indicate that RX-STPM is performing better in all
aspects. We used average error, mean of objective
Average number of function evaluations (AFE).  function and its corresponding standard deviation t
judge the accuracy of the algorithms. The results
Table 2shows the numerical results of AFEare presented ifable 3 There is no doubt that
and SR obtained when both algorithms wer&X-STPM performs far better than LX-STPM in all
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the criteria. In summary, the experimental resultsubject to -56< x1, x2<50. The global minimum
demonstrated that RX-STPM is a more efficientis located at x* =f (0, 0) and f (x*) =0
reliable and accurate algorithm as compared to LX-
STPM. The present study compared thd. Eggcrate (Continuous, separable, non-scalable)
performance between RX and LX. Future studies
can look into many aspects to improve theMin f(x) =x12 + x22 + 25(sin2x1 + sin2x2)
performance of RX.
subject to -2 <x1, x2< 2. The global minimum
APPENDIX A: TEN (10) BENCHMARKING islocated at x*=f (0, 0) and f(x*) =0
FUNCTIONS
5. Periodic (Separable)

Function no. 1 to 5 are nonscalable and
function no. 6 to 10 are scalable. All the ten)(10Min f (x) = 1 + sin2x1 + sin2x2 - 0.1exp(-x12 -
benchmarking functions which are used to perform22)
the current study have varying properties in terms
of complexity and modality. The number ofsubject to -16< x1, x2<10. The global minimum
variables for all the scalable benchmarkings located atx*=f (0, 0) and f(x*) = 0.9
functions is fixed at 30. In a scalable functitime
number of decision variable can be heightened &) The Formulas And Features Of Five (5)
reduced as required. A multimodal function onlyScalable Functions Are Given Below:
has one global optimum but has many local optima.
When the dimensionality of a problem escalate§. Sphere (Continuous, differentiable, separable,
the search space will increase exponentially to thgealable, multimodal.  This function is easily
difficulty of a problem. As such, the potentiar fo converge to the global optimum)
separation is a gauge of the difficulty of benchimar
functions. The properties involved in saidMin f(x) = Z
processes to determine the optimization level is i=1
elaborated in [27].

X

subject to -5.1X xi < 5.12. The global minimum

A) The Formulas And Features Of Five (5) S locatedatx*=7(0,0, .., 0)and f(x*) =0

Nonscalable Functions Are Given Below: ) ) )
7. Rosenbrock (Continuous, differentiable, non-

1. Easom 2D (Unimodal) separable, scalable, unimodal)

n-1

The global minimum has a small area relative to the s
search space. Min f(x) = 2[100(X1+1 = xP)?+ (x = 1)?]

Min f (x) = -cos(x1)cos(x2)exp(-(x#)2-( x2)2) subject to -30< x1 < 30. The global minimum is

subject to -106< x1, x2< 10. The global minimum located atx* =f(1, 1,1, ..., 1) and f(x) =0

i * — *) — _
Is located at x* = f, m) and f (x*) = -1 8. Rastrigin (Non-linear multimodal. This function

is fairly difficult due to the large search spacela

2. Beckerand Lago (Unimodal) large number of local minima.)

Min f (x) = (]x1] - 5)2 + (|x2] - 5)2

. — 2 _ i
subject to -1G< x1, x2< 10. The function has four Min f(x) =10n + Z[Xi 10cos(2mx;)]
minima located at x* = f (5, £5), all with f (x*¥ =1

0 subject to -5.1X xi <5.12,i=1, ..., n. The global
minimum is located at x* = f (0, O , 0) an¢kf)

3. Bohachevsky 1 (Continuous, diﬁ‘erentiable,:0

separable, non-scalable, multimodal)

9. Schewefel problem 3 (Continuous, differentiable,

Min () = x12 + 2x22 - 0.3cos{Xl) non-separable, scalable, unimodal)

0.4cos(4x2) + 0.7
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n n
Min f(x) = leil + Hxi
=1 i=1

[11] Z. Michalewicz. Genetic algorithms + data

structures =
1996

evolution programs: Springer.

[12] Deep K, Thakur M. A new crossover operator

subject to -10< x1 < 10. The global minimum is
located at x*=f (0,0, ... ,0)and f(x*)=0

for real coded genetic algorithms. Applied
Mathematics and Computation 2007; 188:
895-911

10. Griewank (Continuous, differentiable, non{13] Goldberg DE. Genetic Algorithms in Search,
separable, scalable, multimodal)

1
Min f(x) = 1 + —— Z

subject to -60G< xi < 600. The global minimum is
located at x* =f(0, 0, ..., 0) and f(x*)=0

n n

[ [eos()

4000 £
i=1 i=1

(15]
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Table 1: Parameter Setting For RX-STPM And LX-STPM

GA name Nonscalable Scalable
Pc Pm Ts Pc Pm Ts
RX-STPM 0.70 0.01 2 0.60 0.03 2
LX-STPM 0.65 0.02 3 0.70 0.003 5
Table 2: Computational Results Of AFE And SR Foiéh (10) Problems
Function Average Function Evaluation Success Rate
number RX-STPM LX-STPM RX-STPM LX-STPM
F1 89 129 100 100
F2 156 183 100 100
F3 897 636 100 100
F4 220 249 100 100
F5 185 103 100 80
F6 27,143 29,036 100 100
F7 123,879 152,254 90 85
F8 104,145 111,848 100 100
F9 62,158 40,573 78 95
F10 57,159 60,392 100 100

Table 3: Computational Results Of Average ErroraM©f Objective Function And Its Corresponding Stad
Deviation For All Ten (10) Problems.

Function Mean Standard deviation Average Error
number | RX-STPM LX-STPM RX-STPM LX-STPM RX-STPM| LX-STPM
F1 -9.81214E-01 -9.98719E-Q1 3.52478E-P3  3.327@%H- 0.00413 0.00528
F2 5.35471E-03] 6.17831E-08 2.12345E-p3  2.87192E-030.00402 0.00418
F3 3.98747E-03] 4.10057E-0B  1.96544E-p3  2.89004E-030.00843 0.00610
F4 3.00012E-03| 3.06635E-03 1.00456E-03 1.51638E{03 042D 0.00446
F5 9.31561E-01] 9.00470E-O  1.94574E-D3  1.68268H-030.00035 0.00047
F6 4.18547E-03] 5.65324E-08  1.23478E-pP3  3.53404H-030.00341 0.00565
F7 4.36987E-03] 6.38204E-0B  1.87622E-pP3  2.95392H-030.00612 0.00638
F8 2.97291E-03| 7.44700E-08 1.33275E-pP3  1.55854E-030.00297 0.00545
F9 6.00257E-03| 6.53018E-08 2.00784E-p3  2.17720E-030.00572 0.00653
F10 6.36987E-03] 7.92909E-0B  3.69891E-D5 5.16224H-050.00482 0.00921
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