
Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

IMPLEMENTATION OF DATA ENCODING AND DECODING
IN ARM BOARDS WITH QOS PARAMETERS

#1S.SUNDAR,*2R.KUMAR,#3HARISH M.KITTUR

#School of Electronics Engineering, VIT University Vellore – 632014, Tamilnadu, India.

*Senior Consultant, WIPRO Technologies Chennai, Tamilnadu, India.

E-mail: 1 sundar.s@vit.ac.in,2 rajagopal.kumar@wipro.com, 3kittur@vit.ac.in

ABSTRACT

 Networks must be able to transfer data from one device to another with acceptable accuracy. For most of
the applications, a system must guarantee that the data received are identical to the data transmitted. Any
time data are transmitted from one node to the next, they can become corrupted in passage. Many factors
can alter one or more bits of a message. Some applications require a mechanism for detecting and
correcting errors and some applications may require retransmission of error data packets. In this paper, it is
proposed to implement Hamming (7, 4) code for data encoding and decoding in LPC1788ARM Cortex
boards .The proposal is aiming for detecting and correcting the error without any retransmission of error
data. As RISC processor is used, the speed of execution is high and also QoS (Quality of Service)
Parameters are used for measurement purpose which enable this proposal can be useful for high speed real
time applications.

Keywords: Hamming Code (7, 4), LPC1788 ARM Board, UDP and QoS

1. INTRODUCTION

 Data communications are the exchange of data
between two devices via some form of transmission
medium such as a wire cable. [1]The effectiveness
of a data communications system depends on four
fundamental characteristics: delivery, accuracy,
timeliness, and jitter. The transmitting data may get
corrupted in passage between one node to the next
and resulting that can alter one or more bits of the
the data.

 Whenever bits flow from one point to another,
they are subject to unpredictable changes because
of interference. These unpredictable changes are
also called as errors and in data communication
and there are two types of errors available they are,
single bit error and burst error. In the case of single
bit error the interference causes a bit change from
‘0’ to ‘1’ or vice versa, whereas in burst error
means that two or more bits in the data unit have
changed. A burst error is most likely occur than
single bit error and number of bits affected is
depends on duration of noise and data rate. Date
rate and error are directly related,if the data rate is
high then error is also more.

To detect or correct the errors, extra bits
(redundant bits) are added at the transmitter and

removed at the receiver.[2] If ‘n’ represents binary
digits and ‘m’ represents bits associated with
information then redundancy ‘r’ is defined as,

R = n/m -------------------------(1)

Redundancy is the central concept of error
detection and correction. As in error correction, we
need to know number of bits corrupted and their
location, it is clear that correction of error is more
difficult than error detection. There are two
principles are in practice for error correction and
they are, forward error correction (FEC) and
correction by retransmission. In FEC, the receiver
uses redundant bits to estimate the presence of error
whereas in correction by retransmission method, the
receiver detects the error and asks the transmitter to
retransmit the message again.

As the correction by error scheme is requiring a
form of feedback between receiver and transmitter,
fcc is preferred applications for which feedback is
not feasible. [3,4] quality of service(QoS) is needed
not only for ensuring better delivery of the
information carried by the network but also for
better utilization of the resources.

As failure to meet QoS is acceptable,soft QoS is
proposed where speed and throughput are chosen
QoS parameters along with file size.

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

In this paper, two layer architecture is created in
LPC1788 ARM cortex boards (with Linux OS
installed) for message transmission and reception. If
any error is present then it is identified and
corrected without the need for retransmission.

2. DATA ENCODING AND DECODING

Hamming (7, 4) is a linear error-correcting code
that encodes 4 bits of data into 7 bits by adding 3
parity bits. It is a member of a larger family of
Hamming codes, Richard W. Hamming introduced
in 1950. The Hamming code adds three additional
check bits to every four data bits of the message.
Hamming (7, 4) algorithm can correct any single-
bit error, or detect all single-bit and two-bit errors.
[5] it means, the minimal Hamming distance
between any two correct code words is 3.the
received words can be correctly decoded if they are
at distance at most one from the codeword that was
transmitted by the sender.

2.1 Encoding with Matrices
The trick to encoding with matrices is realizing that
all the values that we need to deal with can be
packed into right justified bytes (unsigned chars).
Pack the data to be encoded into a byte and pack
the columns of the generator matrix into another
array of unsigned chars. The ith bit of a code word
equals the data word times the ith column of the
generator matrix, which is the ith entry in the array.
Because of the way modulo 2 arithmetic works, this
is just a bitwise AND operating of the two bytes
followed by an XOR of each of the bits in the
results.

According to the discussion in [6], a 4x7 generator
matrix [G] can be used to transform four bits of
data in to a seven bit Hamming code word. If we
define‘d’ to be the 1×4 vector [d1 d2 d3 d4] then it is
possible to create a 4×7 generator matrix [G] such
that the product modulo 2 of d and [G] (d [G]) is
the desired 1×7 Hamming code word.
[6] In Hamming (7,4) code there are three parity
bits P1,P2 and P3 which are defined as,

P1 = d2 + d3 + d4 ------------------ (2)
p2 = d1 + d3 + d4------------------- (3)
 p3 = d1 + d2 + d4 ------------------ (4)

Now for encoding, the 4 bit data [1x4] bits are
multiplied with 4x7 generator matrix.

2.2 Decoding:
A 3x7 parity check matrix [H] is used for validating
the parity. [6]This matrix [H] may be constructed
with three rows such that in each row 1 contains 1s
in the position of the parity bit and all of the data
bits that are included in its parity calculation. Then
by multiplying the 3×7 matrix [H] by a 7×1 matrix
representing the encoded data produces a 3×1
matrix. In this matrix if is all the elements are
zeros, then the encoded data is error free. If the
matrix has a non-zero value, then flipping the
encoded bit that is in the position of the column in
[H] that matches the matrix will result in a valid
code word.

3. METHODOLOGY

 The Hamming (7,4) encoding and decoding logics
are implemented in LPC178x/177x ARM boards.
[7] The LPC178x/177x is an ARM Cortex-M3
based microcontroller for embedded applications
requiring a high level of integration and low power
dissipation. The bare ARM boards are loaded with
Linux operating systems and then two layer
architecture (DLL and UDP) is built on the boards
based on Fig1 and Fig2 and these are respectively
for encoding and decoding parts of the
implementation.

3.1 Transmitter
The transmitter part of the implementation is based
on Fig 1.In this, the input data (either text or image)
bytes are encoded as Hamming (4, 7) using
generator matrix. In the data link layer, these bits
are packed in to frames, so that each frame is
distinguishable from another and in this variable
size framing is used. For QoS purpose the file size,
throughput and number of packets to be sent are
measured.

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

PACKET

RECEPTION

TRANSPORT
LAYER (UDP)

NETWORK
LAYER

DEFRAMING

ERROR
DEDUCTION

ERROR
CORRECTION

RAW
DATA

3.2 Receiver

The receiver part of the implementation is
based on Fig2.In this, deframing action is done over
the received packets by the built Data Link Layer.
Then Hamming decoding is done for extracting the
data from the matrix. Error detection is done over
the received data and if any error present then it
will be removed and the corrected data is taken for
the further use.

RANDOM
ERROR

INTRODUCE

RAW DATA
ANY

(JPG/TEXT)

BITS

ERROR
DETECTION

&
CORRECTION
MECHANISM

PACKET
TRANSMISSION

TRANSPORT
LAYER (UDP)

FRAMING
AS
PACKETS

NETWORK
LAYER

Figure 1: Transmitter Part Of The Two Layer Architecture

Figure 2: Receiver Part Of The Two Layer Architecture

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

4. IMPLEMENTATION CODE FLOW

There are four file names are used in the main
functions and their roles are given below,

• Filename_1 is input file of the user, needs
to change this filename same as user input
file name.

• Filename_2 is temporary file name of the
Hamming code, which receive the
Encoded data

• Filename_3 receives any send data.

• After decoding, receive the decoded
(Original) data to the Filename_4.

The nature of Hamming code input is 4 bit binary
values and that will give the output as a 7bit binary
value. In our Hamming code program we can give
input as (alphabets, special characters, numbers,
images, text doc, etc).

4.1 Transmitter part

The number of bytes send through UDP and
from UDP is defined as,
#define udp buf_size 1024
� Hamming transmit(char filename1[],char

filename2[])
The function will read the data from user file
each byte by byte and it send to Hamming code
function to get the Hamming code and the
Hamming code is written to temporary file
(filename2). Each and every byte form input we
have to convert as a nibble (4bits) then encode
the each nibble.

• Hamming code(char data, unsigned
char * buffer)

The function will convert each nibble as
encoded byte that means one byte data will get
two bytes of encoded data. That each two byte
of encoded data going to be store in user
filename2.

� Get string from nibble(a, buff)

The above function get input as a nibble of
data and it will return as a char buff.

• Hamming udp transmit(char
filename2[])

The function takes the input from filename2. It
reads the encoded data, and transmits through
UDP to destination.

4.2 Receiver Part
� HammingUDPReceive(charfilename3[],

Unsigned long int file size)

 The above function receives data through
UDP and it will store the data in filename3.
The data is received till the entire file size
(count==file size).

� HammingReceive(char filename3 [],char

filename4[])

 The above function will read byte

by byte data from the filename3 and then
send it to Hamming_decode function.

• Hamming decode(unsigned char
edata[],char filename4[])

 The above function will process
the Hamming code data and generate actual
data with error correction by calling the
Decode function and saves the data in
filename4.

• Decode (tmp,&correctdata)
 The above function checks the data

for errors and returns the corrected data if
error is found or else will return the original
data.

• Print Data From Hamming
 This function will take two bytes of

data and then it will do concatenation of the
last 4 bit of two bytes to get the original
data that is returned.

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

5. EXPERIMENTAL SETUP AND
 RESULTS

The simulation part of encoding and decoding are
first implemented and checked in computer with
Linux Platform. The simulation results are shown
in Fig 3 and Fig 4 respectively.

Figure 3:.Simulation result of Encoder

Figure 4: Simulation result of Decoder

Then the encoder and decoder parts are
implemented in two Linux OS loaded ARM boards.
The boards are connected through an Ethernet
cable. The connection diagram is shown in Figure
5.

Figure 5: Experimental Setup

For communication, the boards are configured in
hyper terminal as,

Board 1:
~ # ifconfig eth0 192.168.0.1
~ # ./hamming 192.168.0.2
Board 2:
~ # ifconfig eth0 192.168.0.2
~ # ./hamming 192.168.0.1
After completion of above steps the decoded image
must be copied from root to sd-card or pen-drive. In
this paper pen drive is used and to run with pen
drive the following steps are executed.
~# cd decoded.jpg /usb/
~# unmount /dev/sda1
Upon execution using hyper terminal the result is
shown below,

Journal of Theoretical and Applied Information Technology
 10th April 2014. Vol. 62 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

7. CONCLUSION

[8] ARM processors are embedded in products
ranging from cell/mobile phones to automotive
breaking systems in this paper, Hamming coding
and decoding is implemented between two arm
based boards with throughput and speed as QoS
parameters for data transfer. As error detection and
correction is implemented without any retransfer
of data, this proposal is suitable for applications
where retransmission is not possible or
retransmission lead to increase overhead. Another
feature of this implementation can be seen as; we
can use this type of OS (Linux GPOS) for
consumer electronics where the timing constraints
are not critical. The future scope of this proposal is
viewed like extending to wireless communication
and as QoS parameters are used for measurement,
the proposal can be useful for studying
performances of Mobile Ad hoc (MANET)
applications.

REFRENCES:

[1] Behrouz A.Forouzan,S Sophia Chung Fegan,
“Data Communications and Networking”,
Fourth edition, McGraw-Hill Higher education.

[2] R.W. Hamming, “Error detecting and error
correcting codes”, Bell Syst. Tech. J. 29 (1950)

[3] Lei Chen and Wendi B. Heinzelman, “A Survey
of Routing Protocols that Support QoS in
Mobile Ad Hoc Networks”, IEEE Network
November/December 2007.

[4] S. Sundar , R. Kumar , Harish M. Kittur ,and
M.Shanmugasundaram, “MANET Routing
Protocols With QoS Support- A Survey”-
International Journal of Engineering and
Technology,ISSN0975-4024,Vol5No3,June/July
2013 ,pp.2077-2082.

 [5] http://en.wikipedia.org/wiki/Hamming
[6] http://michael.dipperstein.com/hamming
[7] http://www.EmbeddedArtists.com
[8] Andrew.N.Sloss,Domnic Symes and Chris

Wright, “ARM Systems Developers Guide
Designing and Optimizing System
Software”,MORGAN KAUFMANN Publishers.

Figure 6: Experimental Result

