
Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

486

AN APPROACH OF OPTIMISATION AND FORMAL

VERIFICATION OF WORKFLOW PETRI NETS

1
OUTMAN EL HICHAMI,

 2
MOHAMMED AL ACHHAB,

 3
ISMAIL BERRADA,

4
RACHID OUCHEIKH,

5
BADR EDDINE EL MOHAJIR

1,5University of Abdelmalek Essaâdi, Faculty of Sciences, Tetouan, Morocco

2University of Abdelmalek Essaâdi, National School of Applied Sciences, Tetouan, Morocco

3,4University of Sidi Mohamed Ben Abdellah, Faculty of Sciences and Technology, Fez, Morocco

E-mail: 1el.hichami.outman@taalim.ma, 2alachhab@ieee.ma, 3iberrada@univ-lr.fr,
4cheikh.rachid09@gmail.com, 5b.elmohajir@ieee.ma,

ABSTRACT

In this paper, we are interested in the verification of Workflows (WF). WF are increasingly used for
modeling and improving the quality of business processes (BP). In fact, the BP are becoming more complex
because of the process nature which can be decomposed into sub-processes that run in parallel and/or
sequentially. In this paper, we are particularly interested in verifying a class of properties known as
response properties. Our second aim is to optimise the verification process of complex WF. Therefore, we
first propose a method to compute and extract WFφ which is a part of WF concerned with the property φ to
verify, and second we apply an abstraction method which optimises the size of WFφ. This optimisation is
interesting so that the verification process can be done just on the optimise WFφ, and we deduce the
preservation of the satisfaction of φ in WF.

Keywords: Workflow Petri nets, response properties, abstraction, formal methods

1. INTRODUCTION

In order to achieve a quality approach, the
process approach is recommended for companies.
In fact, business processes (BP) are typically
associated with operational objectives and business
relationships such as an engineering development
process, insurance claims process, and web services
[21]. The representation of a BP in a form which
supports automated manipulation like modeling or
enactment by a workflow system.

Workflows (WF) [7] have been established to
manage the automatic execution of BP. A WF
process is a set of activities which contains
executable tasks that consume and produce well
defined data. In this study, we are interested in
using the formal methods of WF process validation.
We distinguish two main existing verification
interests. On the one hand, the WF analysis axes
that consist of verifying general properties like
absence of deadlocks, livelocks or no dead
activities [5][9]. On the other hand, the use of
verification framework to validate the dynamic
behaviors of BP [11][18][19][20]. The last
approach needs a translation framework from the
WF schema towards a format and content that are
recognized by the verification tool. The

specification of the properties should also be
expressed within a logic that is understood and
supported by the verification tool.

In this work, we focus on an automatic and direct
verification of a class of properties related to a WF
processes. We are particularly interested in
responses properties. This type of properties can be
written as follows:

• Task A will always be followed by task B;

• Task A and task B will be executed in parallel
and after task C;

• Task C will be executed after tasks A and B.
This paper discusses the use of Workflow Petri

nets (WF-net) introduced by van der Aalst [6]. WF-

net is an established tool based on Petri nets for
modeling and analyzing the correctness of WF.

In the specification phase, we aim that the
designer can use a graphical user interface based on
the same concepts as established in WF-net to
specify the properties to be verified. An optimal
verification approach is proposed.

Our aim is the integration of the formal
verification techniques in the design phase. First,
the designer starts with modeling the Workflow,
then he specifies the properties to verify, in this way
constraint specifications can be automatically and

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

487

intuitively validated by the designer at this early
stage. The famous drawback of this approach is the
verification processes complexity which is still a
problem when we use formal methods. In order to
optimise the verification process, we propose to use
the abstraction notion defined in [13]. This
approach allows to group the tasks/places that run
in parallel and/or sequentially. In [13] the authors
state that this abstraction process preserves the
liveness and boundedness properties in WF-net.

Our verification process based on the abstraction
and optimisation of WF-net is defined as follows:
first we specify the property φ to be verified with
the graphical user interface. The verification
algorithm starts with an optimisation of WF-net
model in order to keep just the part WF-netφ
concerned with φ. Then, the abstraction process will
be done only in this part (WF-netφ). Our approach
aims to verify the property φ on the optimised
submodel of WF-netφ, and conclude the satisfaction
(or not) of φ in the global WF-net.

The organization of this paper is as follows:
Section 2 discusses the related work. Section 3 and
4 provide formal definitions of basics WF-net that
are required in the rest of this paper. Section 5
describes a set of reduction for WF-net. We develop
our approach of verification in Section 6. We also
show the efficiency of our approach with
experiments and analysis in Section 7. Section 8
concludes the paper, and draws perspectives.

2. RELATED WORK

Several techniques and methods are proposed to
validate WF-net. Verbeek et al. [1] have developed
a tool, called Woflan

1, to verify soundness.
However, the verification of large WF-net can be
intractable due to the space explosion problem. The
current initiative intends to remedy to this situation
by proposing an abstraction and optimisation
method of WF-net. YAMAGUCHI et al. [11] have
also developed a tool which consists of
WfNetEditor and WfNetAnalyzer that generates a
WF-net as a PNML2 file which is an intermediate
representation of WF-net. The check process
converts the PNML file into PROMELA and uses
LTL formulas to specify the properties. Finally, the
method uses the SPIN model checker. This
approach drastically reduces the complexity of
verification processes. However, its use does not
deal with the dynamic behavior of WF-net, and its
limited only by the acyclic WF-net.

1 www.win.tue.nl/woflan/doku.php
2 http://www.pnml.org

Some works have contributed to the verification
of dynamic behavior of BP [15] [12]. This
verification process is always based on existing
verification tool, which implies the transformation
of WF-net in the language of verification supported
by the verification tool and specification of
properties to be verified by temporal logic.

In [16] the authors have implemented a concept
proof of their approach with existing software
namely the open modeling platform Oryx [14] and
the BPMN-Q query language [10]. This approach is
based on the decomposition of BPMN-Q. However,
these approaches fail because they do not satisfy all
properties of a query and the decomposition of a
BPMN-Q query is complicated.

The above works show that the verification phase
comes after the design phase, and the knowledge of
the logic used for the specification of properties is
needed.

Our approach has two advantages: (1) integrate
the verification process in the design stage allowing
a gradual validation of BP. This phase can be
avoided by implementing a graphical specification
interface. (2) exploit the abstraction and the
optimisation of WF-net to remedy the problem of
the complexity of the verification process.

3. BASICS OF PETRI NETS

Petri nets [2] are largely used as tool for
representation, validation and verification of
Workflows [5][6][9]. In this section, we give the
basic definitions, notations of Petri nets and main
results of their structure theory used in this work.

3.1 Petri nets

A Petri net is a tuple N = (P,T,F) where:

1. Ø≠P is a finite set of places;

2. Ø≠T is a finite set of transitions with

Ø;≠∩TP

3. () ()PTTPF ×∪×⊆ is the flow relation.

A place can contain zero or more tokens. A
token is represented by a black dot. The global state
of a Petri net, also called a marking, is the
distribution of tokens over places. Formally, a

marking of a Petri net N is a function →PM : IN.

The initial marking of N is denoted by M0.

3.2 Place and Transition

Let N = (P,T,F) be a Petri net, we define a

function { }1,0: →Ff such that :

()
()

 ∈

=
otherwise

Fyxif
yxf

0

,1
,

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

488

For each transition or place x we call a set

(){ }1,| =∪∈=• xyfTPyx the preset of x, and a

set (){ }1,| =∪∈=• yxfTPyx the postset of x.

We now introduce some additional notations
used in the present paper.

A transition Tt∈ is enabled at a marking M if

() .1: ≥•∈∀ pMtp If a transition t is enabled in

marking M, it can be fired leading to a new marking

M' written as 'MM
t

→ such that:

()
() ()
() ()
() ()

=

•∈−=

•∈+=

=

otherwisepMpM

tpifpMpM

tpifpMpM

pM

'

1'

1'

'

Given ,...

1

n

n
Tttw ∈= we write MM

w

→
0

if
0

MM = or there exist markings

n
MM ,...,

1
 such that MM

n
= and

....

1210

21

n

t

n

tt

MMMMM
n

→→→
−

 Then

we say that M is reachable. The set of reachable

markings of the Petri net N is denoted by [M and

defined by [{ }MMTwMM
w

→∈∃=
0

|: .

A Petri net N is live iff for every reachable

marking
i

M and every transition t, there is a

marking jM reachable from
i

M which enables t.

A Petri net N is bounded iff for each place p
there is a natural number n such that for every
reachable marking, the number of tokens in p is
less than n.

3.3 Routing constructs

The Petri net process definition defines three
routing constructs used to specify the relationships
between tasks during the process execution:
sequential, parallel, and conditional [6], (see Figure
1).

Figure 1: Routing constructs

4. WORKFLOW PETRI NETS (WF-NET)

WF-net is a restriction of Petri net for modeling,
verifying and performance evaluation of
workflows.

4.1 Definition
A Petri net is called a WF-net [6] if it has one

input place i and one output place o without input
and output transitions. For every transition or place

,TPx ∪∈ there exists a path from i to x and a path

from x to o.
Formally, a Petri net N = (P,T,F) is a WF-net if:

Poi ∈∃ , such that () 1Ø,
0

==•=• iMoi and

{} () 0
0

=−∈∀ pMiPp and () FxiTPx ∈∪∈∀ ,,

and () ., Fox ∈ The resulting Petri net is strongly

connected.
Normally, a WF-net should have a soundness

property which guarantees a logical correctness of
the modeled workflow.
A WF-net is intuitively said to be sound iff, for any
case, the initial place is transformed to the final
place and there are no dead transitions [17].

4.2 Definition
For further clarification, we give a simple

example of the handling of a questionnaire [17]:

Figure 2: Example of WF-net: handling of a

questionnaire

In this example, the WF-net starts with a
registration step after which two parallel branches
are started. The top branch is concerned with the
handling of a questionnaire. After sending the
questionnaire to the customer who submitted the
complaints, there are two possibilities. The
customer may return the questionnaire on time and
subsequently it is processed. Otherwise, a timeout
occurs and this step is skipped. In the lower branch
of the WF-net, the complaint is first processed.
After this, the result is evaluated. Based on this
evaluation, the complaint is either checked or not.
If it is checked, the result may be OK or not. If it is
not OK, the complaint is processed again. This is
repeated until no check is needed or the check is

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

489

OK. Finally, after completing both parallel
branches, the complaint is archived.

5. ABSTRACTION OF WF-NET

In this section, we present the rules which we use
for the abstraction of some routing constructs of
WF-net [13]. Our goal is to apply these reduction
rules in order to group some transitions and places
with preserving the essential properties of WF-net.
As a result, the complexity of the verification
process is reduced and can be performed more
efficiently.

In the following, we denote AbsN = (P
a
, T

a
, F

a
)

the abstract WF-net of N = (P, T, F), and we use the
following four operations of abstraction:

5.1 Abstraction of Series Transitions

The rule allows for the merging of two sequential
transitions t and u with one place p in between
these two transitions into only one transition v (see
Figure 3).

Figure 3: Abstraction of Series Transitions

Formally, let Pp∈ be a place and Tut ∈, be

two transitions, and TTv
a
\∈ be a transition such

that:
Conditions on N:

1. { }tp =• (t is the only input of p);

2. { }up =• (u is the only output of p);

3. { }pu =• (p is the only input of u);

4. Ø=•∩• ut (any output of t is not an output of u

and vice versa).
Construction of AbsN:

1. { }pPP
a

\= ;

2. { }() { }vutTT
a

∪= ,\ ;

3.
() ()()() { }()

{ } () { }()().p\•∪•×∪

×•∪×∪×∩=

utv

vtPTTPFF
aaaaa

5.2 Abstraction of Series Places

The rule allows for the merging of two sequential
places p and q with one transition t in between them
into a single place r (see Figure 4).

Figure 4: Abstraction of Series Places

Formally, let Tt∈ be a transition and Pqp ∈,

be two places, and PPr
a
\∈ be a place such that:

Conditions on N:

1. { }pt =• (p is the only input of t);

2. { }qt =• (q is the only output of t);

3. {}tp =• (t is the only output of p);

4. Ø=•∩• qp (any input of p is not an input of q

and vice versa).
Construction of AbsN:

1. { }() { }rqpPP
a

∪= ,\ ;

2. {}()tTT
a

\= ;

3.
() ()()()

() { }() { }() { }().\ •×∪×•∪•∪

×∪×∩=

qrrtqp

PTTPFF
aaaaa

5.3 Abstraction of Parallel Transitions

The rule allows for the merging of multiple
transitions (at least two) that have the same inputs
and outputs into a single transition (see Figure 5).

Figure 5: Abstraction of Parallel Transitions

Formally, let T⊆Γ be the transitions where

2≥Γ , and TTv
a
\∈ be a transition such that:

Conditions on N:

1. jiji tttt •≡•Γ∈∀ :, (input places for all

transitions in Γ are identical);

2. •≡•Γ∈∀ jiji tttt :, (output places for all

transitions in Γ are identical).
Construction of AbsN:

1. PP
a
= ;

2. () { }vTT
a

∪Γ= \ ;

3.
() ()()() { }()

{ }() . where Γ∈×•∪

•×∪×∪×∩=

tvt

tvPTTPFF
aaaaa

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

5.4 Abstraction of Parallel Places

The rule allows for the merging of multiple
places (at least two) with the same inputs and
outputs into a single place q (see Figure 6).

Figure 6: Abstraction of Parallel Places

Formally, let PQ ⊆ be the places where 2≥Q ,

and PPq
a
\∈ be a place such that:

Conditions on N:

1. jiji ppQpp •≡•∈∀ :, (input transitions for all

places in Q are identical);

2. •≡•∈∀ jiji ppQpp :, (output transitions for

all places in Q are identical).

Construction of AbsN:

1. () { }qQPP
a

∪= \ ;

2. TT
a
= ;

3.
() ()()() { }()

{ }() . where Qppq

qpPTTPFF
aaaaa

∈•×∪

×•∪×∪×∩=

It is not difficult to see that the previous
abstractions preserve the properties of liveness and
boundedness [13]. That is, let N = (P, T, F) and
AbsN = (Pa, Ta, Fa) be two WF-net before and after
the previous reductions. Then AbsN is live
(respectively bounded) iff N is live (respectively
bounded).

6. VERIFICATION PROCESS

In this section, we present our verification
process of WF-net. After the modelisation of BP to
WF-net which will be verified, the designer can use
a graphical interface to specify the property φ to
validate. First we apply our algorithm (see
Algorithm 1) to keep just the part of WF-netφ
concerned with this property. Second, we apply the
abstraction rules in order to optimise WF-netφ.
After that, the existing verification algorithms can
be applied. Finally, we conclude that the
satisfaction (or not) of φ in the original WF-net.
This approach is presented in Figure 6:

Figure 6: Process of WF-net verification

6.1 Response properties models

In this section, we first give three models of
response properties to specify the dynamic behavior
of the BP. Then we will also discuss some possible
semantics of these models.

Figure 7: Examples of response properties

The first property (Ф1) states that task
i
t will

always be followed by task jt . The second property

(Ф2) states that task jt and task
k
t will be executed

in parallel and after task
i
t . The third property (Ф3)

states that task
k
t will be done after the end of task

i
t and task jt .

The semantics3 of Ф1, Ф2, and Ф3 can be
interpreted in different ways. In this paper we focus
on the implementation and the verification of LTL
formulas [3]. This type of properties can be written
as follows:

() ()

◊⇒
Φ−

formula LTL,[]

: from reachable is
)1(

ji

ij

tt

tt

()() ()

◊∧◊◊⇒
Φ−

.formula LTL,[][]

: from reachable be will and
)2(

kji

ikj

ttt

ttt

()() ()

◊⇒∧
Φ−

.formula LTL,[][]

: and from reachable be will
)3(

kji

jik

ttt

ttt

3 In temporal logic, ◊: Eventually in the future, []: Now and

forever in the future, ◊n: Eventually in the future after n steps,

and ◊m≥n: Eventually in the future after m steps (m≥n).

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

6.2 Optimisation and abstraction of WF-net

In this section, we present the process proposed
to integrate the optimisation and abstraction in the
formal verification of WF-net.

After the modelisation of the WF-net, the
designer can specify the property Ф to be verified.
The verification process starts with the optimisation
of WF-net in order to keep just the part WF-netФ
concerned with Ф. Then, the abstraction process
will be done only in this part (WF-netФ). Figure 8
schematizes this approach.

Figure 8: Our approach of optimisation and abstraction

6.2.1 Construction algorithm of the part

concerned with Ф1

After the construction of WF-net NФ1, and in
order to keep the same behavior of WF-net N, it is
necessary to add some transitions and/or places to
WF-net NФ1. There are four cases to study: places
(respectively transitions) which have the links with
outside transitions (respectively places) and not in
WF-net NФ1 (see bold arcs in Figure 9):
1. Or-split (arc 1 in Figure 9) which connects a

place p in PФ1 to a transition t in T and not in TФ1.
In this case, we must add t in TФ1 in order to keep
the alternative tasks in WF-net NФ1.

2. Or-join (arc 2 in Figure 9) which connects a
transition t in T and not in TФ1 to a place p in PФ1.
In this case it is not necessary to add t in TФ1
because in our case, we are only interested in
paths that start from ti and which have tj as target
termination.

3. And-split (arc 3 in Figure 9) which connects a
transition t in TФ1 to a place p in P and not in
PФ1. In this case, it is not necessary to add p in
PФ1 because (1) in our case, we are only
interested in paths w between ti and tj and (2) we
are not concerned with parallel routing which
doesn't influence the w.

4. And-join (arc 4 in Figure 9) which connects a
place p in P and not in PФ1 to a transition t in
TФ1. In this case, it is not necessary to add p in
PФ1. In fact, the transition will be executed
because in our work we consider that WF-net N
is sound.

Figure 9: Construction of the WF-net NФ1

In the following, we formally show how to add
these transitions to NФ1: Let WF-net N = (P, T, F),
Ф1: be the property to be verified, and
NФ1 = (PФ1,TФ1, FФ1) be the WF-net related to WF-

Algorithm1

Data:Original WF-net: N = (P, T, F), ti, tj : the

extremities tasks in Ф1

Result: Part of WF-net: NФ1 = (PФ1, TФ1, FФ1) related to Ф1

for ti ∈ T do

Mark(ti) := false /*Mark ti as not visited*/

endfor
Function CreatePart(WF-net N, Task t)

begin

Mark(t) /* Mark the t as explored */
/* while: select only the p places

adjacents to t */

while p such as f(t, p) = 1 do
/* for: select only the

transitions adjacent to p */

 for t’ (postset p●) do

 if NotMark(t’) then

 Mark(t’)

 if t’≡ tj then

 Add to PФ1 all the places between (ti, tj)

 Add to TФ1 all the transitions between (ti, tj)

 Add to FФ1 all the relations between (ti, tj)

 endif
 CreatePart(N, t’)

endif

endfor

endwhile

end

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

net N after the optimisation related to Ф1.
Formal definition of construction of WF-net NФ1:
1. Add the output transitions for all the Or-split

places:
{ } ()

()

{ } ()()

×∪=

∪=

∈=•∈∀

≤≤

≤≤

⇓

.'

;'

\',...,'|

111

111

111

mii

mii

m

tpFF

tTT

TTttpPp

φφ

φφ

φφ
444444 3444444 21

2. Add the input place pi and the output place po:

{ }

() () ()()

×∪×∪×∪=

∪=

≤≤ omiiojii

oi

ptpttpFF

ppPP

111

11

'

;,

φφ

φφ

Remark: The construction of the WF-net

concerned with both Ф2 and Ф3

To build the part concerned with the property
Ф2, we apply the Algorithm 1 twice by changing
the target extremities of Ф2. The same principle to
create the part related to Ф3, but this time by
modifying the source extremities of Ф3.

6.2.2 Example of Ф1

Let φ1 be a property of type Ф1 such that:
φ1: After “register”, “OK” must be reachable.

We now present how to create Nφ1 = (Pφ1, Tφ1, Fφ1)
related to WF-net N = (P, T, F) of Figure 2 (the
handling of a questionnaire). For this, we apply the
Algorithm 1 to build the part concerned with φ1.
After that, we add the transition t8 to the Or-split
place p3. Finally, we add the input place pi and the
output place po. Therefore, the WF-net Nφ1 is as
follows:

Figure 10: The WF-net Nφ1 related to φ1 after the

optimisation of WF-net N

After the construction of WF-net Nφ1, and in
order to optimise more the size of WF-net Nφ1, we
perform the abstraction process in the part
concerned with φ1. The result is the WF-net AbsNφ1
(presented in Figure 11).

Figure 11: The WF-net AbsNφ1 related to Figure 10 after

the abstraction

6.2.3 Example of Ф2 and Ф3

Let φ2 (respectively φ3) be a property of type Ф2

(respectively Ф3)

• φ2: After “register”, “returned questionnaire”

and “evaluate” must be executed in parallel.

• φ3: “archive” is done after the end of “time-

out” and “returned questionnaire”.

Figure 12 shows the parts concerned with φ2 and
φ3:

Figure 12: Parts concerned with φ2 and φ3

After the construction of WF-net Nφ2 and WF-

net Nφ3, the abstraction process can be done on the
parts concerned with φ2 and φ3. The result is the
WF-net AbsNφ2 and the WF-net AbsNφ3 (see
Figure 13).

Figure 13: The WF-net AbsNφ2 and AbsNφ3 after the

abstraction parts concerned with φ2 and φ3

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

6.3 Proof of satisfaction of Ф1, Ф2 and Ф3 in The

WF-net

In this section, we prove that if each of the three
response properties models are satisfied in the
WF-net AbsN after the optimisation and the
abstraction of the original WF-net N related to these
properties, then we conclude that the satisfaction in
the original one.

In our context we consider that WF-net N is
sound. So, every transition t∈T will be enabled
(because no deadlock transitions in WF-net N and
every transition is reachable from M0 the initial
marking of WF-net N) which means that the source
extremities of the transitions ti, tj and tk in Ф1, Ф2
and Ф3 will be enabled.

6.3.1 Proof of Ф1

Let N = (P, T, F) be a WF-net, Ф1: be
a property to verify, and AbsNФ1 = (PФ1a, TФ1a,
FФ1a) be the WF-net after the optimisation and the
abstraction of WF-net N related to Ф1.
We prove that if the property Ф1 is satisfied in WF-

net AbsNФ1, then we conclude that Ф1 is satisfied in
WF-net N.

Lemma1. WF-net AbsNФ1|=Ф1⇒ WF-net N |= Ф1

Proof. According to the semantic of Ф1 in LTL

context, WF-net AbsNФ1|=Ф1 ∀⇒ paths w = ti … tj

∈TФ1a. i.e. () ()jw

i tMtM •→• . Because the

optimisation and the abstraction keep all the
possible paths between ti … tj in WF-net AbsNФ1.
Furthermore, WF-net N is sound then no deadlock

transitions ∀⇒ w’=ti… tj∈T and w⊆ w’. Hence,

WF-net N |= Ф1.

6.3.2 Proof of Ф2

Let N = (P, T, F) be a WF-net, Ф2:
be a property to verify, and AbsNФ2 =
(PФ2a,TФ2a,FФ2a) be the WF-net after the
optimisation and the abstraction of WF-net N
related to Ф2.
We prove that if the property Ф2 is satisfied in WF-

net AbsNФ2, then we conclude that Ф2 is satisfied in
WF-net N.

Lemma2. WF-net AbsNФ2|=Ф2⇒ WF-net N |= Ф2

Proof. According to the semantic of Ф2 in LTL

context, AbsNФ2|=Ф2 ∀⇒ paths w1 = ti…tj and

∀ paths w2 = ti…tK | (w1, w2) ∈T²Ф2a. i.e.

() ()j
w

i tMtM •→•
1 and () ()

k

w

i
tMtM •→•

2 .

Because the optimisation and the abstraction keep
all the possible paths between ti … tj and between
ti … tk in WF-net AbsNФ2. Furthermore, WF-net N
is sound then no deadlock

transitions ∀⇒ w’=ti…tj and ∀ w’’ = ti…tK | (w’,

w’’)∈T² and w1⊆ w’, w2⊆ w’’. Hence,

WF-net N |= Ф2.

6.3.3 Proof of Ф3

Let N = (P, T, F) be a WF-net, Ф3:
be a property to verify, and AbsNФ3 = (PФ3a, TФ3a,
FФ3a) be the WF-net after the optimisation and the
abstraction of N related to Ф3.
We prove that if the property Ф3 is satisfied in
AbsNФ3, then we conclude that Ф3 is satisfied in N.

Lemma3. WF-net AbsNФ3|=Ф3⇒ WF-net N |= Ф3

Proof. According to the semantic of Ф3 in LTL

context, WF-net AbsNФ3|=Ф3 ∀⇒ paths w1 =

ti…tk and ∀ paths w2 = tj…tK | (w1, w2) ∈T²Ф3a. i.e.

() ()
k

w

i
tMtM •→•

1 and () ()k
w

j tMtM •→•
2 .

Because the optimisation and the abstraction keep
all the possible paths between ti … tk and between
tj … tk in WF-net AbsNФ3. Furthermore, WF-net N
is sound then no deadlock transitions

∀⇒ w’=ti…tk and ∀ w’’ = tj…tK | (w’, w’’)∈T²

and w1 ⊆ w’,w2⊆ w’’. Hence, WF-net N |= Ф3.

7. EXPERIMENTS AND ANALYSIS

In this paper, we use the SPIN4 tools to validate
our proposal and to assure the theoretical results. In
these experiments, we discuss the verification of
the three models of response properties Ф1, Ф2 and
Ф3. The results of this analysis show the
performance of our approach.

7.1 Transforming WF-net to PROMELA

In [8], the authors have proposed a method to
describe a WF-net into PROMELA5 that can be
simulated and verified with the SPIN model
checker. In this method, a WF-net system is
represented as a single process. The process
describes each firing of its transitions.

Program1 presents an outline of the PROMELA
program for WF-net (handling of a questionnaire).

7.2 LTL formulas

The properties to be verified in SPIN have to be
expressed as LTL formulas. LTL formulas
correspond to the response properties φ1, φ2 and φ3
to be verified and can be rewritten as follows:

• φ1: After “register”, “OK” must be reachable.
[]((M[1]>=1) -> <>(M[6]>=1)).

• φ2: After “register”, “returned questionnaire”
and “evaluate” must be executed in parallel.
[]((M[0]>=1)-><>(M[2]>=1&& M[8]>=1)).

• φ3: “archive” is done after the end of “time-
out” or “returned questionnaire”.
[]((M[9]>=1| |M[10]>=1)-> <>(M[11]>=1)).

4 http://spinroot.com
5 spinroot.com/spin/Man/promela.html

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

7.3 Experimental results

In this section we give some statistics in order to
show the performance of our approach. We

compare the size, the memory6 and the verification

time6 between the original WF-net related to Figure
2 and the WF-net: AbsNφ1, AbsNφ2 and AbsNφ3.

We first give the results without optimisation and
abstraction of WF-net related to Figure 2.

Table 1: Experiments without optimisation and

abstraction.

LTL
formula

s

States
,

stored

Transition
s

Memor
y

(Mb)

Time
s (s)

φ1 15 61 11.876 0.18

φ2 16 52 12.364 0.21

φ3 12 40 11.485 0.18

6 Verification with disable dead-variable elimination

To evaluate the effect of our approach, we
perform the verification of properties φ1, φ2 and φ3
in the AbsNφ1, the AbsNφ2 and the AbsNφ3. These
experiments are given in Table 2.

Table 2: Experiments with optimisation and abstraction.

LTL
formula

s

States
,

stored

Transition
s

Memor
y

(Mb)

Time
s (s)

φ1 8 12 3.770 0.02

φ2 10 23 3.672 0.03

φ3 5 8 3.522 0.02

For more clarification, Figure 14 illustrates this

comparison between the original WF-net related to
Figure 2 and the WF-net: AbsNφ1, AbsNφ2 and
AbsNφ3.

0

10

20

30

40

50

60

70

φ1 in the

original

WF-net

φ2 in the

original

WF-net

φ3 in the

original

WF-net

φ1 in AbsNφ1 φ2 in AbsNφ2 φ3 in AbsNφ3

N
u
m

b
e
r

o
f:

 S
ta

te
s
 -
 T

ra
n
s
it
io

n
s
 -
 M

e
m

o
ry

 -
 T

im
e

s States, stored

Transitions

Memory (Mb) %

Times (s) %

Results with our approach

Figure 14: Statistics of the experimental results

8. CONCLUSION

This paper proposes a new approach to verify the
WF-net in a BP context. We exploited the
optimisation and the abstraction methods to remedy
the verification processes complexity which is still
a problem when we use a formal method. We are
particularly interested in the response properties,
and we present three class of these properties.

We propose an algorithm for extracting a part
from WF-net in order to build an abstract WF-net.
After this abstraction, we performed an
optimisation in abstract WF-net to optimise more
the size of WF-net. This method has the advantage
of preserving the dynamic behaviors of WF-net.

Our approach is based on the verification of the
response property on a part of the WF-net which is
concerned by this property, and we proved that if
the optimised WF-net satisfies this property, then
we deduced the validation in the global WF-net.
This proof is enriched by several practical
experiences with the SPIN tools in order to show
the performance of our approach.

Program1

#define Place 12

#define Transition 13
/* Variables representing a state of

WF-net */

int M[Place]; /* Marking */

int X[Transition]; /* Firing count */
/* A firing of Transition t */
/* remove specifies the change of the

marking of ●t */

/* add specifies the change of the

marking of t● */

/* fire (x) increments the element

corresponding to t in X[t] */

#define remove1(x) (x>0) -> x--

#define remove2(x,y) (x>0 && y>0) -> x--; y--

#define add1(x) x++

#define add2(x,y) x++; y++

#define fire(x) x++
/* Process representing WF-net */

init

{

M[0]=1; /* Set the initial marking */

do
:: atomic{remove1(M[0]) -> fire(X[0]); add2(M[1],M[7])}
:: atomic{remove1(M[1]) -> fire(X[1]); add1(M[2])}

:: atomic{remove1(M[2]) -> fire(X[2]); add1(M[3])}

:: atomic{remove1(M[3]) -> fire(X[3]); add1(M[4])}

:: atomic{remove1(M[3]) -> fire(X[7]); add1(M[6])}

:: atomic{remove1(M[4]) -> fire(X[4]); add1(M[5])}

:: atomic{remove1(M[5]) -> fire(X[5]); add1(M[1])}

:: atomic{remove1(M[5]) -> fire(X[6]); add1(M[6])}

:: atomic{remove1(M[7]) -> fire(X[8]); add1(M[8])}

:: atomic{remove1(M[8]) -> fire(X[9]); add1(M[10])}

:: atomic{remove1(M[8]) -> fire(X[10]); add1(M[9])}

:: atomic{remove1(M[9]) -> fire(X[11]); add1(M[10])}

:: atomic{remove2(M[6],M[10]) -> fire(X[12]);

add1(M[11])}

od
}

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

For now, we study the possibility to facilitate the
conditions of abstraction in order to better optimise
the size of abstract WF-net, and we will investigate
the semantic expansions of the response properties.

REFRENCES:

[1] Henricus M.W. Verbeek. “Verification of WF-
nets”, PhD thesis, Eindhoven : Technische
Universiteit Eindhoven. 2004.

[2] T. Murata, “Petri Nets: Properties, Analysis and
Applications“ an invited surve y paper,
Proceedings of the IEEE, Vol.77, No.4 pp.541-
580, 1989.

[3] Z.MANNA, A.PNUELI. “The temporal logic of
reactive and concurrent systems”, Springer-

Verlag, New York, USA, 1992.

[4] Gerard J. Holzmann. “The Model Checker
SPIN”. IEEE Trans. Software Eng. 23(5), pp.
279-295, 1997.

[5] W.M.P. van der Aalst. “Verification of
Workflow Nets”, ICATPN 97, Volume 1248 of

LNCS, pp. 407-426, 1997.

[6] W.M.P. van der Aalst. “The Application of Petri
Nets to Workflow Management”, The Journal

of Circuits, Systems and Computers, Vol.8, No.
1, pp. 21-66, 1998.

[7] W.M.P. van der Aalst and K.M. van Hee.
“Workflow Management: Models, Methods and
Systems”, MIT Press, Cambridge, p. 267, 2004.

[8] G.J. Holzmann, “The Spin Model Checker”,
Addison-Wesley, p. 596, 2003.

[9] Kamel B. and Rahma B. and Zohra S.
“Workflow Soundness Verification based on
Structure Theory of Petri Nets”, IJCIS Journal,
pp. 51-62, 2007.

[10] Awad, A.: BPMN-Q “A Language to Query
Business Processes”. In EMISA, pp. 115-128,
2007.

[11] Shingo Y., Munenori Y., and Minoru T.. “A
Soundness Verification Tool Based on the SPIN
Model Checker for Acyclic Workflow Nets”,
ITC-CSCC, pp. 285-288, 2008.

[12] Ahmed Awad, Gero Decker, Mathias Weske,
“Efficient Compliance Checking Using BPMN-
Q and Temporal Logic”. (BPM) Springer

Verlag, pp. 326-341, 2008.

[13] M.T. Wynn, H.M.W. Verbeek, W.M.P. van der
Aalst, A.H.M. ter Hofstede, D. Edmond
“Soundness-preserving reduction rules for reset
workflow nets”.Information Sciences, Vol. 179,
No. 6, pp. 769-790, 2009.

[14] Decker, G., Overdick, H., Weske, M.: “Oryx -
Sharing Conceptual Models on the Web”,

International Conference on Conceptual

Modeling (ER), LNCS 5231, pp. 536-537,
Springer Verlag, 2008.

[15] M. Alam, M. Nauman, X. Zhang, T. Ali and
P.C.K. Hung. “Behavioral Attestation for
Business Processes”, Int. J. Web Service Res.,
Vol. 7, No. 3, pp. 52-72, 2010.

[16] Sherif Sakr, Ahmed Awad, Matthias Kunze.
“Querying Process Models Repositories by
Aggregated Graph Search”, Business Process

Management Workshops, Vol. 132, pp 573-585,
Springer, 2012.

[17] W.M.P. van der Aalst, Kees M. van Hee,
Arthur H. M. ter Hofstede, Natalia Sidorova, H.
M. W. Verbeek, Marc Voorhoeve and Moe
Thandar Wynn. “Soundness of workflow nets:
classification, decidability, and analysis”.
Formal Asp. Comput, Vol. 23 No. 3, pp. 333-
363, Springer-Verlag, 2011.

[18] Juan Carlos Polanco Aguilar, Koji Hasebe,
Manuel Mazzara and Kazuhiko Kato, “Model
Checking of BPMN Models for Reconfigurable
Workflows”, Computing Science, Newcastle

University, Technical report series, No. CS-TR-
1274, p. 6, 2011.

[19] Juan Carlos Polanco Aguilar, Koji Hasebe,
Manuel Mazzara and Kazuhiko Kato. “Toward
Design, Modelling and Analysis of Dynamic
Workflow Reconfigurations - A Process
Algebra Perspective”. WS-FM, Vol. 7176, pp
64-78, Springer-Verlag, 2012.

[20] F Abouzaid, M Mazzara, J Mullins, N Qamar.
“Towards a formal analysis of dynamic
reconfiguration in WS-BPEL”, Intelligent

Decision Technologies, Vol. 7, No. 3, pp. 213-
224, 2013.

[21] Mohammed AbuJarour, Ahmed Awad. “Web
Services and Business Processes: A Round
Trip”, Web Services Foundations, pp.3-29,
2014.

