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ABSTRACT 

 
In this paper, we are interested in the verification of Workflows (WF). WF are increasingly used for 
modeling and improving the quality of business processes (BP). In fact, the BP are becoming more complex 
because of the process nature which can be decomposed into sub-processes that run in parallel and/or 
sequentially. In this paper, we are particularly interested in verifying a class of properties known as 
response properties. Our second aim is to optimise the verification process of complex WF. Therefore, we 
first propose a method to compute and extract WFφ which is a part of WF concerned with the property φ to 
verify, and second we apply an abstraction method which optimises the size of WFφ. This optimisation is 
interesting so that the verification process can be done just on the optimise WFφ, and we deduce the 
preservation of the satisfaction of φ in WF. 

Keywords: Workflow Petri nets, response properties, abstraction, formal methods 
 
1. INTRODUCTION  

In order to achieve a quality approach, the 
process approach is recommended for companies. 
In fact, business processes (BP) are typically 
associated with operational objectives and business 
relationships such as an engineering development 
process, insurance claims process, and web services 
[21]. The representation of a BP in a form which 
supports automated manipulation like modeling or 
enactment by a workflow system. 

Workflows (WF) [7] have been established to 
manage the automatic execution of BP. A WF 
process is a set of activities which contains 
executable tasks that consume and produce well 
defined data. In this study, we are interested in 
using the formal methods of WF process validation. 
We distinguish two main existing verification 
interests. On the one hand, the WF analysis axes 
that consist of verifying general properties like 
absence of deadlocks, livelocks or no dead 
activities [5][9]. On the other hand, the use of 
verification framework to validate the dynamic 
behaviors of BP [11][18][19][20]. The last 
approach needs a translation framework from the 
WF schema towards a format and content that are 
recognized by the verification tool. The 

specification of the properties should also be 
expressed within a logic that is understood and 
supported by the verification tool. 

In this work, we focus on an automatic and direct 
verification of a class of properties related to a WF 
processes. We are particularly interested in 
responses properties. This type of properties can be 
written as follows: 

• Task A will always be followed by task B; 

• Task A and task B will be executed in parallel 
and after task C; 

• Task C will be executed after tasks A and B. 
This paper discusses the use of Workflow Petri 

nets (WF-net) introduced by van der Aalst [6]. WF-

net is an established tool based on Petri nets for 
modeling and analyzing the correctness of WF. 

In the specification phase, we aim that the 
designer can use a graphical user interface based on 
the same concepts as established in WF-net to 
specify the properties to be verified. An optimal 
verification approach is proposed. 

Our aim is the integration of the formal 
verification techniques in the design phase. First, 
the designer starts with modeling the Workflow, 
then he specifies the properties to verify, in this way 
constraint specifications can be automatically and 
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intuitively validated by the designer at this early 
stage. The famous drawback of this approach is the 
verification processes complexity which is still a 
problem when we use formal methods. In order to 
optimise the verification process, we propose to use 
the abstraction notion defined in [13]. This 
approach allows to group the tasks/places that run 
in parallel and/or sequentially. In [13] the authors 
state that this abstraction process preserves the 
liveness and boundedness properties in WF-net. 

Our verification process based on the abstraction 
and optimisation of WF-net is defined as follows: 
first we specify the property φ to be verified with 
the graphical user interface. The verification 
algorithm starts with an optimisation of WF-net 
model in order to keep just the part WF-netφ 
concerned with φ. Then, the abstraction process will 
be done only in this part (WF-netφ). Our approach 
aims to verify the property φ on the optimised 
submodel of WF-netφ, and conclude the satisfaction 
(or not) of φ in the global WF-net. 

The organization of this paper is as follows: 
Section 2 discusses the related work. Section 3 and 
4 provide formal definitions of basics WF-net that 
are required in the rest of this paper. Section 5 
describes a set of reduction for WF-net. We develop 
our approach of verification in Section 6. We also 
show the efficiency of our approach with 
experiments and analysis in Section 7. Section 8 
concludes the paper, and draws perspectives. 

 

2. RELATED WORK 

Several techniques and methods are proposed to 
validate WF-net. Verbeek et al. [1] have developed 
a tool, called Woflan

1, to verify soundness. 
However, the verification of large WF-net can be 
intractable due to the space explosion problem. The 
current initiative intends to remedy to this situation 
by proposing an abstraction and optimisation 
method of WF-net. YAMAGUCHI et al. [11] have 
also developed a tool which consists of 
WfNetEditor and WfNetAnalyzer that generates a 
WF-net as a PNML2 file which is an intermediate 
representation of WF-net. The check process 
converts the PNML file into PROMELA and uses 
LTL formulas to specify the properties. Finally, the 
method uses the SPIN model checker. This 
approach drastically reduces the complexity of 
verification processes. However, its use does not 
deal with the dynamic behavior of WF-net, and its 
limited only by the acyclic WF-net. 

                                                 
1 www.win.tue.nl/woflan/doku.php 
2 http://www.pnml.org 

Some works have contributed to the verification 
of dynamic behavior of BP [15] [12]. This 
verification process is always based on existing 
verification tool, which implies the transformation 
of WF-net in the language of verification supported 
by the verification tool and specification of 
properties to be verified by temporal logic. 

In [16] the authors have implemented a concept 
proof of their approach with existing software 
namely the open modeling platform Oryx [14] and 
the BPMN-Q query language [10]. This approach is 
based on the decomposition of BPMN-Q. However, 
these approaches fail because they do not satisfy all 
properties of a query and the decomposition of a 
BPMN-Q query is complicated. 

The above works show that the verification phase 
comes after the design phase, and the knowledge of 
the logic used for the specification of properties is 
needed.   

Our approach has two advantages: (1) integrate 
the verification process in the design stage allowing 
a gradual validation of BP. This phase can be 
avoided by implementing a graphical specification 
interface. (2) exploit the abstraction and the 
optimisation of WF-net to remedy the problem of 
the complexity of the verification process. 

 

3. BASICS OF PETRI NETS 

Petri nets [2] are largely used as tool for 
representation, validation and verification of 
Workflows [5][6][9]. In this section, we give the 
basic definitions, notations of Petri nets and main 
results of their structure theory used in this work. 

3.1 Petri nets 

A Petri net is a tuple N = (P,T,F) where: 

1. Ø≠P is a finite set of places; 

2. Ø≠T is a finite set of transitions with 

Ø;≠∩TP  

3. ( ) ( )PTTPF ×∪×⊆  is the flow relation. 

A place can contain zero or more tokens. A 
token is represented by a black dot. The global state 
of a Petri net, also called a marking, is the 
distribution of tokens over places. Formally, a 

marking of a Petri net N is a function →PM : IN. 

The initial marking of N is denoted by M0. 
 

3.2 Place and Transition 

Let N = (P,T,F) be a Petri net, we define a 

function { }1,0: →Ff  such that : 

( )
( )



 ∈

=
otherwise

Fyxif
yxf

0

,1
,  



Journal of Theoretical and Applied Information Technology 
 31

st
 March 2014. Vol. 61 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
488 

 

For each transition or place x we call a set 

( ){ }1,| =∪∈=• xyfTPyx  the  preset of x, and a 

set ( ){ }1,| =∪∈=• yxfTPyx  the postset of x. 

We now introduce some additional notations 
used in the present paper. 

A transition Tt∈  is enabled at a marking M if 

( ) .1: ≥•∈∀ pMtp  If a transition t is enabled in 

marking M, it can be fired leading to a new marking 

M' written as 'MM
t

→  such that: 

( )
( ) ( )
( ) ( )
( ) ( )








=

•∈−=

•∈+=

=

otherwisepMpM

tpifpMpM

tpifpMpM

pM

'

1'

1'

'  

Given ,...

1

n

n
Tttw ∈=  we write MM

w

→
0

  

if 
0

MM =  or there exist markings  

n
MM ,...,

1
 such that MM

n
=  and  

....

1210

21

n

t

n

tt

MMMMM
n

→→→
−

 Then 

we say that M is reachable. The set of reachable 

markings of the Petri net N is denoted by [M  and 

defined by [ { }MMTwMM
w

→∈∃=
0

|: .  

A Petri net N is live iff for every reachable 

marking 
i

M and every transition t, there is a 

marking jM  reachable from 
i

M  which enables t. 

A Petri net N is bounded iff for each place p 
there is a natural number n such that for every 
reachable marking, the number of tokens in p is 
less than n. 

 

3.3 Routing constructs 

The Petri net process definition defines three 
routing constructs used to specify the relationships 
between tasks during the process execution: 
sequential, parallel, and conditional [6], (see Figure 
1). 

 
Figure 1: Routing constructs 

4. WORKFLOW PETRI NETS (WF-NET)  

WF-net is a restriction of Petri net for modeling, 
verifying and performance evaluation of 
workflows. 

 

4.1 Definition 
A Petri net is called a WF-net [6] if it has one 

input place i and one output place o without input 
and output transitions. For every transition or place 

,TPx ∪∈  there exists a path from i to x and a path 

from x to o. 
Formally, a Petri net N = (P,T,F) is a WF-net if: 

Poi ∈∃ ,  such that ( ) 1Ø,
0

==•=• iMoi  and 

{} ( ) 0
0

=−∈∀ pMiPp  and ( ) FxiTPx ∈∪∈∀ ,,  

and ( ) ., Fox ∈  The resulting Petri net is strongly 

connected. 
Normally, a WF-net should have a soundness 

property which guarantees a logical correctness of 
the modeled workflow. 
A WF-net is intuitively said to be sound iff, for any 
case, the initial place is transformed to the final 
place and there are no dead transitions [17]. 

 

4.2 Definition 
For further clarification, we give a simple 

example of the handling of a questionnaire [17]: 

 
Figure 2: Example of WF-net: handling of a 

questionnaire 

In this example, the WF-net starts with a 
registration step after which two parallel branches 
are started. The top branch is concerned with the 
handling of a questionnaire. After sending the 
questionnaire to the customer who submitted the 
complaints, there are two possibilities. The 
customer may return the questionnaire on time and 
subsequently it is processed. Otherwise, a timeout 
occurs and this step is skipped. In the lower branch 
of the WF-net, the complaint is first processed. 
After this, the result is evaluated. Based on this 
evaluation, the complaint is either checked or not. 
If it is checked, the result may be OK or not. If it is 
not OK, the complaint is processed again. This is 
repeated until no check is needed or the check is 
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OK. Finally, after completing both parallel 
branches, the complaint is archived. 

 

5. ABSTRACTION OF WF-NET  

In this section, we present the rules which we use 
for the abstraction of some routing constructs of 
WF-net [13]. Our goal is to apply these reduction 
rules in order to group some transitions and places 
with preserving the essential properties of WF-net. 
As a result, the complexity of the verification 
process is reduced and can be performed more 
efficiently. 

In the following, we denote AbsN = (P
a
, T

a
, F

a
) 

the abstract WF-net of N = (P, T, F), and we use the 
following four operations of abstraction: 

 
5.1 Abstraction of Series Transitions 

The rule allows for the merging of two sequential 
transitions t and u with one place p in between 
these two transitions into only one transition v (see 
Figure 3).  

 
Figure 3: Abstraction of Series Transitions 

Formally, let Pp∈  be a place and Tut ∈,  be 

two transitions, and TTv
a
\∈  be a transition such 

that: 
Conditions on N: 

1. { }tp =• (t is the only input of p); 

2. { }up =• (u is the only output of p); 

3. { }pu =• (p is the only input of u); 

4. Ø=•∩• ut (any output of t is not an output of u 

and vice versa). 
Construction of AbsN: 

1. { }pPP
a

\= ; 

2. { }( ) { }vutTT
a

∪= ,\ ; 

3. 
( ) ( )( )( ) { }( )

{ } ( ) { }( )( ).p\•∪•×∪

×•∪×∪×∩=

utv

vtPTTPFF
aaaaa

 

 
5.2 Abstraction of Series Places 

The rule allows for the merging of two sequential 
places p and q with one transition t in between them 
into a single place r (see Figure 4). 

 
Figure 4: Abstraction of Series Places 

Formally, let Tt∈  be a transition and Pqp ∈,  

be two places, and PPr
a
\∈  be a place such that: 

Conditions on N: 

1. { }pt =• (p is the only input of t); 

2. { }qt =• (q is the only output of t); 

3. {}tp =• (t is the only output of p); 

4. Ø=•∩• qp (any input of p is not an input of q 

and vice versa). 
Construction of AbsN: 

1. { }( ) { }rqpPP
a

∪= ,\ ; 

2. {}( )tTT
a

\= ; 

3. 
( ) ( )( )( )

( ) { }( ) { }( ) { }( ).\ •×∪×•∪•∪

×∪×∩=

qrrtqp

PTTPFF
aaaaa

 

 
5.3 Abstraction of Parallel Transitions 

The rule allows for the merging of multiple 
transitions (at least two) that have the same inputs 
and outputs into a single transition (see Figure 5).  

 
Figure 5: Abstraction of Parallel Transitions 

Formally, let T⊆Γ be the transitions where 

2≥Γ , and TTv
a
\∈  be a transition such that: 

Conditions on N: 

1. jiji tttt •≡•Γ∈∀ :, (input places for all 

transitions in Γ are identical); 

2. •≡•Γ∈∀ jiji tttt :, (output places for all 

transitions in Γ are identical). 
Construction of AbsN: 

1. PP
a
= ; 

2. ( ) { }vTT
a

∪Γ= \ ; 

3. 
( ) ( )( )( ) { }( )

{ }( ) .  where Γ∈×•∪

•×∪×∪×∩=

tvt

tvPTTPFF
aaaaa  
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5.4 Abstraction of Parallel Places 

The rule allows for the merging of multiple 
places (at least two) with the same inputs and 
outputs into a single place q (see Figure 6).  

 
Figure 6: Abstraction of Parallel Places 

Formally, let PQ ⊆  be the places where 2≥Q , 

and PPq
a
\∈  be a place such that: 

Conditions on N: 

1. jiji ppQpp •≡•∈∀ :, (input transitions for all 

places in Q are identical); 

2. •≡•∈∀ jiji ppQpp :, (output transitions for 

all places in Q are identical). 

Construction of AbsN: 

1. ( ) { }qQPP
a

∪= \ ; 

2. TT
a
= ; 

3. 
( ) ( )( )( ) { }( )

{ }( ) .  where Qppq

qpPTTPFF
aaaaa

∈•×∪

×•∪×∪×∩=

 

It is not difficult to see that the previous 
abstractions preserve the properties of liveness and 
boundedness [13]. That is, let N = (P, T, F) and 
AbsN = (Pa, Ta, Fa) be two WF-net before and after 
the previous reductions. Then AbsN is live 
(respectively bounded) iff N is live (respectively 
bounded). 

 

6. VERIFICATION PROCESS 

In this section, we present our verification 
process of WF-net. After the modelisation of BP to 
WF-net which will be verified, the designer can use 
a graphical interface to specify the property φ to 
validate. First we apply our algorithm (see 
Algorithm 1) to keep just the part of WF-netφ 
concerned with this property. Second, we apply the 
abstraction rules in order to optimise WF-netφ. 
After that, the existing verification algorithms can 
be applied. Finally, we conclude that the 
satisfaction (or not) of φ in the original WF-net. 
This approach is presented in Figure 6: 

 
Figure 6: Process of WF-net verification 

6.1 Response properties models 

In this section, we first give three models of 
response properties to specify the dynamic behavior 
of the BP. Then we will also discuss some possible 
semantics of these models. 

 
Figure 7: Examples of response properties 

The first property (Ф1) states that task 
i
t  will 

always be followed by task jt . The second property 

(Ф2) states that task jt  and task 
k
t will be executed 

in parallel and after task 
i
t . The third property (Ф3) 

states that task 
k
t  will be done after the end of task 

i
t  and task jt . 

The semantics3 of Ф1, Ф2, and Ф3 can be 
interpreted in different ways. In this paper we focus 
on the implementation and the verification of LTL 
formulas [3]. This type of properties can be written 
as follows:  

( ) ( )





◊⇒
Φ−

formula LTL,[]

: from reachable is 
)1(

ji

ij

tt

tt
 

 

( )( ) ( )





◊∧◊◊⇒
Φ−

.formula LTL,[][]

: from reachable be  will and 
)2(

kji

ikj

ttt

ttt
 

 

( )( ) ( )





◊⇒∧
Φ−

.formula LTL,[][]

: and  from reachable be  will
)3(

kji

jik

ttt

ttt
 

                                                 
3 In temporal logic, ◊: Eventually in the future, []: Now and 

forever in the future, ◊n: Eventually in the future after n steps, 

and ◊m≥n: Eventually in the future after m steps (m≥n). 
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6.2 Optimisation and abstraction of  WF-net 

In this section, we present the process proposed 
to integrate the optimisation and abstraction in the 
formal verification of WF-net. 

After the modelisation of the WF-net, the 
designer can specify the property Ф to be verified. 
The verification process starts with the optimisation 
of WF-net in order to keep just the part WF-netФ 
concerned with Ф. Then, the abstraction process 
will be done only in this part (WF-netФ). Figure 8 
schematizes this approach. 

 

 
Figure 8: Our approach of optimisation and abstraction 

6.2.1 Construction algorithm of the part 

concerned with Ф1 

 

After the construction of WF-net NФ1, and in 
order to keep the same behavior of WF-net N, it is 
necessary to add some transitions and/or places to  
WF-net NФ1. There are four cases to study: places 
(respectively transitions) which have the links with 
outside transitions (respectively places) and not in 
WF-net NФ1 (see bold arcs in Figure 9): 
1. Or-split (arc 1 in Figure 9) which connects a 

place p in PФ1 to a transition t in T and not in TФ1. 
In this case, we must add t in TФ1 in order to keep 
the alternative tasks in WF-net NФ1. 

2. Or-join (arc 2 in Figure 9) which connects a 
transition t in T and not in TФ1 to a place p in PФ1. 
In this case it is not necessary to add t in TФ1 
because in our case, we are only interested in 
paths that start from ti and which have tj as target 
termination. 

3. And-split (arc 3 in Figure 9) which connects a 
transition t in TФ1 to a place p in P and not in 
PФ1. In this case, it is not necessary to add p in 
PФ1 because (1) in our case, we are only 
interested in paths w between ti and tj and (2) we 
are not concerned with parallel routing which 
doesn't influence the w. 

4. And-join (arc 4 in Figure 9) which connects a 
place p in P and not in PФ1 to a transition t in 
TФ1. In this case, it is not necessary to add p in 
PФ1. In fact, the transition will be executed 
because in our work we consider that WF-net N 
is sound. 

  

Figure 9: Construction of the WF-net NФ1 

In the following, we formally show how to add 
these transitions to NФ1: Let WF-net N = (P, T, F), 
Ф1:  be the property to be verified, and 
NФ1 = (PФ1,TФ1, FФ1) be the WF-net related to WF-

Algorithm1 

 

Data:Original WF-net: N = (P, T, F), ti, tj : the  

extremities tasks in Ф1 

Result: Part of WF-net: NФ1 = (PФ1, TФ1, FФ1) related to Ф1 

 

for ti ∈  T do 

Mark(ti) := false /*Mark ti as not visited*/ 

endfor 
Function CreatePart(WF-net N, Task t) 

begin 

Mark(t) /* Mark the t as explored */ 
/* while: select only the p places  

adjacents to t */ 

while p such as f(t, p) = 1 do 
/* for: select only the 

transitions adjacent to p */ 

     for t’ (postset p●) do 

          if NotMark(t’) then 

   Mark(t’) 

   if t’≡ tj then 

      Add to PФ1 all the places between (ti, tj) 

      Add to TФ1 all the transitions between (ti, tj) 

      Add to FФ1 all the relations between (ti, tj) 

      endif 
      CreatePart(N, t’) 

endif 

endfor 

endwhile 

end 
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net N after the optimisation related to Ф1. 
Formal definition of construction of WF-net NФ1: 
1. Add the output transitions for all the Or-split 

places: 
{ } ( )

( )

{ } ( )( )





×∪=

∪=

∈=•∈∀

≤≤

≤≤

⇓

.'

;'

\',...,'|

111

111

111

mii

mii

m

tpFF

tTT

TTttpPp

φφ

φφ

φφ
444444 3444444 21

 

2. Add the input place pi and the output place po: 

{ }

( ) ( ) ( )( )





×∪×∪×∪=

∪=

≤≤ omiiojii

oi

ptpttpFF

ppPP

111

11

'

;,

φφ

φφ
 

Remark: The construction of the WF-net 

concerned with both Ф2 and Ф3 

To build the part concerned with the property 
Ф2, we apply the Algorithm 1 twice by changing 
the target extremities of Ф2. The same principle to 
create the part related to Ф3, but this time by 
modifying the source extremities of Ф3. 

6.2.2 Example of Ф1 

Let φ1 be a property of type Ф1 such that: 
φ1: After “register”, “OK” must be reachable.  

We now present how to create Nφ1 = (Pφ1, Tφ1, Fφ1) 
related to WF-net N = (P, T, F) of Figure 2 (the 
handling of a questionnaire). For this, we apply the 
Algorithm 1 to build the part concerned with φ1. 
After that, we add the transition t8 to the Or-split 
place p3. Finally, we add the input place pi and the 
output place po. Therefore, the WF-net Nφ1 is as 
follows: 
 

 
Figure 10: The WF-net Nφ1 related to φ1 after the 

optimisation of WF-net N 

After the construction of WF-net Nφ1, and in 
order to optimise more the size of WF-net Nφ1, we 
perform the abstraction process in the part 
concerned with φ1. The result is the WF-net AbsNφ1 
(presented in Figure 11). 

 
Figure 11: The WF-net AbsNφ1 related to Figure 10 after 

the abstraction 

6.2.3 Example of Ф2 and Ф3 

Let φ2 (respectively φ3) be a property of type Ф2 

(respectively Ф3) 

• φ2: After “register”, “returned questionnaire” 

and “evaluate” must be executed in parallel. 

• φ3: “archive” is done after the end of “time-

out” and “returned questionnaire”. 

Figure 12 shows the parts concerned with φ2 and 
φ3: 

 
Figure 12: Parts concerned with φ2 and φ3 

After the construction of WF-net Nφ2 and WF-

net Nφ3, the abstraction process can be done on the 
parts concerned with φ2 and φ3. The result is the 
WF-net AbsNφ2 and the WF-net AbsNφ3 (see 
Figure 13). 

 
Figure 13: The WF-net AbsNφ2 and AbsNφ3 after the 

abstraction parts concerned with φ2 and φ3 
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6.3 Proof of satisfaction of Ф1, Ф2 and Ф3 in The 

WF-net 

In this section, we prove that if each of the three 
response properties models are satisfied in the  
WF-net AbsN after the optimisation and the 
abstraction of the original WF-net N related to these 
properties, then we conclude that the satisfaction in 
the original one. 

In our context we consider that WF-net N is 
sound. So, every transition t∈T will be enabled 
(because no deadlock transitions in WF-net N and 
every transition is reachable from M0 the initial 
marking of WF-net N) which means that the source 
extremities of the transitions ti, tj and tk in Ф1, Ф2 
and Ф3 will be enabled. 

6.3.1 Proof of Ф1 

Let  N = (P, T, F)  be  a  WF-net, Ф1: be 
a property to verify, and AbsNФ1 = (PФ1a, TФ1a, 
FФ1a) be the WF-net after the optimisation and the 
abstraction of WF-net N related to Ф1. 
We prove that if the property Ф1 is satisfied in WF-

net AbsNФ1, then we conclude that Ф1 is satisfied in 
WF-net N. 

Lemma1. WF-net AbsNФ1|=Ф1⇒ WF-net N |= Ф1 

Proof. According to the semantic of Ф1 in LTL 

context, WF-net AbsNФ1|=Ф1 ∀⇒ paths w = ti … tj 

∈TФ1a. i.e. ( ) ( )jw

i tMtM •→• . Because the 

optimisation and the abstraction keep all the 
possible paths between  ti … tj in WF-net AbsNФ1. 
Furthermore, WF-net N is sound then no deadlock 

transitions ∀⇒ w’=ti… tj∈T and w⊆ w’. Hence, 

WF-net N |= Ф1. 

6.3.2 Proof of Ф2 

Let  N = (P, T, F)  be  a  WF-net, Ф2: 
be a property to verify, and AbsNФ2 = 
(PФ2a,TФ2a,FФ2a) be the WF-net after the 
optimisation and the abstraction of WF-net N 
related to Ф2. 
We prove that if the property Ф2 is satisfied in WF-

net AbsNФ2, then we conclude that Ф2 is satisfied in 
WF-net N. 

Lemma2. WF-net AbsNФ2|=Ф2⇒ WF-net N |= Ф2 

Proof. According to the semantic of Ф2 in LTL 

context, AbsNФ2|=Ф2 ∀⇒  paths w1 = ti…tj and  

∀ paths w2 = ti…tK | (w1, w2) ∈T²Ф2a. i.e. 

( ) ( )j
w

i tMtM •→•
1  and ( ) ( )

k

w

i
tMtM •→•

2 . 

Because the optimisation and the abstraction keep 
all the possible paths between ti … tj and between  
ti … tk in WF-net AbsNФ2. Furthermore, WF-net N 
is sound  then no deadlock 

transitions ∀⇒ w’=ti…tj and ∀ w’’ = ti…tK | (w’, 

w’’)∈T² and w1⊆ w’, w2⊆ w’’. Hence,  

WF-net N |= Ф2. 

6.3.3 Proof of Ф3 

Let N = (P, T, F) be a WF-net, Ф3: 
be a property to verify, and AbsNФ3 = (PФ3a, TФ3a, 
FФ3a) be the WF-net after the optimisation and the 
abstraction of N related to Ф3. 
We prove that if the property Ф3 is satisfied in 
AbsNФ3, then we conclude that Ф3 is satisfied in N. 

Lemma3. WF-net AbsNФ3|=Ф3⇒ WF-net N |= Ф3 

Proof. According to the semantic of Ф3 in LTL 

context, WF-net AbsNФ3|=Ф3 ∀⇒  paths w1 = 

ti…tk and ∀ paths w2 = tj…tK | (w1, w2) ∈T²Ф3a. i.e. 

( ) ( )
k

w

i
tMtM •→•

1  and ( ) ( )k
w

j tMtM •→•
2 . 

Because the optimisation and the abstraction keep 
all the possible paths between ti … tk and between  
tj … tk in WF-net AbsNФ3. Furthermore, WF-net N 
is sound then no deadlock transitions 

∀⇒ w’=ti…tk and ∀ w’’ = tj…tK | (w’, w’’)∈T² 

and w1 ⊆ w’,w2⊆ w’’. Hence, WF-net N |= Ф3. 

 

7. EXPERIMENTS AND ANALYSIS 

In this paper, we use the SPIN4 tools to validate 
our proposal and to assure the theoretical results. In 
these experiments, we discuss the verification of 
the three models of response properties Ф1, Ф2 and 
Ф3. The results of this analysis show the 
performance of our approach. 
 
7.1 Transforming WF-net to PROMELA 

In [8], the authors have proposed a method to 
describe a WF-net into PROMELA5 that can be 
simulated and verified with the SPIN model 
checker. In this method, a WF-net system is 
represented as a single process. The process 
describes each firing of its transitions. 

Program1 presents an outline of the PROMELA 
program for WF-net (handling of a questionnaire). 

 
7.2 LTL formulas 

The properties to be verified in SPIN have to be 
expressed as LTL formulas. LTL formulas 
correspond to the response properties φ1, φ2 and φ3 
to be verified and can be rewritten as follows: 

• φ1: After “register”, “OK” must be reachable. 
[]((M[1]>=1) -> <>( M[6]>=1)). 

• φ2: After “register”, “returned questionnaire” 
and “evaluate” must be executed in parallel. 
[]((M[0]>=1)-><>(M[2]>=1&& M[8]>=1)). 

• φ3: “archive” is done after the end of “time-
out” or “returned questionnaire”. 
[]((M[9]>=1| |M[10]>=1)-> <>(M[11]>=1)). 
 

                                                 
4 http://spinroot.com 
5 spinroot.com/spin/Man/promela.html 



Journal of Theoretical and Applied Information Technology 
 31

st
 March 2014. Vol. 61 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
494 

 

 
7.3 Experimental results 

In this section we give some statistics in order to 
show the performance of our approach. We 

compare the size, the memory6 and the verification 

time6 between the original WF-net related to Figure 
2 and the WF-net: AbsNφ1, AbsNφ2 and AbsNφ3. 

We first give the results without optimisation and 
abstraction of WF-net related to Figure 2. 

Table 1: Experiments without optimisation and 

abstraction. 

LTL 
formula

s 

States
, 

stored 

Transition
s 

Memor
y 

(Mb) 

Time
s (s) 

φ1 15 61 11.876 0.18 

φ2 16 52 12.364           0.21 

φ3 12 40 11.485           0.18 

 

                                                 
6 Verification with disable dead-variable elimination 

To evaluate the effect of our approach, we 
perform the verification of properties φ1, φ2 and φ3 
in the AbsNφ1, the AbsNφ2 and the AbsNφ3. These 
experiments are given in Table 2. 

Table 2: Experiments with optimisation and abstraction. 

LTL 
formula

s 

States
, 

stored 

Transition
s 

Memor
y 

(Mb) 

Time
s (s) 

φ1 8 12 3.770 0.02 

φ2 10 23 3.672           0.03 

φ3 5 8 3.522           0.02 

 
For more clarification, Figure 14 illustrates this 

comparison between the original WF-net related to 
Figure 2 and the WF-net: AbsNφ1, AbsNφ2 and 
AbsNφ3. 
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Figure 14: Statistics of the experimental results 

8. CONCLUSION 

This paper proposes a new approach to verify the 
WF-net in a BP context. We exploited the 
optimisation and the abstraction methods to remedy 
the verification processes complexity which is still 
a problem when we use a formal method. We are 
particularly interested in the response properties, 
and we present three class of these properties.  

We propose an algorithm for extracting a part 
from WF-net in order to build an abstract WF-net. 
After this abstraction, we performed an 
optimisation in abstract WF-net to optimise more 
the size of WF-net. This method has the advantage 
of preserving the dynamic behaviors of WF-net. 

Our approach is based on the verification of the 
response property on a part of the WF-net which is 
concerned by this property, and we proved that if 
the optimised WF-net satisfies this property, then 
we deduced the validation in the global WF-net. 
This proof is enriched by several practical 
experiences with the SPIN tools in order to show 
the performance of our approach. 

Program1 

#define Place 12 

#define Transition 13 
/* Variables representing a state of 

WF-net */ 

int M[Place]; /* Marking */ 

int X[Transition]; /* Firing count */ 
/* A firing of Transition t */ 
/* remove specifies the change of the 

marking of ●t */ 

/* add specifies the change of the 

marking of t● */ 

/* fire (x) increments the element 

corresponding to t in X[t] */ 

#define remove1(x) (x>0 )       -> x-- 

#define remove2(x,y) (x>0 && y>0)   -> x--; y-- 

#define add1(x)  x++ 

#define add2(x,y)  x++; y++ 

#define fire(x)  x++ 
/* Process representing WF-net */ 

init 

{ 

M[0]=1; /* Set the initial marking */ 

do 
:: atomic{remove1(M[0]) -> fire(X[0]); add2(M[1],M[7])} 
:: atomic{remove1(M[1]) -> fire(X[1]); add1(M[2])} 

:: atomic{remove1(M[2]) -> fire(X[2]); add1(M[3])} 

:: atomic{remove1(M[3]) -> fire(X[3]); add1(M[4])} 

:: atomic{remove1(M[3]) -> fire(X[7]); add1(M[6])} 

:: atomic{remove1(M[4]) -> fire(X[4]); add1(M[5])} 

:: atomic{remove1(M[5]) -> fire(X[5]); add1(M[1])} 

:: atomic{remove1(M[5]) -> fire(X[6]); add1(M[6])} 

:: atomic{remove1(M[7]) -> fire(X[8]); add1(M[8])} 

:: atomic{remove1(M[8]) -> fire(X[9]); add1(M[10])} 

:: atomic{remove1(M[8]) -> fire(X[10]); add1(M[9])} 

:: atomic{remove1(M[9]) -> fire(X[11]); add1(M[10])} 

:: atomic{remove2(M[6],M[10]) -> fire(X[12]); 

add1(M[11])} 

od 
} 
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For now, we study the possibility to facilitate the 
conditions of abstraction in order to better optimise 
the size of abstract WF-net, and we will investigate 
the semantic expansions of the response properties. 
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