
Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

456

MDP: A PARADIGM FOR COMMUNICATION AND

COMPUTATION IN MOBILE CLUSTER

1
AGHILA RAJAGOPAL,

2
M.A. MALUK MOHAMED

1,
2Software System Group, MAM College Of Engineering, Affiliated To Anna University Chennai.

E-mail: 1ssg_akila@mamce.org , 2ssg_malukmd@mamce.org

ABSTRACT

The proposed work explores the interprocess communication across communicating parallel tasks in a
mobile cluster. The process which is linked with specific mobile or static nodes will not be resilient to the
changing conditions of the mobile cluster. The proposed Mobile Distributed Pipes (MDP) model enables
the location independent intertask communication among the processes executing in static and mobile
nodes. This novel approach enables the migration of communicating parallel tasks during runtime, which
occurs according to the context and location requirements. A transparent programming model for a parallel
solution to Iterative Mobile Grid Computations (IMGC) using MDP is also proposed. The proposed model
is resilient to the heterogeneity of nodes such as static or mobile and the changing conditions in the mobile
cluster because of mobility. The design of runtime and functional library support for the proposed model is
also presented.
Keywords: Location-independent(LI)communication, Mobile Grid Computation Problem (MGCP), Mobile

Grid Computation Task (MGCT), Iterative Mobile Grid Computation (IMGC), Iterative Mobile

Grid Module(IMGM), and Mobile Distributed Pipes (MDP).

1. INTRODUCTION

AN effective communication of parallel tasks on a
distributed computing system requires the selection
of the nodes during the runtime. The number of
nodes to be selected at real time in a mobile cluster
is not static. The nodes and their communication
links are prone to failure, which results in
complexity of the system during communication
processes of the nodes. The nodes could also be
heterogeneous in terms of processing power,
operating systems, and architecture and these nodes
need to coordinate with each other. The uneven
load in the network due to this heterogeneity in
system properties needs to be balanced.

The load balancing is prioritized with respect to

the granularity of the individual subtasks. When the

programing of the intertask communication is

transparent, it enables numerous application

domains to employ the parallel computing power of

the cluster of nodes. Some of the application

domains are Iterative Mobile Grid Computations

(IMGC), suboptimal algorithms, and network of

filters.

The computing power in mobile systems is made

ubiquitous through parallel and distributed

computing. The mobile systems must ideally offer

seamless computing, flexibility in communication,

and higher availability of the distributed

information. The computing resources of a system

are integrated to work in a common system,

forming clusters. Clusters are preferred as they

yield better fault tolerance and price-performance

ratio compared to conventional mainframe

architectures.

Parallel computing has been performed using
methods like ARC [13], ADM [16], EMPS [17],
Sprite [19], Piranha [18], Condor [12], (Network of
Workstations) NOW [15], and Batrun [14]. Of
these techniques Condor, NOW, and Batrun are
employed for wired networks and the remaining
techniques do not involve intertask communication.
So, a scheme is proposed for mobile cluster
involving inter-process communication using
Mobile Distributed Pipes (MDP).

An application of parallel and distributed
computing is mobile telemedicine. A general
telemedicine system comprises of a small group of
hospitals which provides remote healthcare services
[3]. But, in developing nations the majority of the
population is in the rural areas which require larger
Internet-based telemedicine systems. A variable
Internet-based P2P architecture is used for
telemedicine networks. This system is based on a
store and forward model, involving a distributed
context-aware scheduler.

A transparent programming model is used for the
communication of the parallel tasks in a wide area
grid [7]. The grid model involves Distributed Pipes
with grid abstraction (GDP), which performs the
location independent inter-process communication

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

457

between machines. This technique allows the
anonymous migration of parallel task
communication with respect to the grid dynamics.
The model can support both parallel load and
sequential load. But this model does not provide
support for mobile systems.

The physical mobility of the mobile nodes (MNs)

may result in message loss in a distributed mobile

computing environment [2]. The battery power can

be conserved to a great extent when the message

delivery is guaranteed exactly once. The limited

characteristic of the mobile nodes involving in the

mobile cluster requires an efficient communication

scheme for exactly-once message delivery. So, an

exactly once multicast protocol (EOMP) is used to

increase the power efficiency. An unreliable

wireless MAC layer multicast delivers the

messages to the MNs. The EOMP tolerates the

failure at the mobile support station (MSS) by

turning the MSS stateless.

Computational mobile grid is regarded as an

integration of mobile clusters [4]. Mobile cluster

computing can also be implemented using IPv6

[10]. An Anonymous Remote Mobile Cluster

Computing (ARMCC) method is introduced to use

the stationary computing power of the nodes, to

attain parallel programming in a distributed mobile

system. The cluster model is extended to an

environment of mobile grid that combines the

computational, service, and data grids. The

participating mobile nodes are referenced using

surrogate objects [5] which are implemented as a

shared distributed object space. An environment for

the iterative grid-based applications involves a

distributed solution [9]. The environment is

constructed using a mobile agent system.

A Mobile Distributed Pipes (MDP) model

involving mobile cluster computing is proposed in

the mobile cluster architecture. The mobile nodes

are combined with the static nodes to form a mobile

cluster. The parallel computing is implemented in

mobile clusters by utilizing the idle processing

power of the nodes in the mobile clusters. The

number of mobile nodes is higher than the number

of the static nodes in the mobile cluster. The

motivation for this work attributes to the extensive

potential value of mobile cluster computing in real-

time environments.

A mobile cluster is defined as a group of

interconnected mobile nodes by wireless networks.

The mobile cluster coordinates with a set of mobile

nodes to execute a specific task. The mobile cluster

provides flexibility in terms of mobility, cluster

security, and extendibility. When the domain of an

IMGC is classified, their subdomains require

exchanging their boundary values. The mobile grid

computations are applied in the solution of elliptical

partial differential equations. The problem

classification in the suboptimal algorithms and

network of filters requires the subtasks to exchange

their intermediate values. The MDP model

performs better in terms of throughput,

synchronization time, speedup, task time, memory

requirements, packet drop fraction, and packet

delivery ratio (PDR) with respect to the existing

models DP [11], and Moset [6]. The MDP model

works in the environment of a mobile cluster which

composes a large coverage and multiple clusters,

compared to the previous parallel computing

methods.

Mobile Distributed Pipes (MDP) is proposed to

handle the issues of mobility, bandwidth, and fault

tolerance relative to the existing Distributed Pipes

(DP) model [11], operating in the mobile cluster.

The communication of the parallel tasks created at

runtime is connected using the MDP. The MDP

model defines the transparent programmability for

the parallel task communication. MDP support data

flow between tasks independent of their location.

This supports the anonymous migration of the

parallel task communication.

The communication channels between the mobile

nodes are regarded as global entities. The

information about these global entities is stored

globally in a designated mobile node. The

communication channels are created or destroyed

only during the runtime. MDP handles

heterogeneity by the use of external data

representation.

The remaining part of the paper is organized as

follows: Section II involves the MDP model of

IMGC. Section III involves the design and

implementation of MDP. Section IV involves the

implementation of the MDP model in an image

rendering application. Section V involves the

background work related to parallel computing and

distributed computing. Section VI involves the

performance analysis and comparison of the

proposed MDP model and existing models DP [11],

and Moset [6]. The paper is concluded in Section

VII.

2. MDP MODEL OF ITERATIVE MOBILE

GRID COMPUTATIONS

The overall mobile cluster architecture is shown

in Fig. 1. A general Iterative Mobile Grid

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

458

Computation (IMGC) consists of repetitive

computations in time and space dimensions [11].

The general program structure of the problem in the

sequential execution in IMGC is given in Pseudo

Code 1. The outer loop of pseudo code 1 iterates in

time and the inner loop in each space dimension.

Pseudo Code 1: Program Format for general

IMGC

FOR Time = InitialTime TO FinishTime

 FOR SpaceX = InitialSpaceX TO

FinishSpaceY

 FOR SpaceY = InitialSpaceY TO

FinishSpaceY

UserCustomizedFunction ()

 ENDFOR

 ENDFOR

ENDFOR

A. Proposed Model

The model involves a master-worker

computation model. There are numerous master

processes and worker processes. The master

process is the MobileGrid Computation Problem

(MGCP) which initiates or requires the

computation [11]. The worker processes are created

on the mobile nodes which involve in the parallel

computation. The worker process is the MobileGrid

Computation Task (MGCT) which performs the

parallel computation for the MGCP. The

computation is performed through Iterative Mobile

Grid Modules (IMGM), also known as the worker

process. The communication of the parallel tasks is

achieved through the process of domain

decomposition. The several IMGMs are allotted a

subdomain of the computation. The role of the

MDP is to enable the exchange of the boundary

values between the IMGM’s of multiple mobile

nodes. The computation results of all the IMGMs

are then transferred to the Master Process.In the

proposed model, the system handles selection of the

least loaded mobile nodes, anonymous migration of

IMGMs, features related to fault tolerance, load

balanced classification of tasks, and results

collection. The programs in this model can be

accommodated to a changing mobile cluster. There

is no limit on the number of IMGMs. Hence, the

number of mobile nodes utilized will be optimized

during runtime. The programs based on this model

are tolerant to a heterogeneous group of unevenly

loaded mobile nodes.

B. Initialization

InitializeProblem () is used to register the master

process with the system and the process is

terminated using EndProblem ().StartIMGM () is

used to register the IMGM with the system and it is

terminated using EndIMGM ().

C. Domain Decomposition

The mobile grid details are transferred to the

system from the master process. The granularity of

computation to be assigned to individual MGCTs,

mobile nodes to be allotted for each worker

process, and optimum number of worker processes

is decided by the system [11]. The master process

forms the initial data for the individual worker

processes to transfer the worker processes and to

establish channels that collect the output results

from each IMGM.

The master process initiates the data for the

individual worker processes based on the

information from the system. The initial data enable

the transfer of IMGMs and creation of channels to

collect the output from each IMGM.

The master process sends the mobile grid details

to the system using the function call

SendMobGridDetails (). Similarly, the number of

worker process to be used is obtained using the

function call EstimateSplitsCount (). The

granularity of each worker process is estimated

using the function call GetSplitDetails (). A brief

description of the function calls used is given in

TABLE I.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

459

D. Anonymous Transfer of Subtasks

The anonymous transfer of a worker process is

started when the MGCP invokes the Transfer()

function call. But, the master process does not

provide any machine specific parameters of the

Transfer () function call. The syntax of the function

call is given as follows:

int Transfer (int ProblemIndex, int SplitIndex,

char* TransferFile, int InfoType, void* Info, int

SpaceX, int SpaceY, int SpaceZ, int Store, char*

OutputPipe)

Transfer () transfers the program code for a

worker process and furnishes it with initial data.

The information consists of the number of mobile

grid points in the three dimensional space.

OutputPipe is the name of the Mobile Distributed

Pipe to which the worker process writes its results.

E. Information Gathering by Worker Processes

The anonymously migrated worker processes are

collected by the mobile local coordinator mlc and

the program code is compiled, which spawns the

worker processes. A worker process initializes its

data structures to hold and collect the initial data.

GetTaskMobGridDetails () is used to determine the

size of the initial data and for the initialization of

the data structures. The worker process collects the

initial data by invoking the function call

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

460

GetTaskInfo (). The function call

GetTaskMachineDetails () determines the name of

the OutputPipe to be opened and the position of the

worker process. During runtime, the system

provides information corresponding to individual

worker processes. The syntax and semantics of the

function calls are given in TABLE II.

F. Transparent Communication

Each worker process has to communicate with its

surrounding worker process to exchange boundary

values. Since the worker processes are transferred

to anonymous nodes, a worker process will not

know the neighboring worker process’ location

[11]. The number of neighbors of a worker process

depends on the position of the worker process.

Hence, the number of MDP to be opened by

theworker process cannot be estimated until

runtime. A worker process collects the information

about its neighbors and the number of MDP to be

opened at runtime and it is accomplished by the

function calls given in TABLE III.

G. Design Issues

The performance of the MDP scheme depends on

the mobility of the nodes and the node density. The

number of nodes entering a mobile cell

simultaneously should be limited else nodes might

not be captured correctly by the cc. The

connectivity of the mobile nodes with the cc is

limited by a threshold radius, beyond which the

mobile node leaves the mobile cell. The mlc and

master/worker process are connected by Unix

domain socket connections, and the connections

between sc, cc, and mlc are TCP connections.

TABLE I

FUNCTION CALLS IN DOMAIN DECOMPOSITION

Data

Typ

e

Function Parameters Description

int SendMobGridDetai

ls ()

int ProblemIndex, int SpaceX, int

SpaceY, int SpaceZ, int Store, int

SplitOrientation

It sends the mobile grid details of a MGCP to the

system. Problem Index is the index by which the system

identifies a MGCP. SpaceX, SpaceY, and SpaceZ are

the number of mobile grids in the three dimensional

space. Store represents the number of former time slices

stored.

int EstimateSplitsCoun

t ()

int ProblemIndex It collects the number of worker processes for the

MGCP denoted by Problem Index.

int GetSplitDetails () int ProblemIndex, int SplitIndex, int*

StartMobGrid, int* TotalMobGrid

It gathers the details regarding the split of the problem.

The starting mobile grid of the subdomain and the total

number of mobile grids in the subdomain are stored at

the addresses pointed by StartMobGrid and

TotalMobGrid respectively.

TABLE II

FUNCTION CALLS IN INFORMATION GATHERING BY WORKER PROCESSES

Dat

a

Typ

e

Function Parameters Description

int GetTaskMobGridDe

tails ()

int* SpaceX, int*

SpaceY, int* SpaceZ,

int* Store

It gives the number of mobile grid points in the three

dimensional space.

int GetTaskInfo () void* Info, int SpaceX,

int* SpaceY, int*

SpaceZ, int* Store

It saves the first data matrix at the address pointed by Info.

int GetTaskMachineDet

ails ()

int* MachineName,

char* OutputPipeName

It saves the location of the worker process in the MGCP at

the address pointed by MachineName.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

461

The parallel computing on mobile clusters is

subject to several key issues such as, mobility of

nodes, connectivity of mobile nodes, transmission

time, uneven nodal distribution, uneven load in the

network, and difference in performances of node.

1) Handoff Process

When a mobile node moves from one mobile cell

to another, the transition process is termed as

handoff. During handoff, the channel resources

should be managed to preserve the connectivity of

the network. The channel used in the former cell

may not be reusable in the new cell because of low

signal strength, or co-channel or adjacent channel

interference. So the transiting mobile gets isolated

from the rest of the mobile cluster. When the new

channel has not be allocated to the mobile node

within a short time span, the messages transmitted

in the network will get delay, leading to

retransmission of data.

The transmission time can be managed and the

retransmission of data can be avoided by using a

topology based management. Two types of

topology of nodes are used such as, ring topology

and tree topology, to solve the handoff issue. The

handoff issue was not properly addressed in the

existing Moset [6] model, but it is efficiently

handled by the topology scheme introduced in the

proposed MDP model.

2) Load Balancing

The details regarding the load and availability of

nodes in the network are gathered by the system, so

that the optimum number of worker processes to be

implemented and their individual granularities can

be estimated. The processing power of individual

elements is also used for the load balancing in a

heterogeneous group of nodes.

3) Disconnectivity of mobile nodes

Timers are maintained for detecting the

disconnectivity of the mobile nodes from its

associated cell. A node when it does not return

within the stipulated time set in the timer, then the

sub-process is re-submitted

to some other node. In the case of mobile nodes, the

co-coordinator (cc) acts as the timer. When there is

a failure in the resubmission of the sub-process to

some other mobile node, the cc itself will execute

the sub-process. The mobile nodes may get

disconnected from the cell after the execution of the

sub-process and return to the cell before the timer

timeouts. In this case, the cc would be able to

decide the failure of mobile nodes under the

stipulated time of the timer. This ensures the fault

tolerance of the network.

4) Bandwidth

The mobile nodes are characterized by high

fluctuations in the network bandwidth, depending

on whether it is a static node or a mobile node, and

on the type of connection in the present cell. The

MDP model differentiates the type of connectivity

and provides flexibility in terms of task size and

network bandwidth.

3. DESIGN AND IMPLEMENTATION OF MOBILE

DISTRIBUTED PIPES

A. Runtime Support

The runtime support comprises a mobile local

coordinator (mlc) daemon executing on each node

involving in parallel computation, a co-coordinator

(cc) daemon, and a system coordinator (sc) daemon

on a designated node.

TABLE III

FUNCTION CALLS IN TRANSPARENT COMMUNICATION

Data

Typ

e

Function Parameters Description

int GetTaskOpenPipeIdentitie

s ()

char** PipeIdentities, int*

ModeOfAccess, int

NoOfInitiatedPipes

It furnishes the names, mode of access and number of

MDP to be initiated.

int GetTaskNoOfPipesToIniti

ate ()

int* NoOfInitiatedPipes It saves the number of MDP to be initiated at the address

pointed by NoOfInitiatedPipes

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

462

B. Mobile Local Coordinator

The mlc executes on each mobile node that

involves in parallel computation, the static local

coordinator (slc) executes on each static node that

involves in parallel computation. The mlc services

requests from the user processes (up). The mlc

maintains two tables to support the MDP services,

namely, the User Processes Blocked for Write

Table (UPBWT) and User Process Information

Table (UPIT) [11]. The UPIT maintains

information relative to the up registered with the

mlc on its node. The UPBWT tracks the processes

which have opened a MDP in write mode alone.

The writing process is blocked until the MDP is

opened by some other process in read mode. The

mlc uses the table to inform the blocked processes

when any other process opens the MDP in read

mode.

The mlc uses a MobileGrid Computation Task

Submitted Table (MGCTST) for supporting mobile

grid computations. The mlc services the task

requests using the MGCTST. The table is

referenced by the process id of the task. The table is

updated under two conditions, i.e. when an already

submitted task terminates or when a new task is

submitted. The mlc forwards the information to the

cc when the service needs additional parameters.

The FSM of the mlc is given in Fig. 2. In the

INIT state, mlc cleans the secondary system files

and initializes its data structures. The mlc

establishes a TCP connection with the cc and

registers with the cc. In the LISTEN state, the mlc

waits for the messages from the cc or any user

process. When a message is received from the cc, it

changes its state to SC Msg RXD and services the

message. When a message is received from a user

process, it changes its state to UP Msg RXD and

services the request.

The initial communication the mlc and a process

established through a known common channel,

which is necessary for a user process to register

with the mlc. User processes which register with the

mlc are specified with unique communication

channels for subsequent communication.

C. Co-Coordinator

The co-coordinator represents a system

coordinator relative to mobile nodes (MN) which

are within the specified cell [6]. Any MNwithin the

coverage area of the mobile cell registers a group of

computing elements to the cc executing on that

mobile cell. The co-coordinator collects the group

of computing elements and registers with the sc.

The multicasting of the dataset and the history of

execution are maintained by the co-coordinator.

The MLCT (Mobile Local Coordinator Table)

tracks the mlc in the system. The table is updated

when there is a change of mlc in the mobile cell.

The mobility of the MN is also monitored by the

cc. When a MN moves out of the mobile cell and

enters another mobile cell, then the new mobile cell

informs the cc of the old mobile cell through

handoff. The information among the cc is

exchanged when the new mobile cell already has

the cc daemon executing. When the new mobile

cell does not execute the cc daemon, the cc gets

registered with the sc and executes the cc.

Fig. 2. FSM of Mobile Local
Coordinator (MLC).

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

463

The FSM of the cc is given in Fig. 3. In the INIT

state, cc cleans the secondary system files and

initializes its data structures. In the LISTEN state,

the cc waits for the messages from the mlc or sc.

When a message is received from the mlc, it

changes its state to MLC Msg RXD and services

the message. When a message is received from the

sc, it changes its state to SC Msg RXD and services

the request.

D. System Coordinator

The sc coordinates the group of co-coordinators
from the various mobile cells. The sc senses the
failure of the mobile nodes when the mlc fails. The
sc tracks the individual co-coordinators and
establishes the communication between them. TCP
sockets are used to connect sc with the individual
by including static node in the distributed
processing. The static node establishes the
computing elements based on its capabilities
through slc. The static node also includes the cc
which establishes a group of computing elements
represents the mobile nodes which are within its
cell. The sc groups these computing elements into
cluster-subgroups and tracks the total number of
computing elements under each subgroup. The sc
allocates each computing element a unique ID
affiliated with each group subscribed by it.

The sc comprises of three tables, namely, the

Mobile Distributed Pipes Table (MDPT), the

MobileGrid Computation Task Table (MGCTT),

and the MobileGrid Computation Problem Table

(MGCPT) [11]. The MDPT tracks the MDP

channels and is updated whenever a MDP is

created, enabled, disabled, or deleted. When a

process enables a MDP before the pipe is enabled

for reading, the relative mlc information is stored in

the table. The MGCPT maintains the information

relative to the MGCP that is submitted to the sc.

The MGCPT is updated when a work is completed

or when a work is submitted to the sc. The MGCTT

maintains information relative to individual tasks

constituting the MGCP. The MGCTT is updated

when a task begins execution, when the problem is

subdivided into tasks, or when a task terminates.

The FSM of sc is given in Fig. 4. In the INIT

state, the sc cleans the secondary system files and

initializes its data structures. In the LISTEN state,

the sc selects the connection requests from the co-

coordinators. The sc registers the cc with the

system when a connection request from a cc is

received, and a TCP socket connection is

established between them. The sc listens for

messages from the registered mlcs on unique

channels, and continues to listen to new requests for

connection. When a message from a cc is received,

it changes its state to CC Msg RXD and executes

the message. The sc returns to the LISTEN state

when the message is processed.

E. Function Library

The library of functions comprises various

services to support the MDP model of IMGC and

the location transparent communication via MDP

[11]. The variants of the function calls support

communication across different architectures by

Fig. 4. FSM of System Coordinator

(SC).

Fig. 3. FSM of Co-

Coordinator (CC).

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

464

external data representation. The function library is

constructed over UNIX and TCP domain stream

protocol.

A TCP socket is created and a new message

sequence is initiated by giving a message to sc

through cc, for an open request in WriteMode. The

message comprises the TCP socket descriptor,

mode of access, and process index of the requesting

process. The MDPT is updated with this

information by the sc. When the MDP is already

opened by another process in Read Mode, the sc

returns the information to the caller. When the

MDP is not opened for reading, the updating of

MDPT and UPBWT are performed at sc and mlc

respectively.

A TCP socket is created and combined with a

local port for an open request in Read Mode. A

message is given to the sc to update the MDPT with

the port number, process index, mode of access,

and TCP socket descriptor. The library of functions

along with their description is given in TABLE IV.

 TABLE IV

BASIC SERVICES OF MDP

Data

Type
Function Parameters Description

int EstablishMDP

()

char* PipeIdentity It sends a message to the sc through the cc and mlc executing on its machine. The

sc establishes the MDP if there is no other channel with the same identity and

makes an entry in MDPT

int InitiateMDP () char* PipeIdentity, int

ModeOfAccess

It sends a message to the sc through the cc and mlc executing on its machine with

the name of MDP as a parameter. The sc completes the message sequence by

communicating with the user process about the creation of the MDP.

int GetMDP () int MDPDescriptor,

char* Memory, int

MemorySize

It gets the information from the socket descriptor for the MDPDescriptor. The

MDPDescriptor returned is the real socket descriptor. This function call executes

message sizes above the sizes of TCP messages.

int PutMDP () int MDPDescriptor,

char* Memory, int

MemorySize

It puts the information to the socket descriptor for the MDPDescriptor. The

MDPDescriptor returned is the real socket descriptor. This function call executes

message sizes above the sizes of TCP messages.

int EndMDP () int MDPDescriptor It ends the socket descriptor for the MDPDescriptor. This function call sends a

message to the cc through mlc with the name of MDP and ProcessIndex as

parameters. This updates the MDPT at sc.

int RemoveMDP

()

char* PipeIdentity It sends a message to the sc through the cc and mlc with the name of the MDP as an

argument. The sc removes the relative element in MDPT and returns the removal
status to the function call.

TABLE V

EXTENDED SERVICES OF IMGC

Data

Type
Function Parameters Description

int EstablishMobGridComputationProbl

em ()

 It sends a message to sc through cc and mlc. The sc

produces an element for the problem in MGCPT and

returns ProblemIndex

int SendMobGridDetails () int ProblemIndex, int

SpaceX, int SpaceY, int

SpaceZ, int Store, int

SplitOrientation

It sends a message to sc through cc and mlc. The

message contains the parameters of the function call.

The update of MGCPT is performed by sc and updated

status is returned.

int EstimateSplitsCount () int ProblemIndex It sends a message to sc through cc and mlc. The load

details of all machines are collected from relative mlcs.

This information is used to split the problem by the sc.

The sc produces a new element in MGCTT to save the

information about the division and returns the splits

count.

int GetSplitDetails () int ProblemIndex, int

SplitIndex, int

*StartMobGrid, int

*TotalMobGrid

It sends a message to sc through cc and mlc. The values

from the MGCTT are gathered by the sc and the initial

and total number of mobile grids is returned.

int Transfer () int ProblemIndex, int

SplitIndex, char

*TransferFile, int

InfoType, void *Info, int

SpaceX, int SpaceY, int

SpaceZ, int Store, char

*OutputPipe

It sends a message to sc through cc and mlc with its

ProblemIndex and SplitIndex. The values of mlcs from

MGCPT and MGCTT are gathered by the sc and

messages are sent to the mlcs. Each mlc establishes a

TCP socket, joins the TCP socket with a local port, and

listens to it. The port numbers are given to the sc and it

passes the gathered information to the mlc which

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

465

started the transfer. The mlc which started the transfer

establishes a TCP connection and transfers the data,

code, and output MDP name to the other mlc. The

MGCTST of the transferred mlc is updated this

information. The TCP connection is disabled when the

transfer is finished.

int EndMobGridComputationProblem () int ProblemIndex It sends a message to sc through cc and mlc with

ProblemIndex. The sc removes the corresponding

element from the MGCPT.

int EstablishMobGridComputationTask

()

 It sends a message to sc through cc and mlc. The new

task element is updated into the MGCTT and

TaskIndex is returned.

int GetTaskMobGridDetails () int *SpaceX, int *SpaceY,

int *Store

It sends a message to sc through cc and mlc. The

message comprises of the process index of the task.

The mlc collects the corresponding information from

the MGCTST.

int GetTaskMachineDetails () int *MachineName, char

*OutputPipeName

It sends a message to sc through cc and mlc. The

subdomain for which the task depends on the mlc is

observed. The position of this subdomain is returned by

the sc. The mlc returns the subdomain information and

the OutputPipeName to the task.

int GetTaskInfo () void *Info, int SpaceX, int

SpaceY, int Store

It sends a message to mlc. The mlc observes the

information from MGCTST and the information is

returned to the task.

int GetTaskNoOfPipesToInitiate () int *NoOfInitiatedPipes It sends a message to sc through cc and mlc. The

process index is appended with the message. The sc
observes the information from the MGCPT and the

number of MDP to be initiated by the task is returned.

int GetTaskInitiatedPipeIdentities () char **PipeIdentities, int

*ModeOfAccess, int

NoOfInitiatedPipes

It sends a message to sc through cc and mlc. The

process index is appended with the message. The

identities of the MDP to be initiated and their mode of

access are returned.

int EndMobGridComputationTask int TaskIndex It sends a message to mlc. The mlc removes the

corresponding element from the MGCTST and the

message is forwarded to the sc through cc. The sc

updates the values of MGCPT in response to the

message.

F. Overhead of Interfaces and Extended Services

for IMGC

The overhead of a function call is due to the

message sequences initiated by the function call

[11]. The function calls EstablishMDP (), EndMDP

(), and RemoveMDP () forms a message from the

mlc to the sc, a message to the mlc on the mobile

node, a message from the lc back to the up, and a

reply from the sc to the lc. The normal size of

exchanged data packets is approximately 100 bytes.

These function calls are used only once during the

lifespan of a MDP. The function calls GetMDP ()

and PutMDP () are changed to the current system

call, which do not result in any overheads. These

function calls are used multiple times during the

lifespan of a MDP. The extended services for an

IMGC along with their description are given in

TABLE V.

G. Variations from DP, GDP and Moset

The following issues were not solved in DP,

GDP and Moset: handoff, load balancing,

disconnectivity of mobile nodes, and fluctuations in

bandwidth. The ring topology involves each mobile

node with exactly two neighbors, which forms a

planar structure. This structure arranges the mobile

nodes arranged in a mobile grid of rows and

columns. The example ring topology architecture is

shown in Fig. 5.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

466

Fig. 5. Example Ring Topology

The tree topology composes of a hierarchical

structure of node levels which forms a tree. The

lower level of the tree contains more nodes than the

previous level of the tree. An example tree topology

is shown in Fig. 6. The fragmented topology is

reconstructed prior to the destruction of the pre-

defined topology during the roaming of a mobile

node. The reconstruction of the fragmented

topology is performed by choosing a new node as

an option to the migrated node. The time spent on

the reconstruction should be less for the satisfactory

performance of the mobile cluster computing.

The various machines compose of divided sub-

domains of computations. The load ratio on each

machine determines the granularity of each

subdomain. The load can be balanced by ignoring

the machines for which the load indices cross a

designated value. DP is not able to account for

disconnection during handoff process, which is

solved in MDP model using the reconstruction of

fragmented topologies.

The existing GDP [7] and Moset [6] models

cannot handle a heterogeneous and varying load

conditions, which is overcome in the proposed

MDP model by issuing threshold values (load

indices) and neglecting the machines which cross

the threshold value. The existing GDP and Moset

[6] models does not support flexible wireless

bandwidth, which is overcome in the proposed

MDP model by distinguishing the type of

connectivity in a cell of the mobile cluster.

The disconnectivity issue was not properly

addressed in the existing Moset [6] model, but it is

efficiently handled by the timer scheme introduced

in the proposed MDP

model.

Higher level Lower level

Fig. 6. Example Tree Topology

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

467

3. CASE STUDY

A variety of engineering applications are based

on the principle of iterative mobile grid

computation (IMGC). These applications possess a

pattern in their process interaction. A distributed

image rendering application is considered for the

case study.

H. Distributed Image Rendering

Each mobile node (MN) comprises a client and a

daemon. The clients submit the tasks to the MN for

the distributed processing, while the daemons the

computing elements at the MNs, that process a part

of the submitted task along with other daemons [6].

The image rendering application is based on

images obtained by CT scan. A CT scan image

contains information on a transverse plane only.

The CT scanners generate 3-D parallel plane stack

images. Each stack consists of a sequence of X-ray

absorption coefficients. The data sets can be viewed

as a 3-D field due to the availability of parallel

plane image stacks. The stack is converted into a

single image by ray-casting and volume rendering.

A ray-casting algorithm is employed to cast the

parallel rays from the observer into the volume. The

progressive attenuation at each point along the ray

due to particle fields is computed. Simultaneously,

the light scattered in the direction of the eye from

the light source is also estimated at each point. The

CT scan of a human head with the skull partially

removed is taken as the input data.

I. MDP Model of Computation

The MDP model consists of a master process for
each mobile cell and several worker processes. The
master process is the initiator for the mobile grid
computation. The master process coordinates the
parallel computation by simultaneous
communication with the system. A worker process
involves calculations over a subdomain. The grain
size of the subdomain for a worker process depends
on the load ratio.

J. Master Process

The master process initializes the MGCP with the
system and initiates the parallel computation [11].
The system decides the number of worker process,
their associated granularities, and the machines on
which they process. The master process gathers the
information regarding each split from the system,
which is used to create data packets for individual

worker processes. Output Pipe for each worker
process is created and transferred. The master
process opens the Output Pipes and waits for the
outputs. The Output Pipes are closed and removed
after the outputs are collected. A sample code of the
master process is given in Pseudo Code 2.

Pseudo Code 2: Sample code of the master

process

int main ()

{

 …

 ProblemIndex =

EstablishMobGridComputationProblem ();

…

SendMobGridDetails (ProblemIndex,

RowsCount, ColsCount, 1,

DIVIDE_COLUMNS);

…

SplitsCount = EstimateSplitsCount

(ProblemIndex);

…

for (SplitIndex =0; SplitIndex < SplitsCount;

SplitIndex ++)

{

GetSplitDetails (ProblemIndex, SplitIndex,

&StartMobGrid, &TotalMobGrid);

…

CreatePacket (Matrix, RowsCount,

StartMobGrid, TotalMobGrid, 1,

DIVIDE_COLUMN, Data);

…

OutputPipe =

HostName.“Output”.ProblemIndex.SplitNo;

EstablishMDP (OutputPipe);

Transfer (ProblemIndex, SplitNo,

TransferFile, FLOAT_TYPE, Data,

OutputPipe);

}

…

for (SplitIndex = 0; SplitIndex < SplitsCount;

SplitIndex ++)

{

 OutputPipe =

HostName.”Output”.ProblemIndex.SplitID;

 PipeFd[SplitIndex] = InitiateMDP

(OutputPipe, GET_MODE);

}

for (SplitIndex = 0; SplitIndex < SplitsCount;

SplitIndex ++)

{

GetSignChar (PipeFd[SplitIndex],

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

468

&ExtraOutput, sizeof (ExtraOutput),

CONVERT_XDR);

while (ExtraOutput)

{

GetFloat (PipeFd[SplitIndex], &Output,

sizeof (Output), CONVERT_XDR);

GetSignChar (PipeFd[SplitIndex],

&ExtraOutput, sizeof (ExtraOutput),

CONVERT_XDR);

}

}

for (SplitIndex = 0; SplitIndex < SplitsCount;

SplitIndex ++)

{

 EndMDP (PipeFd[SplitIndex]);

 OutputPipe =

HostName.”Output”.ProblemIndex.SplitIndex;

 RemoveMDP(OutputPipe);

}

EndMobGridComputationProblem

(ProblemIndex);

return 1;

}

K. Worker Process

The worker processes are transferred to
anonymous remote nodes for processing [11]. A
worker process initializes itself with its local mlc.
The worker processes collect the information
corresponding to the allotted subdomain. A sample
code of the master process is given in Pseudo Code
3.

Pseudo Code 3: Sample code of the worker

process

int main ()

{

 …

 TaskIndex =

EstablishMobGridComputationTask ();

…

GetTaskMobGridDetails (&RowsCount,

&ColsCount, &Depth, &SplitOrientation);

GetTaskMachineDetails (&MachineName,

OutputPipeName);

…

InitiateMDP (OutputPipeName,

PIPE_READ);

…

GetTaskInfo (Info);

…

GetTaskNoOfPipesToBeEstablishedAndInitiat

ed (&NoOfEstablishPipe,

&NoOfInitiatedPipes);

…

GetTaskEstablishPipeIdentities

(EstablishPipes, NoOfEstablishPipe);

for (PipeIndex = 0; PipeIndex <

NoOfEstablishPipes; PipeIndex++)

{

 EstablishMDP (EstablishPipes[PipeIndex]);

}

…

GetTaskInitiatedPipeIdentities (InitiatedPipes,

ModeOfAccess, NoOfInitiatedPipes);

for (PipeIndex = 0; PipeIndex

<NoOfInitiatedPipes; PipeIndex ++)

{

PipeFd[PipeIndex] = InitiateMDP

(InitiatedPipes[PipeIndex],

ModeOfAccess[PipeIndex]);

}

…

if (MachineName != FINAL_MGCTM)

{

PutFloat(SucceedingMachineWd,

&FormerTimeFormerMobGrid, sizeof

(float), 1, CONVERT_XDR);

}

if (MachineName != INITIAL_MGCTM)

{

PutFloat (SucceedingMachineWd,

&FormerTimeSucceedingMobGrid,

sizeof (float), 1, CONVERT_XDR);

}

for (Time = 0; Time<TMax; Time ++)

{

if (MachineName != INITIAL_MGCTM)

{

GetFloat (FormerMachineRd,

&FormerTimeFormerMobGrid, sizeof

(float), 1, CONVERT_XDR);

PutFloat (FormerMachineWd,

&FormerTimeSucceedingMobGrid,

sizeof (float), 1, CONVERT_XDR);

}

else

{

…

}

for (MobGrid = StartMobGrid; MobGrid <

TotalMobGrid -1; MobGrid ++)

{

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

469

 …

}

if (MachineName != LAST_MGCTM)

{

GetFloat (SucceedingMachineRd,

&FormerTimeSucceedingMobGrid,

sizeof (float), 1, CONVERT_XDR);

…

PutFloat (SucceedingMachineWd,

&FormerTimeFormerMobGrid, sizeof

(float), 1, CONVERT_XDR);

}

else

{

 …

}

}

for (PipeIndex = 0; PipeIndex

<NoOfInitiatedPipes; SplitIndex ++)

{

 EndMDP (PipeFd[PipeIndex]);

}

for (PipeIndex = 0; PipeIndex <

NoOfEstablishPipes; SplitIndex ++)

{

 RemoveMDP (EstablishPipes[PipeIndex]);

 }

EndMobGridComputationTask (TaskIndex);

return 1;

}

4. BACKGROUND WORK

Some of the techniques related to parallel

computing and distributed computing are discussed

in this section.

A. Integration of Mobile Hosts into the Mobile

Grid

A mobile grid is constructed by the integration of

the grid computing paradigm under service

constitution technology and mobile computing

paradigm [1]. It combines the powerful features of

the grid computing capability and omnipresent

accessibility of mobile distributed system. This

technique consists of a distributed system model

where the resources are organized as P2P (Peer to

Peer) model. The resources of the hosts are

visualized as services. This system is implemented

as a shared distributed object space and in0creases

the information processing capability and service

sharing.

B. Tool for Distributed Computing

OptimalGrid is a new pattern of middleware for

computation of larger problems in a distributed

computing environment [8]. OptimalGrid

automates the problem partitioning, dynamic

redeployment, runtime management, and

deployment of problem.

C. Process Interaction in Distributed

Computations

The distributed computations are programs

which communicate with the passing of the

messages [20]. These programs generally process

on network architectures such as NOW or

distributed parallel machines. Some of the models

for process interaction in distributed computations

are network of filters, heartbeat algorithms,

broadcast algorithms, decentralized servers, token-

passing algorithms, bag of tasks, and probe/echo

algorithms. These models involve parallel sorting,

computing network topology, and termination

detection.

D. Location-independent communication methods

The proposed MDP is also compared with other

location-independent (LI) communication methods

between mobile agents [21, 22]. Nomadic Pict

language is a distributed infrastructure for mobile

computations employing LI intertask

communication [21]. Low-level Nomadic Pict

enables agent formation, transfer of agents between

machines, communication of asynchronous

messages between agents, and fine cooperation.

High-level Nomadic Pict enables the LI

communication.

The low-level translation is user-defined via an

arbitrary infrastructure. This language is

constructed relative to asynchronous messaging.

The TCP connections are formed on demand, but

the program can also use a layer which enables

authentic communication on the top of UDP. The

messages are transparently delivered regardless of

machine disconnection and agent migration. The

infrastructure encoding consists of three sections,

namely, a primary level component, an auxiliary

compositional translation, and a phrase-by-phrase

definition.

LI techniques permit communication with a

mobile agent irrespective of the migrations [22].

The implementation of these communication

methods requires soft distributed infrastructure

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

470

algorithms. LI communication enables the modules

to communicate without explicitly monitoring each

other’s movements.

Nomadic Pict [21] has a few limitations in terms

of space and agent migration. The agent migration

process is not transparent and a migration process is

blocked until the machine is back in the network.

Due to lack of space, a machine disconnection

would block the agent migrations and

communications via the query server. The buffering

in the query server due to machine disconnection is

an impractical option. The proposed MDP model is

transparent and allows real-time migration of the

mobile agents. The agent migration process is never

blocked in the MDP model.

E. Recent parallel computing methods

Some of the other recent parallel and distributed

computing systems include real-time aggregation

system [23], language virtualization [24], and agent

based parallel computing [25].The real-time

aggregation system is used for large-scale parallel

and distributed systems. A recent load balancing

technique in randomly partitioned cluster services

involve requests across a cluster of backend servers

[26]. This was used to avoid the performance

bottlenecks in large-scale cloud computing

services. The advantage over existing

communication technologies like Mobile IP (MIP)

and Wi-Fi would be the stability in handoff when

handling large clusters of data, where the existing

methods have a smaller limited range than MDP

model.

4. PERFORMANCE ANALYSIS

The round trip time (RTT) of communication

over the network is around 0.3ms to a few

milliseconds. Generally, the average RTT is less

than 0.15ms. The performance analysis displays the

speedup attained by the parallel execution of the

problem and decreased memory requirements. The

communication overhead can be prohibited to attain

a linear to super-linear speedup. The analysis

involves memory requirements, consequences of

parallel execution, synchronization delay among

sub-processes, and effects of load on speedup and

execution time. Speedup is the ratio of sequential

execution time to the parallel execution time. The

distributed image rendering application is

considered for the performance analysis. The

proposed method is analyzed and compared with

existing methods Moset [6] and DP [11].

A. Memory Requirements

The task completion time with respect to the

memory requirements is analyzed and compared

with DP [11]. The comparative results are shown in

Fig. 7. The results show that the task completion

time for the given models increase gradually, with

the two models almost following a similar pattern.

But, the completion time for the MDP model is

about 40% lesser than the DP model as the number

of grid computations approach 70.

The effect of process memory size on execution

time is analyzed for the MDP and Moset [6],

considering three mobile nodes. The comparative

results are shown in Fig. 8. The results show that

the task execution time for the given models is

decreasing gradually with little constancy in

between. But, the task execution time for the MDP

model is about 35% lesser than the DP model as the

memory size approach 225 MB.

The memory required in the existing DP [11] and

Moset [6] models are large due to the higher task

completion time and execution time. These

parameters are increased in the proposed MDP

model by increasing the resolution of the sub-tasks

division and thus decreasing the task completion

time and execution time.

Fig. 7. Memory requirements of MDP

and DP.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

471

The memory usage of a framework for mobile

systems (Misco) [27] and MDP is analyzed and

compared in Fig. 9. It is observed that MDP

occupies lesser memory than Misco framework.

Misco occupies average memory of 40MB whereas

MDP occupies only average memory of 32MB.

The memory consumption of agent based parallel

computing [25] is analyzed and compared with that

of MDP relative to number of nodes in Fig. 10. It is

observed that MDP occupies lesser memory than

agent-based parallel computing. The former

occupies average memory of 32MB whereas the

latter occupies only average memory of 24.5MB.

B. Consequences of Parallel Execution

The grain size of a subtask is the count of the

mobile grid points for the subtask. The task time is

the sum of the synchronization delay by the subtask

and the actual CPU time. Synchronization time is

the total time the subtask takes to receive data from

the surrounding subtasks and is given by the sum of

the individual synchronization delay. The

comparative results for MDP and DP [11], with

equal load division for five nodes are given in Fig.

11, in terms of task time, synchronization time, and

speedup. The synchronization time, task time for

the MDP model is only half of that of the DP

model.

The comparative results for MDP and DP [11],

with larger tasks for 20 nodes are given in Fig. 12,

in terms of task time and speedup. In the case of 20

nodes, the task time for the MDP model is about

77% of the DP model. The rate of speedup

achieved due to parallel execution is higher in MDP

model (25.451) compared to the DP model

(18.791).

Fig. 8. Effect of process memory size for MDP

and Moset.

Fig. 9. Memory usage for MDP

and Misco.

Fig. 10. Memory consumption for MDP and

 agent-based parallel computing.

Fig. 11. Consequence of parallel execution for 5

nodes using DP and MDP.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

472

The speedup in the existing DP [11] and Moset

[6] models are less due to the higher parallel

execution time. This is increased in the proposed

MDP model by increasing the number of parallel

executions per machine and thus increasing the

speedup.

The speedup of agent based parallel computing

[25] is analyzed and compared with that of MDP

relative to number of nodes for a fixed runtime of

60s in Fig. 13.

C. Synchronization Delay Relative to Number of

Machines

The total synchronization delay of individual

subtasks determines the performance saturation and

load imbalance. A higher value of synchronization

delay for a subtask signifies that the subtask

accomplishes its task faster than the neighboring

subtasks. When the number of machines

participating in the parallel computation increases,

the mean grain size decreases. This results in

performance saturation beyond which no machine

would contribute significantly to the speedup.

The data for a subtask is generated by its

neighbor in its last beat of calculation, and so the

synchronization time is considerably low for the

initial samples. The prohibition of communication

overhead attains linear-like speedup and the

decreased memory requirements further increase

the performance to super-linear speedup.

The progress in total synchronization delay of

individual subtask relative to the subtask count is

given in Fig. 14. The average synchronization delay

varies randomly initially and then after N = 3 there

is a linear increase. The average synchronization

delay for the MDP model is about 80% of the DP

model. The result shows the average of total

synchronization delay by the separate subtasks.

When the number of subtasks increases, their

associated granularity decreases. This increases the

synchronization delay for each subtask.

The average synchronization delay in the

existing DP [11] model is higher due to the

inefficient load balancing. This is overcome in the

proposed MDP model by an efficient load

balancing scheme which issues threshold values

(load indices) and neglects the machines which

cross the threshold value.

D. Performance Saturation

Granularity increases when the number of mobile

grid points is increased. The computational domain

is divided into more subdomains when there is an

increase in the number of nodes. Hence, there is a

decrease of granularity and increase of

synchronization delay of individual subtask.

A saturation point is defined as the value of

absolute granularity at which the average

synchronization delay exceeds 10% of the average

task time. The absolute granularity is anonymous to

the performance resilience. The value of absolute

granularity with 10 tasks is computed to be around

35ms. The observed values of RTT among the

nodes vary from 0.2ms to 3ms with an average of

0.24ms.

Fig. 12. Consequence of parallel execution for 20

nodes using DP and MDP.

Fig. 13. Speedup for MDP and agent-based

parallel computing.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

E. Effect of Load on Execution Time

The effect of load on the execution time for

various numbers of mobile nodes is analyzed and

compared for MDP and Moset [6] models,

considering three mobile nodes. The comparative

results are given in Fig. 15. The execution time

increases initially as the load on the machines is

increased for both the models. Later, the execution

time decreases on a small scale for the MDP model,

but it remains almost for the Moset model. The

execution time of the MDP model is about 75% of

the Moset model. This shows the efficiency of the

MDP model over the Moset model.

The initial increase in the execution time is due

to the lag in the adaptability of the models. Once

attaining the attaining the adaptability over the

varying load on the machines, the execution time

remains almost constant. The high execution time

initially in the existing Moset [6] model is

attributed to the initial value of the granularity of

subtasks. This is overcome in the proposed MDP

model by increasing the initial value of the

granularity of subtasks.

F. Effect of handoff and load balancing

The effects of handoff on various parameters are

analyzed. The various parameters are:

1) PDR

PDR is analyzed with respect to different

mobility speed of the mobile nodes. The

comparative analysis is given in Fig. 16. It is

observed MDP possesses higher PDR than

Dynamic Clustering-Based VANET [28].

2) Throughput

Throughput is analyzed with respect to number

of clusters. The comparative analysis is given in

Fig. 17. It is observed MDP possesses higher

throughput than Dynamic Clustering-Based

VANET [28] due to effective load balancing.

3) Packet drop fraction

Packet drop fraction is analyzed with respect to

number of clusters. The comparative analysis is

given in Fig. 18. It is observed MDP possesses

lesser packet drop fraction than Dynamic

Clustering-Based VANET [28] due to effective

handoff.

Fig. 14. Average synchronization delay vs. number

of machines.

Fig. 15. Effect of load on execution time for MDP

and Moset.

Fig. 16. Effect of handoff on PDR in MDP and

Dynamic Clustering-Based VANET.

Fig. 17. Effect of load balancing on throughput in

MDP and Dynamic Clustering-Based VANET.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

5. CONCLUSION

An effective methodology for the computation

and communication in a mobile cluster is proposed

using mobile distributed pipes (MDP). This

technique shows better performance compared to

the present techniques like DP [11], Dynamic

Clustering-Based VANET [28], and Moset [6] in

terms of synchronization time, speedup, task time,

memory requirements, throughput, packet drop

fraction, and packet delivery ratio (PDR). The

future work of parallel computing in mobile cluster

involves extending distributed computing to a

larger span of mobile grids.

REFERENCES

[1] M. Mohamed, "An object based paradigm
for integration of mobile hosts into grid,"
International Journal of Next-Generation

Computing, 2011, 2, pp. 1-23.
[2] M. A. M. Mohamed, et al., "EOMP: an

exactly once multicast protocol for
distributed mobile systems," International

Journal of Parallel, Emergent and

Distributed Systems, 2010, 25(3), pp. 183-
207.

[3] S. Kailasam, et al., "Arogyasree: an
enhanced grid-based approach to mobile
telemedicine," Int. J. Telemedicine Appl.,
2010, 2010, pp. 1-11.

[4] M. Mohamed, "Communication and
Computing Paradigm for Distributed
Mobile Systems," Journal on Information

Sciences and Computing, 2007, 1(1), pp.
33-41.

[5] M. M. Mohamed, et al., "Surrogate Object
Model: A New Paradigm for Distributed
Mobile Systems," in Proceedings of the

4th International Conference on

Information Systems Technology and its

Applications (ISTA'2005), May, 2005, pp.
124-138.

[6] M. A. M. Mohamed, et al., "Moset: An
anonymous remote mobile cluster
computing paradigm," Journal of Parallel

and Distributed Computing, 2005, 65(10),
pp. 1212-1222.

[7] D. Janakiram, et al., "GDP: A Paradigm
for Intertask Communication in Grid
Computing Through Distributed Pipes," in
Distributed Computing and Internet

Technology. vol. 3816, G. Chakraborty,
Ed., ed: Springer Berlin Heidelberg, 2005,
pp. 235-241.

[8] T. J. Lehman and J. H. Kaufman,
"OptimalGrid: middleware for automatic
deployment of distributed FEM problems
on an Internet-based computing grid," in
Cluster Computing, 2003. Proceedings.

2003 IEEE International Conference on,
2003, pp. 164-171.

[9] K. Hairong, et al., "Iterative grid-based
computing using mobile agents," in
Parallel Processing, 2002. Proceedings.

International Conference on, 2002, pp.
109-117.

[10] A. Basit and C.-C. Chang, "Mobile cluster
computing using IPV6," in Ottawa Linux

Symposium, 2002, pp. 31-39.
[11] B. K. Johnson, et al., "DP: a paradigm for

anonymous remote, computation and
communication for cluster computing,"
Parallel and Distributed Systems, IEEE

Transactions on, 2001, 12(10), pp. 1052-
1065.

[12] M. Litzkow and M. Solomon, "Supporting
checkpointing and process migration
outside the UNIX kernel," in Mobility, M.
Dejan, cacute, D. Frederick, and W.
Richard, Eds., ed: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 154-162.

[13] R. K. Joshi and D. J. Ram, "Anonymous
remote computing: a paradigm for parallel
programming on interconnected
workstations," Software Engineering,

IEEE Transactions on, 1999, 25(1), pp.
75-90.

[14] F. Tandiary, et al., "Batrun: utilizing idle
workstations for large scale computing,"
Parallel & Distributed Technology:

Systems & Applications, IEEE, 1996, 4(2),
pp. 41-48.

Fig. 18. Effect of handoff on packet drop fraction

in MDP and Dynamic Clustering-Based VANET.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2014. Vol. 61 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

[15] T. E. Anderson, et al., "A case for NOW
(Networks of Workstations)," Micro,

IEEE, 1995, 15(1), pp. 54-64.
[16] J. Casas, et al., "Adaptive load migration

systems for PVM," presented at the
Proceedings of the 1994 ACM/IEEE
conference on Supercomputing,
Washington, D.C., 1994.

[17] G. J. W. van Dijk and M. J. van Gils,
"Efficient process migration in the EMPS
multiprocessor system," in Parallel

Processing Symposium, 1992.

Proceedings., Sixth International, 1992,
pp. 58-66.

[18] D. Gelernter and D. Kaminsky,
"Supercomputing out of recycled garbage:
preliminary experience with Piranha,"
presented at the Proceedings of the 6th
international conference on
Supercomputing, Washington, D. C.,
USA, 1992.

[19] F. Douglis and J. Ousterhout, "Transparent
process migration: Design alternatives and
the sprite implementation," Software:

Practice and Experience, 1991, 21(8), pp.
757-785.

[20] G. R. Andrews, "Paradigms for process
interaction in distributed programs," ACM

Comput. Surv., 1991, 23(1), pp. 49-90.
[21] P. T. Wojciechowski, "Algorithms for

location-independent communication
between mobile agents," in Proceedings of
AISB’01 Symposium on Software
Mobility and Adaptive Behaviour (York,
UK), 2001.

[22] A. Unyapoth and P. Sewell, "Nomadic
pict: correct communication infrastructure
for mobile computation," SIGPLAN Not.,
2001, vol. 36, no. 3, pp. 116-127.

[23] S. Bohm, et al., "Aggregation of Real-
Time System Monitoring Data for
Analyzing Large-Scale Parallel and
Distributed Computing Environments," in
High Performance Computing and

Communications (HPCC), 2010 12th

IEEE International Conference on, 2010,
pp. 72-78.

[24] H. Chafi, et al., "Language virtualization
for heterogeneous parallel computing,"
SIGPLAN Not., 2010,vol. 45,no. 10, pp.
835-847.

[25] D. Sánchez, et al., "Agent-based platform
to support the execution of parallel tasks,"
Expert Systems with Applications,
2011,vol. 38,no. 6, pp. 6644-6656.

[26] B. Fan, et al., "Small cache, big effect:
provable load balancing for randomly
partitioned cluster services," presented at
the Proceedings of the 2nd ACM

Symposium on Cloud Computing, Cascais,
Portugal, 2011.

[27] A. Dou, et al., "Misco: a MapReduce
framework for mobile systems," presented
at the Proceedings of the 3rd International

Conference on PErvasive Technologies

Related to Assistive Environments, Samos,
Greece, 2010.

[28] A. Benslimane, et al., "Dynamic
Clustering-Based Adaptive Mobile
Gateway Management in Integrated
VANET — 3G Heterogeneous Wireless
Networks," Selected Areas in

Communications, IEEE Journal on,
2011,vol. 29,no. 3, pp. 559-570.

