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ABSTRACT 
 

The proposed work explores the interprocess communication across communicating parallel tasks in a 
mobile cluster. The process which is linked with specific mobile or static nodes will not be resilient to the 
changing conditions of the mobile cluster. The proposed Mobile Distributed Pipes (MDP) model enables 
the location independent intertask communication among the processes executing in static and mobile 
nodes. This novel approach enables the migration of communicating parallel tasks during runtime, which 
occurs according to the context and location requirements. A transparent programming model for a parallel 
solution to Iterative Mobile Grid Computations (IMGC) using MDP is also proposed. The proposed model 
is resilient to the heterogeneity of nodes such as static or mobile and the changing conditions in the mobile 
cluster because of mobility. The design of runtime and functional library support for the proposed model is 
also presented. 
Keywords: Location-independent(LI)communication, Mobile Grid Computation Problem (MGCP), Mobile 

Grid Computation Task (MGCT), Iterative Mobile Grid Computation (IMGC), Iterative Mobile 

Grid Module(IMGM), and Mobile Distributed Pipes (MDP). 

 

1. INTRODUCTION 

AN effective communication of parallel tasks on a 
distributed computing system requires the selection 
of the nodes during the runtime. The number of 
nodes to be selected at real time in a mobile cluster 
is not static. The nodes and their communication 
links are prone to failure, which results in 
complexity of the system during communication 
processes of the nodes. The nodes could also be 
heterogeneous in terms of processing power, 
operating systems, and architecture and these nodes 
need to coordinate with each other. The uneven 
load in the network due to this heterogeneity in 
system properties needs to be balanced. 

The load balancing is prioritized with respect to 

the granularity of the individual subtasks. When the 

programing of the intertask communication is 

transparent, it enables numerous application 

domains to employ the parallel computing power of 

the cluster of nodes. Some of the application 

domains are Iterative Mobile Grid Computations 

(IMGC), suboptimal algorithms, and network of 

filters. 

The computing power in mobile systems is made 

ubiquitous through parallel and distributed 

computing. The mobile systems must ideally offer 

seamless computing, flexibility in communication, 

and higher availability of the distributed 

information. The computing resources of a system 

are integrated to work in a common system, 

forming clusters. Clusters are preferred as they 

yield better fault tolerance and price-performance 

ratio compared to conventional mainframe 

architectures. 

Parallel computing has been performed using 
methods like ARC [13], ADM [16], EMPS [17], 
Sprite [19], Piranha [18], Condor [12], (Network of 
Workstations) NOW [15], and Batrun [14]. Of 
these techniques Condor, NOW, and Batrun are 
employed for wired networks and the remaining 
techniques do not involve intertask communication. 
So, a scheme is proposed for mobile cluster 
involving inter-process communication using 
Mobile Distributed Pipes (MDP). 

An application of parallel and distributed 
computing is mobile telemedicine. A general 
telemedicine system comprises of a small group of 
hospitals which provides remote healthcare services 
[3]. But, in developing nations the majority of the 
population is in the rural areas which require larger 
Internet-based telemedicine systems. A variable 
Internet-based P2P architecture is used for 
telemedicine networks. This system is based on a 
store and forward model, involving a distributed 
context-aware scheduler. 

A transparent programming model is used for the 
communication of the parallel tasks in a wide area 
grid [7]. The grid model involves Distributed Pipes 
with grid abstraction (GDP), which performs the 
location independent inter-process communication 
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between machines. This technique allows the 
anonymous migration of parallel task 
communication with respect to the grid dynamics. 
The model can support both parallel load and 
sequential load. But this model does not provide 
support for mobile systems. 

The physical mobility of the mobile nodes (MNs) 

may result in message loss in a distributed mobile 

computing environment [2]. The battery power can 

be conserved to a great extent when the message 

delivery is guaranteed exactly once.  The limited 

characteristic of the mobile nodes involving in the 

mobile cluster requires an efficient communication 

scheme for exactly-once message delivery. So, an 

exactly once multicast protocol (EOMP) is used to 

increase the power efficiency. An unreliable 

wireless MAC layer multicast delivers the 

messages to the MNs. The EOMP tolerates the 

failure at the mobile support station (MSS) by 

turning the MSS stateless. 

Computational mobile grid is regarded as an 

integration of mobile clusters [4]. Mobile cluster 

computing can also be implemented using IPv6 

[10]. An Anonymous Remote Mobile Cluster 

Computing (ARMCC) method is introduced to use 

the stationary computing power of the nodes, to 

attain parallel programming in a distributed mobile 

system. The cluster model is extended to an 

environment of mobile grid that combines the 

computational, service, and data grids. The 

participating mobile nodes are referenced using 

surrogate objects [5] which are implemented as a 

shared distributed object space. An environment for 

the iterative grid-based applications involves a 

distributed solution [9]. The environment is 

constructed using a mobile agent system. 

A Mobile Distributed Pipes (MDP) model 

involving mobile cluster computing is proposed in 

the mobile cluster architecture. The mobile nodes 

are combined with the static nodes to form a mobile 

cluster. The parallel computing is implemented in 

mobile clusters by utilizing the idle processing 

power of the nodes in the mobile clusters. The 

number of mobile nodes is higher than the number 

of the static nodes in the mobile cluster. The 

motivation for this work attributes to the extensive 

potential value of mobile cluster computing in real-

time environments. 

A mobile cluster is defined as a group of 

interconnected mobile nodes by wireless networks. 

The mobile cluster coordinates with a set of mobile 

nodes to execute a specific task. The mobile cluster 

provides flexibility in terms of mobility, cluster 

security, and extendibility. When the domain of an 

IMGC is classified, their subdomains require 

exchanging their boundary values. The mobile grid 

computations are applied in the solution of elliptical 

partial differential equations. The problem 

classification in the suboptimal algorithms and 

network of filters requires the subtasks to exchange 

their intermediate values. The MDP model 

performs better in terms of throughput, 

synchronization time, speedup, task time, memory 

requirements, packet drop fraction, and packet 

delivery ratio (PDR) with respect to the existing 

models DP [11], and Moset [6]. The MDP model 

works in the environment of a mobile cluster which 

composes a large coverage and multiple clusters, 

compared to the previous parallel computing 

methods. 

Mobile Distributed Pipes (MDP) is proposed to 

handle the issues of mobility, bandwidth, and fault 

tolerance relative to the existing Distributed Pipes 

(DP) model [11], operating in the mobile cluster. 

The communication of the parallel tasks created at 

runtime is connected using the MDP. The MDP 

model defines the transparent programmability for 

the parallel task communication. MDP support data 

flow between tasks independent of their location. 

This supports the anonymous migration of the 

parallel task communication. 

The communication channels between the mobile 

nodes are regarded as global entities. The 

information about these global entities is stored 

globally in a designated mobile node. The 

communication channels are created or destroyed 

only during the runtime. MDP handles 

heterogeneity by the use of external data 

representation. 

The remaining part of the paper is organized as 

follows: Section II involves the MDP model of 

IMGC. Section III involves the design and 

implementation of MDP. Section IV involves the 

implementation of the MDP model in an image 

rendering application. Section V involves the 

background work related to parallel computing and 

distributed computing. Section VI involves the 

performance analysis and comparison of the 

proposed MDP model and existing models DP [11], 

and Moset [6]. The paper is concluded in Section 

VII. 

2. MDP MODEL OF ITERATIVE MOBILE 

GRID COMPUTATIONS 

The overall mobile cluster architecture is shown 

in Fig. 1. A general Iterative Mobile Grid 
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Computation (IMGC) consists of repetitive 

computations in time and space dimensions [11]. 

The general program structure of the problem in the 

sequential execution in IMGC is given in Pseudo 

Code 1. The outer loop of pseudo code 1 iterates in 

time and the inner loop in each space dimension. 

 

Pseudo Code 1: Program Format for general 

IMGC 

FOR Time = InitialTime TO FinishTime 

  FOR SpaceX = InitialSpaceX TO 

FinishSpaceY 

    FOR SpaceY = InitialSpaceY TO 

FinishSpaceY 

UserCustomizedFunction () 

    ENDFOR 

  ENDFOR 

ENDFOR 

 

A. Proposed Model 

The model involves a master-worker 

computation model. There are numerous master 

processes and worker processes. The master 

process is the MobileGrid Computation Problem 

(MGCP) which initiates or requires the 

computation [11]. The worker processes are created 

on the mobile nodes which involve in the parallel 

computation. The worker process is the MobileGrid 

Computation Task (MGCT) which performs the 

parallel computation for the MGCP. The 

computation is performed through Iterative Mobile 

Grid Modules (IMGM), also known as the worker 

process. The communication of the parallel tasks is 

achieved through the process of domain 

decomposition. The several IMGMs are allotted a 

subdomain of the computation. The role of the 

MDP is to enable the exchange of the boundary 

values between the IMGM’s of multiple mobile 

nodes. The computation results of all the IMGMs 

are then transferred to the Master Process.In the 

proposed model, the system handles selection of the 

least loaded mobile nodes, anonymous migration of 

IMGMs, features related to fault tolerance, load 

balanced classification of tasks, and results 

collection. The programs in this model can be 

accommodated to a changing mobile cluster. There 

is no limit on the number of IMGMs. Hence, the 

number of mobile nodes utilized will be optimized 

during runtime. The programs based on this model 

are tolerant to a heterogeneous group of unevenly 

loaded mobile nodes. 

 

B. Initialization 

InitializeProblem () is used to register the master 

process with the system and the process is 

terminated using EndProblem ().StartIMGM () is 

used to register the IMGM with the system and it is 

terminated using EndIMGM (). 

C. Domain Decomposition 

The mobile grid details are transferred to the 

system from the master process. The granularity of 

computation to be assigned to individual MGCTs, 

mobile nodes to be allotted for each worker 

process, and optimum number of worker processes 

is decided by the system [11]. The master process 

forms the initial data for the individual worker 

processes to transfer the worker processes and to 

establish channels that collect the output results 

from each IMGM. 

The master process initiates the data for the 

individual worker processes based on the 

information from the system. The initial data enable 

the transfer of IMGMs and creation of channels to 

collect the output from each IMGM. 

The master process sends the mobile grid details 

to the system using the function call 

SendMobGridDetails (). Similarly, the number of 

worker process to be used is obtained using the 

function call EstimateSplitsCount (). The 

granularity of each worker process is estimated 

using the function call GetSplitDetails (). A brief 

description of the function calls used is given in 

TABLE I. 
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D. Anonymous Transfer of Subtasks 

The anonymous transfer of a worker process is 

started when the MGCP invokes the Transfer() 

function call. But, the master process does not 

provide any machine specific parameters of the 

Transfer () function call. The syntax of the function 

call is given as follows: 

int Transfer (int ProblemIndex, int SplitIndex, 

char* TransferFile, int InfoType, void* Info, int 

SpaceX, int SpaceY, int SpaceZ, int Store, char* 

OutputPipe) 

Transfer () transfers the program code for a 

worker process and furnishes it with initial data. 

The information consists of the number of mobile 

grid points in the three dimensional space. 

OutputPipe is the name of the Mobile Distributed 

Pipe to which the worker process writes its results. 

 

E. Information Gathering by Worker Processes 

The anonymously migrated worker processes are 

collected by the mobile local coordinator mlc and 

the program code is compiled, which spawns the 

worker processes. A worker process initializes its 

data structures to hold and collect the initial data. 

GetTaskMobGridDetails () is used to determine the 

size of the initial data and for the initialization of 

the data structures. The worker process collects the 

initial data by invoking the function call  
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GetTaskInfo (). The function call 

GetTaskMachineDetails () determines the name of 

the OutputPipe to be opened and the position of the 

worker process. During runtime, the system 

provides information corresponding to individual 

worker processes. The syntax and semantics of the 

function calls are given in TABLE II. 

F. Transparent Communication 

Each worker process has to communicate with its 

surrounding worker process to exchange boundary 

values. Since the worker processes are transferred 

to anonymous nodes, a worker process will not 

know the neighboring worker process’ location 

[11]. The number of neighbors of a worker process 

depends on the position of the worker process. 

Hence, the number of MDP to be opened by 

theworker process cannot be estimated until 

runtime. A worker process collects the information 

about its neighbors and the number of MDP to be 

opened at runtime and it is accomplished by the 

function calls given in TABLE III. 

G. Design Issues 

The performance of the MDP scheme depends on 

the mobility of the nodes and the node density. The 

number of nodes entering a mobile cell 

simultaneously should be limited else nodes might 

not be captured correctly by the cc. The 

connectivity of the mobile nodes with the cc is 

limited by a threshold radius, beyond which the 

mobile node leaves the mobile cell. The mlc and 

master/worker process are connected by Unix 

domain socket connections, and the connections 

between sc, cc, and mlc are TCP connections. 

TABLE I 

FUNCTION CALLS IN DOMAIN DECOMPOSITION 

Data 

Typ

e 

Function Parameters Description 

int SendMobGridDetai

ls () 

int ProblemIndex, int SpaceX, int 

SpaceY, int SpaceZ, int Store, int 

SplitOrientation 

It sends the mobile grid details of a MGCP to the 

system. Problem Index is the index by which the system 

identifies a MGCP. SpaceX, SpaceY, and SpaceZ are 

the number of mobile grids in the three dimensional 

space. Store represents the number of former time slices 

stored. 

int EstimateSplitsCoun

t () 

int ProblemIndex It collects the number of worker processes for the 

MGCP denoted by Problem Index. 

int GetSplitDetails () int ProblemIndex, int SplitIndex, int* 

StartMobGrid, int* TotalMobGrid 

It gathers the details regarding the split of the problem. 

The starting mobile grid of the subdomain and the total 

number of mobile grids in the subdomain are stored at 

the addresses pointed by StartMobGrid and 

TotalMobGrid respectively. 

 

 
TABLE II 

FUNCTION CALLS IN INFORMATION GATHERING BY WORKER PROCESSES 

Dat

a 

Typ

e 

Function Parameters Description 

int GetTaskMobGridDe

tails () 

int* SpaceX, int* 

SpaceY, int* SpaceZ, 

int* Store 

It gives the number of mobile grid points in the three 

dimensional space. 

int GetTaskInfo () void* Info, int SpaceX, 

int* SpaceY, int* 

SpaceZ, int* Store 

It saves the first data matrix at the address pointed by Info. 

int GetTaskMachineDet

ails () 

int* MachineName, 

char* OutputPipeName 

It saves the location of the worker process in the MGCP at 

the address pointed by MachineName. 
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The parallel computing on mobile clusters is 

subject to several key issues such as, mobility of 

nodes, connectivity of mobile nodes, transmission 

time, uneven nodal distribution, uneven load in the 

network, and difference in performances of node.

 

1) Handoff Process 

When a mobile node moves from one mobile cell 

to another, the transition process is termed as 

handoff. During handoff, the channel resources 

should be managed to preserve the connectivity of 

the network. The channel used in the former cell 

may not be reusable in the new cell because of low 

signal strength, or co-channel or adjacent channel 

interference. So the transiting mobile gets isolated 

from the rest of the mobile cluster. When the new 

channel has not be allocated to the mobile node 

within a short time span, the messages transmitted 

in the network will get delay, leading to 

retransmission of data. 

The transmission time can be managed and the 

retransmission of data can be avoided by using a 

topology based management. Two types of 

topology of nodes are used such as, ring topology 

and tree topology, to solve the handoff issue. The 

handoff issue was not properly addressed in the 

existing Moset [6] model, but it is efficiently 

handled by the topology scheme introduced in the 

proposed MDP model. 

 

2) Load Balancing 

The details regarding the load and availability of 

nodes in the network are gathered by the system, so 

that the optimum number of worker processes to be 

implemented and their individual granularities can 

be estimated. The processing power of individual 

elements is also used for the load balancing in a 

heterogeneous group of nodes. 

 

3) Disconnectivity of mobile nodes 

Timers are maintained for detecting the 

disconnectivity of the mobile nodes from its 

associated cell. A node when it does not return 

within the stipulated time set in the timer, then the 

sub-process is re-submitted

to some other node. In the case of mobile nodes, the 

co-coordinator (cc) acts as the timer. When there is 

a failure in the resubmission of the sub-process to 

some other mobile node, the cc itself will execute 

the sub-process. The mobile nodes may get 

disconnected from the cell after the execution of the 

sub-process and return to the cell before the timer 

timeouts. In this case, the cc would be able to 

decide the failure of mobile nodes under the 

stipulated time of the timer. This ensures the fault 

tolerance of the network. 

 

4) Bandwidth 

The mobile nodes are characterized by high 

fluctuations in the network bandwidth, depending 

on whether it is a static node or a mobile node, and 

on the type of connection in the present cell. The 

MDP model differentiates the type of connectivity 

and provides flexibility in terms of task size and 

network bandwidth. 

3. DESIGN AND IMPLEMENTATION OF MOBILE 

DISTRIBUTED PIPES 

A. Runtime Support 

The runtime support comprises a mobile local 

coordinator (mlc) daemon executing on each node 

involving in parallel computation, a co-coordinator 

(cc) daemon, and a system coordinator (sc) daemon 

on a designated node. 

 

TABLE III 

FUNCTION CALLS IN TRANSPARENT COMMUNICATION 

Data 

Typ

e 

Function Parameters Description 

int GetTaskOpenPipeIdentitie

s () 

char** PipeIdentities, int* 

ModeOfAccess, int 

NoOfInitiatedPipes 

It furnishes the names, mode of access and number of 

MDP to be initiated. 

int GetTaskNoOfPipesToIniti

ate () 

int* NoOfInitiatedPipes It saves the number of MDP to be initiated at the address 

pointed by NoOfInitiatedPipes 
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B. Mobile Local Coordinator 

The mlc executes on each mobile node that 

involves in parallel computation, the static local 

coordinator (slc) executes on each static node that 

involves in parallel computation. The mlc services 

requests from the user processes (up). The mlc 

maintains two tables to support the MDP services, 

namely, the User Processes Blocked for Write 

Table (UPBWT) and User Process Information 

Table (UPIT) [11]. The UPIT maintains 

information relative to the up registered with the 

mlc on its node. The UPBWT tracks the processes 

which have opened a MDP in write mode alone. 

The writing process is blocked until the MDP is 

opened by some other process in read mode. The 

mlc uses the table to inform the blocked processes 

when any other process opens the MDP in read 

mode. 

The mlc uses a MobileGrid Computation Task 

Submitted Table (MGCTST) for supporting mobile 

grid computations. The mlc services the task 

requests using the MGCTST. The table is 

referenced by the process id of the task. The table is 

updated under two conditions, i.e. when an already 

submitted task terminates or when a new task is 

submitted. The mlc forwards the information to the 

cc when the service needs additional parameters. 

The FSM of the mlc is given in Fig. 2. In the 

INIT state, mlc cleans the secondary system files 

and initializes its data structures. The mlc 

establishes a TCP connection with the cc and 

registers with the cc. In the LISTEN state, the mlc 

waits for the messages from the cc or any user 

process. When a message is received from the cc, it 

changes its state to SC Msg RXD and services the 

message. When a message is received from a user 

process, it changes its state to UP Msg RXD and 

services the request. 

The initial communication the mlc and a process 

established through a known common channel, 

which is necessary for a user process to register 

with the mlc. User processes which register with the 

mlc are specified with unique communication 

channels for subsequent communication. 

 

C. Co-Coordinator 

The co-coordinator represents a system 

coordinator relative to mobile nodes (MN) which 

are within the specified cell [6]. Any MNwithin the 

coverage area of the mobile cell registers a group of 

computing elements to the cc executing on that 

mobile cell. The co-coordinator collects the group 

of computing elements and registers with the sc. 

The multicasting of the dataset and the history of 

execution are maintained by the co-coordinator. 

The MLCT (Mobile Local Coordinator Table) 

tracks the mlc in the system. The table is updated 

when there is a change of mlc in the mobile cell. 

The mobility of the MN is also monitored by the 

cc. When a MN moves out of the mobile cell and 

enters another mobile cell, then the new mobile cell 

informs the cc of the old mobile cell through 

handoff. The information among the cc is 

exchanged when the new mobile cell already has 

the cc daemon executing. When the new mobile 

cell does not execute the cc daemon, the cc gets 

registered with the sc and executes the cc. 

Fig. 2.  FSM of Mobile Local 
Coordinator (MLC). 
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The FSM of the cc is given in Fig. 3. In the INIT 

state, cc cleans the secondary system files and 

initializes its data structures. In the LISTEN state, 

the cc waits for the messages from the mlc or sc. 

When a message is received from the mlc, it 

changes its state to MLC Msg RXD and services 

the message. When a message is received from the 

sc, it changes its state to SC Msg RXD and services 

the request. 

D. System Coordinator 

 

The sc coordinates the group of co-coordinators 
from the various mobile cells. The sc senses the 
failure of the mobile nodes when the mlc fails. The 
sc tracks the individual co-coordinators and 
establishes the communication between them. TCP 
sockets are used to connect sc with the individual 
by including static node in the distributed 
processing. The static node establishes the 
computing elements based on its capabilities 
through slc. The static node also includes the cc 
which establishes a group of computing elements 
represents the mobile nodes which are within its 
cell. The sc groups these computing elements into 
cluster-subgroups and tracks the total number of 
computing elements under each subgroup. The sc 
allocates each computing element a unique ID 
affiliated with each group subscribed by it. 

The sc comprises of three tables, namely, the 

Mobile Distributed Pipes Table (MDPT), the 

MobileGrid Computation Task Table (MGCTT), 

and the MobileGrid Computation Problem Table 

(MGCPT) [11]. The MDPT tracks the MDP 

channels and is updated whenever a MDP is 

created, enabled, disabled, or deleted. When a 

process enables a MDP before the pipe is enabled 

for reading, the relative mlc information is stored in 

the table. The MGCPT maintains the information 

relative to the MGCP that is submitted to the sc. 

The MGCPT is updated when a work is completed 

or when a work is submitted to the sc. The MGCTT 

maintains information relative to individual tasks 

constituting the MGCP. The MGCTT is updated 

when a task begins execution, when the problem is 

subdivided into tasks, or when a task terminates. 

The FSM of sc is given in Fig. 4. In the INIT 

state, the sc cleans the secondary system files and 

initializes its data structures. In the LISTEN state, 

the sc selects the connection requests from the co-

coordinators. The sc registers the cc with the 

system when a connection request from a cc is 

received, and a TCP socket connection is 

established between them. The sc listens for 

messages from the registered mlcs on unique 

channels, and continues to listen to new requests for 

connection. When a message from a cc is received, 

it changes its state to CC Msg RXD and executes 

the message. The sc returns to the LISTEN state 

when the message is processed. 

 

 

 

E. Function Library 

The library of functions comprises various 

services to support the MDP model of IMGC and 

the location transparent communication via MDP 

[11]. The variants of the function calls support 

communication across different architectures by 

Fig. 4.  FSM of System Coordinator 

(SC). 
 

Fig. 3.  FSM of Co-

Coordinator (CC). 
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external data representation. The function library is 

constructed over UNIX and TCP domain stream 

protocol. 

A TCP socket is created and a new message 

sequence is initiated by giving a message to sc 

through cc, for an open request in WriteMode. The 

message comprises the TCP socket descriptor, 

mode of access, and process index of the requesting 

process. The MDPT is updated with this 

information by the sc. When the MDP is already 

opened by another process in Read Mode, the sc 

returns the information to the caller. When the 

MDP is not opened for reading, the updating of 

MDPT and UPBWT are performed at sc and mlc 

respectively. 

A TCP socket is created and combined with a 

local port for an open request in Read Mode. A 

message is given to the sc to update the MDPT with 

the port number, process index, mode of access, 

and TCP socket descriptor. The library of functions 

along with their description is given in TABLE IV. 

 

 TABLE IV 

BASIC SERVICES OF MDP 

Data 

Type 
Function Parameters Description 

int EstablishMDP 

() 

char* PipeIdentity It sends a message to the sc through the cc and mlc executing on its machine. The 

sc establishes the MDP if there is no other channel with the same identity and 

makes an entry in MDPT 

int InitiateMDP () char* PipeIdentity, int 

ModeOfAccess 

It sends a message to the sc through the cc and mlc executing on its machine with 

the name of MDP as a parameter. The sc completes the message sequence by 

communicating with the user process about the creation of the MDP. 

int GetMDP () int MDPDescriptor, 

char* Memory, int 

MemorySize 

It gets the information from the socket descriptor for the MDPDescriptor. The 

MDPDescriptor returned is the real socket descriptor. This function call executes 

message sizes above the sizes of TCP messages. 

int PutMDP () int MDPDescriptor, 

char* Memory, int 

MemorySize 

It puts the information to the socket descriptor for the MDPDescriptor. The 

MDPDescriptor returned is the real socket descriptor. This function call executes 

message sizes above the sizes of TCP messages. 

int EndMDP () int MDPDescriptor It ends the socket descriptor for the MDPDescriptor. This function call sends a 

message to the cc through mlc with the name of MDP and ProcessIndex as 

parameters. This updates the MDPT at sc. 

int  RemoveMDP 

() 

char* PipeIdentity It sends a message to the sc through the cc and mlc with the name of the MDP as an 

argument. The sc removes the relative element in MDPT and returns the removal 
status to the function call. 

 

TABLE V 

EXTENDED SERVICES OF IMGC 

Data 

Type 
Function Parameters Description 

int EstablishMobGridComputationProbl

em () 

 It sends a message to sc through cc and mlc. The sc 

produces an element for the problem in MGCPT and 

returns ProblemIndex 

int SendMobGridDetails () int ProblemIndex, int 

SpaceX, int SpaceY, int 

SpaceZ, int Store, int 

SplitOrientation 

It sends a message to sc through cc and mlc. The 

message contains the parameters of the function call. 

The update of MGCPT is performed by sc and updated 

status is returned. 

int EstimateSplitsCount () int ProblemIndex It sends a message to sc through cc and mlc. The load 

details of all machines are collected from relative mlcs. 

This information is used to split the problem by the sc. 

The sc produces a new element in MGCTT to save the 

information about the division and returns the splits 

count. 

int GetSplitDetails () int ProblemIndex, int 

SplitIndex, int 

*StartMobGrid, int 

*TotalMobGrid 

It sends a message to sc through cc and mlc. The values 

from the MGCTT are gathered by the sc and the initial 

and total number of mobile grids is returned. 

int Transfer () int ProblemIndex, int 

SplitIndex, char 

*TransferFile, int 

InfoType, void *Info, int 

SpaceX, int SpaceY, int 

SpaceZ, int Store, char 

*OutputPipe 

It sends a message to sc through cc and mlc with its 

ProblemIndex and SplitIndex. The values of mlcs from 

MGCPT and MGCTT are gathered by the sc and 

messages are sent to the mlcs. Each mlc establishes a 

TCP socket, joins the TCP socket with a local port, and 

listens to it. The port numbers are given to the sc and it 

passes the gathered information to the mlc which 
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started the transfer. The mlc which started the transfer 

establishes a TCP connection and transfers the data, 

code, and output MDP name to the other mlc. The 

MGCTST of the transferred mlc is updated this 

information. The TCP connection is disabled when the 

transfer is finished. 

int  EndMobGridComputationProblem () int ProblemIndex It sends a message to sc through cc and mlc with 

ProblemIndex. The sc removes the corresponding 

element from the MGCPT. 

int EstablishMobGridComputationTask 

() 

 It sends a message to sc through cc and mlc. The new 

task element is updated into the MGCTT and 

TaskIndex is returned. 

int GetTaskMobGridDetails () int *SpaceX, int *SpaceY, 

int *Store 

It sends a message to sc through cc and mlc. The 

message comprises of the process index of the task. 

The mlc collects the corresponding information from 

the MGCTST. 

int GetTaskMachineDetails () int *MachineName, char 

*OutputPipeName 

It sends a message to sc through cc and mlc. The 

subdomain for which the task depends on the mlc is 

observed. The position of this subdomain is returned by 

the sc. The mlc returns the subdomain information and 

the OutputPipeName to the task. 

int GetTaskInfo () void *Info, int SpaceX, int 

SpaceY, int Store 

It sends a message to mlc. The mlc observes the 

information from MGCTST and the information is 

returned to the task. 

int GetTaskNoOfPipesToInitiate () int *NoOfInitiatedPipes It sends a message to sc through cc and mlc. The 

process index is appended with the message.  The sc 
observes the information from the MGCPT and the 

number of MDP to be initiated by the task is returned. 

int GetTaskInitiatedPipeIdentities () char **PipeIdentities, int 

*ModeOfAccess, int 

NoOfInitiatedPipes 

It sends a message to sc through cc and mlc. The 

process index is appended with the message. The 

identities of the MDP to be initiated and their mode of 

access are returned. 

int EndMobGridComputationTask int TaskIndex It sends a message to mlc. The mlc removes the 

corresponding element from the MGCTST and the 

message is forwarded to the sc through cc. The sc 

updates the values of MGCPT in response to the 

message. 

 

F. Overhead of Interfaces and Extended Services 

for IMGC 

The overhead of a function call is due to the 

message sequences initiated by the function call 

[11]. The function calls EstablishMDP (), EndMDP 

(), and RemoveMDP () forms a message from the 

mlc to the sc, a message to the mlc on the mobile 

node, a message from the lc back to the up, and a 

reply from the sc to the lc. The normal size of 

exchanged data packets is approximately 100 bytes. 

These function calls are used only once during the 

lifespan of a MDP. The function calls GetMDP () 

and PutMDP () are changed to the current system 

call, which do not result in any overheads. These 

function calls are used multiple times during the 

lifespan of a MDP. The extended services for an 

IMGC along with their description are given in 

TABLE V. 

 

G. Variations from DP, GDP and Moset 

The following issues were not solved in DP, 

GDP and Moset: handoff, load balancing, 

disconnectivity of mobile nodes, and fluctuations in 

bandwidth. The ring topology involves each mobile 

node with exactly two neighbors, which forms a 

planar structure. This structure arranges the mobile 

nodes arranged in a mobile grid of rows and 

columns. The example ring topology architecture is 

shown in Fig. 5. 
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Fig. 5.  Example Ring Topology 

 

The tree topology composes of a hierarchical 

structure of node levels which forms a tree. The 

lower level of the tree contains more nodes than the 

previous level of the tree. An example tree topology 

is shown in Fig. 6. The fragmented topology is 

reconstructed prior to the destruction of the pre-

defined topology during the roaming of a mobile 

node. The reconstruction of the fragmented 

topology is performed by choosing a new node as 

an option to the migrated node. The time spent on 

the reconstruction should be less for the satisfactory 

performance of the mobile cluster computing. 

The various machines compose of divided sub-

domains of computations. The load ratio on each 

machine determines the granularity of each 

subdomain. The load can be balanced by ignoring 

the machines for which the load indices cross a 

designated value. DP is not able to account for 

disconnection during handoff process, which is 

solved in MDP model using the reconstruction of 

fragmented topologies. 

The existing GDP [7] and Moset [6] models 

cannot handle a heterogeneous and varying load 

conditions, which is overcome in the proposed 

MDP model by issuing threshold values (load 

indices) and neglecting the machines which cross 

the threshold value. The existing GDP and Moset 

[6] models does not support flexible wireless 

bandwidth, which is overcome in the proposed 

MDP model by distinguishing the type of 

connectivity in a cell of the mobile cluster. 

The disconnectivity issue was not properly 

addressed in the existing Moset [6] model, but it is 

efficiently handled by the timer scheme introduced 

in the proposed MDP 

model.

Higher level Lower level

 
Fig. 6.  Example Tree Topology 
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3. CASE STUDY 

A variety of engineering applications are based 

on the principle of iterative mobile grid 

computation (IMGC). These applications possess a 

pattern in their process interaction. A distributed 

image rendering application is considered for the 

case study. 

 

H. Distributed Image Rendering 

Each mobile node (MN) comprises a client and a 

daemon. The clients submit the tasks to the MN for 

the distributed processing, while the daemons the 

computing elements at the MNs, that process a part 

of the submitted task along with other daemons [6]. 

The image rendering application is based on 

images obtained by CT scan. A CT scan image 

contains information on a transverse plane only. 

The CT scanners generate 3-D parallel plane stack 

images. Each stack consists of a sequence of X-ray 

absorption coefficients. The data sets can be viewed 

as a 3-D field due to the availability of parallel 

plane image stacks. The stack is converted into a 

single image by ray-casting and volume rendering. 

A ray-casting algorithm is employed to cast the 

parallel rays from the observer into the volume. The 

progressive attenuation at each point along the ray 

due to particle fields is computed. Simultaneously, 

the light scattered in the direction of the eye from 

the light source is also estimated at each point. The 

CT scan of a human head with the skull partially 

removed is taken as the input data. 

 

I. MDP Model of Computation 

The MDP model consists of a master process for 
each mobile cell and several worker processes. The 
master process is the initiator for the mobile grid 
computation. The master process coordinates the 
parallel computation by simultaneous 
communication with the system. A worker process 
involves calculations over a subdomain. The grain 
size of the subdomain for a worker process depends 
on the load ratio. 
 

J. Master Process 

The master process initializes the MGCP with the 
system and initiates the parallel computation [11]. 
The system decides the number of worker process, 
their associated granularities, and the machines on 
which they process. The master process gathers the 
information regarding each split from the system, 
which is used to create data packets for individual 

worker processes. Output Pipe for each worker 
process is created and transferred. The master 
process opens the Output Pipes and waits for the 
outputs. The Output Pipes are closed and removed 
after the outputs are collected. A sample code of the 
master process is given in Pseudo Code 2. 

 
Pseudo Code 2: Sample code of the master 

process 

 

int main () 

{ 

 … 

 ProblemIndex = 

EstablishMobGridComputationProblem (); 

… 

SendMobGridDetails (ProblemIndex, 

RowsCount, ColsCount, 1, 

DIVIDE_COLUMNS); 

… 

SplitsCount = EstimateSplitsCount 

(ProblemIndex); 

… 

for (SplitIndex =0; SplitIndex < SplitsCount; 

SplitIndex ++) 

{ 

GetSplitDetails (ProblemIndex, SplitIndex, 

&StartMobGrid, &TotalMobGrid); 

… 

CreatePacket (Matrix, RowsCount, 

StartMobGrid, TotalMobGrid, 1, 

DIVIDE_COLUMN, Data); 

… 

OutputPipe = 

HostName.“Output”.ProblemIndex.SplitNo; 

EstablishMDP (OutputPipe); 

Transfer (ProblemIndex, SplitNo, 

TransferFile, FLOAT_TYPE, Data, 

OutputPipe); 

} 

… 

for (SplitIndex = 0; SplitIndex < SplitsCount; 

SplitIndex ++) 

{ 

 OutputPipe = 

HostName.”Output”.ProblemIndex.SplitID; 

 PipeFd[SplitIndex] = InitiateMDP 

(OutputPipe, GET_MODE); 

} 

for (SplitIndex = 0; SplitIndex < SplitsCount; 

SplitIndex ++) 

{ 

GetSignChar (PipeFd[SplitIndex], 
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&ExtraOutput, sizeof (ExtraOutput), 

CONVERT_XDR); 

while (ExtraOutput) 

{ 

GetFloat (PipeFd[SplitIndex], &Output, 

sizeof (Output), CONVERT_XDR); 

GetSignChar (PipeFd[SplitIndex], 

&ExtraOutput, sizeof (ExtraOutput), 

CONVERT_XDR); 

} 

} 

for (SplitIndex = 0; SplitIndex < SplitsCount; 

SplitIndex ++) 

{ 

 EndMDP (PipeFd[SplitIndex]); 

 OutputPipe = 

HostName.”Output”.ProblemIndex.SplitIndex; 

 RemoveMDP(OutputPipe); 

} 

EndMobGridComputationProblem 

(ProblemIndex); 

return 1; 

} 

 

K. Worker Process 

The worker processes are transferred to 
anonymous remote nodes for processing [11]. A 
worker process initializes itself with its local mlc. 
The worker processes collect the information 
corresponding to the allotted subdomain. A sample 
code of the master process is given in Pseudo Code 
3. 

 
Pseudo Code 3: Sample code of the worker 

process 

 

int main () 

{ 

 … 

 TaskIndex = 

EstablishMobGridComputationTask (); 

… 

GetTaskMobGridDetails (&RowsCount, 

&ColsCount, &Depth, &SplitOrientation); 

GetTaskMachineDetails (&MachineName, 

OutputPipeName); 

… 

InitiateMDP (OutputPipeName, 

PIPE_READ); 

… 

GetTaskInfo (Info); 

… 

GetTaskNoOfPipesToBeEstablishedAndInitiat

ed (&NoOfEstablishPipe, 

&NoOfInitiatedPipes); 

… 

GetTaskEstablishPipeIdentities 

(EstablishPipes, NoOfEstablishPipe); 

for (PipeIndex = 0; PipeIndex < 

NoOfEstablishPipes; PipeIndex++) 

{ 

 EstablishMDP (EstablishPipes[PipeIndex]); 

} 

… 

GetTaskInitiatedPipeIdentities (InitiatedPipes, 

ModeOfAccess, NoOfInitiatedPipes); 

for (PipeIndex = 0; PipeIndex 

<NoOfInitiatedPipes; PipeIndex ++) 

{ 

PipeFd[PipeIndex] = InitiateMDP 

(InitiatedPipes[PipeIndex], 

ModeOfAccess[PipeIndex]); 

} 

… 

if (MachineName != FINAL_MGCTM) 

{ 

PutFloat(SucceedingMachineWd, 

&FormerTimeFormerMobGrid, sizeof 

(float), 1, CONVERT_XDR);    

} 

if (MachineName != INITIAL_MGCTM) 

{ 

PutFloat (SucceedingMachineWd, 

&FormerTimeSucceedingMobGrid, 

sizeof (float), 1, CONVERT_XDR);  

  

} 

for (Time = 0; Time<TMax; Time ++) 

{ 

if (MachineName != INITIAL_MGCTM) 

{ 

GetFloat (FormerMachineRd, 

&FormerTimeFormerMobGrid, sizeof 

(float), 1, CONVERT_XDR); 

PutFloat (FormerMachineWd, 

&FormerTimeSucceedingMobGrid, 

sizeof (float), 1, CONVERT_XDR); 

} 

else 

{ 

… 

} 

for (MobGrid = StartMobGrid; MobGrid < 

TotalMobGrid -1; MobGrid ++) 

{ 
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 … 

} 

if (MachineName != LAST_MGCTM) 

{ 

GetFloat (SucceedingMachineRd, 

&FormerTimeSucceedingMobGrid, 

sizeof (float), 1, CONVERT_XDR); 

… 

PutFloat (SucceedingMachineWd, 

&FormerTimeFormerMobGrid, sizeof 

(float), 1, CONVERT_XDR); 

} 

else 

{ 

 … 

} 

} 

for (PipeIndex = 0; PipeIndex 

<NoOfInitiatedPipes; SplitIndex ++) 

{ 

   EndMDP (PipeFd[PipeIndex]); 

} 

for (PipeIndex = 0; PipeIndex < 

NoOfEstablishPipes; SplitIndex ++) 

{ 

   RemoveMDP (EstablishPipes[PipeIndex]); 

  } 

EndMobGridComputationTask (TaskIndex); 

return 1; 

} 

4. BACKGROUND WORK 

Some of the techniques related to parallel 

computing and distributed computing are discussed 

in this section. 

A. Integration of Mobile Hosts into the Mobile 

Grid 

A mobile grid is constructed by the integration of 

the grid computing paradigm under service 

constitution technology and mobile computing 

paradigm [1]. It combines the powerful features of 

the grid computing capability and omnipresent 

accessibility of mobile distributed system. This 

technique consists of a distributed system model 

where the resources are organized as P2P (Peer to 

Peer) model. The resources of the hosts are 

visualized as services. This system is implemented 

as a shared distributed object space and in0creases 

the information processing capability and service 

sharing. 

 

B. Tool for Distributed Computing 

OptimalGrid is a new pattern of middleware for 

computation of larger problems in a distributed 

computing environment [8]. OptimalGrid 

automates the problem partitioning, dynamic 

redeployment, runtime management, and 

deployment of problem. 

 

C. Process Interaction in Distributed 

Computations 

The distributed computations are programs 

which communicate with the passing of the 

messages [20]. These programs generally process 

on network architectures such as NOW or 

distributed parallel machines. Some of the models 

for process interaction in distributed computations 

are network of filters, heartbeat algorithms, 

broadcast algorithms, decentralized servers, token-

passing algorithms, bag of tasks, and probe/echo 

algorithms. These models involve parallel sorting, 

computing network topology, and termination 

detection. 

 

D. Location-independent communication methods 

The proposed MDP is also compared with other 

location-independent (LI) communication methods 

between mobile agents [21, 22]. Nomadic Pict 

language is a distributed infrastructure for mobile 

computations employing LI intertask 

communication [21]. Low-level Nomadic Pict 

enables agent formation, transfer of agents between 

machines, communication of asynchronous 

messages between agents, and fine cooperation. 

High-level Nomadic Pict enables the LI 

communication. 

The low-level translation is user-defined via an 

arbitrary infrastructure. This language is 

constructed relative to asynchronous messaging. 

The TCP connections are formed on demand, but 

the program can also use a layer which enables 

authentic communication on the top of UDP. The 

messages are transparently delivered regardless of 

machine disconnection and agent migration. The 

infrastructure encoding consists of three sections, 

namely, a primary level component, an auxiliary 

compositional translation, and a phrase-by-phrase 

definition. 

LI techniques permit communication with a 

mobile agent irrespective of the migrations [22]. 

The implementation of these communication 

methods requires soft distributed infrastructure 
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algorithms. LI communication enables the modules 

to communicate without explicitly monitoring each 

other’s movements. 

Nomadic Pict [21] has a few limitations in terms 

of space and agent migration. The agent migration 

process is not transparent and a migration process is 

blocked until the machine is back in the network. 

Due to lack of space, a machine disconnection 

would block the agent migrations and 

communications via the query server. The buffering 

in the query server due to machine disconnection is 

an impractical option. The proposed MDP model is 

transparent and allows real-time migration of the 

mobile agents. The agent migration process is never 

blocked in the MDP model. 

 

E. Recent parallel computing methods 

Some of the other recent parallel and distributed 

computing systems include real-time aggregation 

system [23], language virtualization [24], and agent 

based parallel computing [25].The real-time 

aggregation system is used for large-scale parallel 

and distributed systems. A recent load balancing 

technique in randomly partitioned cluster services 

involve requests across a cluster of backend servers 

[26]. This was used to avoid the performance 

bottlenecks in large-scale cloud computing 

services. The advantage over existing 

communication technologies like Mobile IP (MIP) 

and Wi-Fi would be the stability in handoff when 

handling large clusters of data, where the existing 

methods have a smaller limited range than MDP 

model. 

4. PERFORMANCE ANALYSIS 

The round trip time (RTT) of communication 

over the network is around 0.3ms to a few 

milliseconds. Generally, the average RTT is less 

than 0.15ms. The performance analysis displays the 

speedup attained by the parallel execution of the 

problem and decreased memory requirements. The 

communication overhead can be prohibited to attain 

a linear to super-linear speedup. The analysis 

involves memory requirements, consequences of 

parallel execution, synchronization delay among 

sub-processes, and effects of load on speedup and 

execution time. Speedup is the ratio of sequential 

execution time to the parallel execution time. The 

distributed image rendering application is 

considered for the performance analysis. The 

proposed method is analyzed and compared with 

existing methods Moset [6] and DP [11]. 

A. Memory Requirements 

The task completion time with respect to the 

memory requirements is analyzed and compared 

with DP [11]. The comparative results are shown in 

Fig. 7. The results show that the task completion 

time for the given models increase gradually, with 

the two models almost following a similar pattern. 

But, the completion time for the MDP model is 

about 40% lesser than the DP model as the number 

of grid computations approach 70. 

The effect of process memory size on execution 

time is analyzed for the MDP and Moset [6], 

considering three mobile nodes. The comparative 

results are shown in Fig. 8. The results show that 

the task execution time for the given models is 

decreasing gradually with little constancy in 

between. But, the task execution time for the MDP 

model is about 35% lesser than the DP model as the 

memory size approach 225 MB. 

 
The memory required in the existing DP [11] and 

Moset [6] models are large due to the higher task 

completion time and execution time. These 

parameters are increased in the proposed MDP 

model by increasing the resolution of the sub-tasks 

division and thus decreasing the task completion 

time and execution time. 

 

Fig. 7.  Memory requirements of MDP 

and DP. 
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The memory usage of a framework for mobile 

systems (Misco) [27] and MDP is analyzed and 

compared in Fig. 9. It is observed that MDP 

occupies lesser memory than Misco framework. 

Misco occupies average memory of 40MB whereas 

MDP occupies only average memory of 32MB. 

 

 
The memory consumption of agent based parallel 

computing [25] is analyzed and compared with that 

of MDP relative to number of nodes in Fig. 10. It is 

observed that MDP occupies lesser memory than 

agent-based parallel computing. The former 

occupies average memory of 32MB whereas the 

latter occupies only average memory of 24.5MB. 

 

B. Consequences of Parallel Execution 

The grain size of a subtask is the count of the 

mobile grid points for the subtask. The task time is 

the sum of the synchronization delay by the subtask 

and the actual CPU time. Synchronization time is 

the total time the subtask takes to receive data from 

the surrounding subtasks and is given by the sum of 

the individual synchronization delay. The 

comparative results for MDP and DP [11], with 

equal load division for five nodes are given in Fig. 

11, in terms of task time, synchronization time, and 

speedup. The synchronization time, task time for 

the MDP model is only half of that of the DP 

model. 

 
The comparative results for MDP and DP [11], 

with larger tasks for 20 nodes are given in Fig. 12, 

in terms of task time and speedup. In the case of 20 

nodes, the task time for the MDP model is about 

77% of the DP model. The rate of speedup 

achieved due to parallel execution is higher in MDP 

model (25.451) compared to the DP model 

(18.791). 

Fig. 8.  Effect of process memory size for MDP 

and Moset. 

Fig. 9.  Memory usage for MDP 

and Misco. 

Fig. 10.  Memory consumption for MDP and 

 agent-based parallel computing. 
 

Fig.  11.  Consequence of parallel execution for 5 

nodes using DP and MDP. 
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The speedup in the existing DP [11] and Moset 

[6] models are less due to the higher parallel 

execution time. This is increased in the proposed 

MDP model by increasing the number of parallel 

executions per machine and thus increasing the 

speedup. 

The speedup of agent based parallel computing 

[25] is analyzed and compared with that of MDP 

relative to number of nodes for a fixed runtime of 

60s in Fig. 13. 

 

C. Synchronization Delay Relative to Number of 

Machines 

The total synchronization delay of individual 

subtasks determines the performance saturation and 

load imbalance. A higher value of synchronization 

delay for a subtask signifies that the subtask 

accomplishes its task faster than the neighboring 

subtasks. When the number of machines 

participating in the parallel computation increases, 

the mean grain size decreases. This results in 

performance saturation beyond which no machine 

would contribute significantly to the speedup. 

The data for a subtask is generated by its 

neighbor in its last beat of calculation, and so the 

synchronization time is considerably low for the 

initial samples. The prohibition of communication 

overhead attains linear-like speedup and the 

decreased memory requirements further increase 

the performance to super-linear speedup. 

The progress in total synchronization delay of 

individual subtask relative to the subtask count is 

given in Fig. 14. The average synchronization delay 

varies randomly initially and then after N = 3 there 

is a linear increase. The average synchronization 

delay for the MDP model is about 80% of the DP 

model. The result shows the average of total 

synchronization delay by the separate subtasks. 

When the number of subtasks increases, their 

associated granularity decreases. This increases the 

synchronization delay for each subtask. 

The average synchronization delay in the 

existing DP [11] model is higher due to the 

inefficient load balancing. This is overcome in the 

proposed MDP model by an efficient load 

balancing scheme which issues threshold values 

(load indices) and neglects the machines which 

cross the threshold value. 

 

D. Performance Saturation 

Granularity increases when the number of mobile 

grid points is increased. The computational domain 

is divided into more subdomains when there is an 

increase in the number of nodes. Hence, there is a 

decrease of granularity and increase of 

synchronization delay of individual subtask. 

A saturation point is defined as the value of 

absolute granularity at which the average 

synchronization delay exceeds 10% of the average 

task time. The absolute granularity is anonymous to 

the performance resilience. The value of absolute 

granularity with 10 tasks is computed to be around 

35ms. The observed values of RTT among the 

nodes vary from 0.2ms to 3ms with an average of 

0.24ms. 

Fig. 12.  Consequence of parallel execution for 20 

nodes using DP and MDP. 
 

Fig. 13.  Speedup for MDP and agent-based 

parallel computing. 
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E. Effect of Load on Execution Time 

The effect of load on the execution time for 

various numbers of mobile nodes is analyzed and 

compared for MDP and Moset [6] models, 

considering three mobile nodes. The comparative 

results are given in Fig. 15. The execution time 

increases initially as the load on the machines is 

increased for both the models. Later, the execution 

time decreases on a small scale for the MDP model, 

but it remains almost for the Moset model. The 

execution time of the MDP model is about 75% of 

the Moset model. This shows the efficiency of the 

MDP model over the Moset model. 

 
The initial increase in the execution time is due 

to the lag in the adaptability of the models. Once 

attaining the attaining the adaptability over the 

varying load on the machines, the execution time 

remains almost constant. The high execution time 

initially in the existing Moset [6] model is 

attributed to the initial value of the granularity of 

subtasks. This is overcome in the proposed MDP 

model by increasing the initial value of the 

granularity of subtasks. 

 

F. Effect of handoff and load balancing 

The effects of handoff on various parameters are 

analyzed. The various parameters are: 

1) PDR 

PDR is analyzed with respect to different 

mobility speed of the mobile nodes. The 

comparative analysis is given in Fig. 16. It is 

observed MDP possesses higher PDR than 

Dynamic Clustering-Based VANET [28]. 

 
2) Throughput 

Throughput is analyzed with respect to number 

of clusters. The comparative analysis is given in 

Fig. 17. It is observed MDP possesses higher 

throughput than Dynamic Clustering-Based 

VANET [28] due to effective load balancing. 

 
3) Packet drop fraction 

Packet drop fraction is analyzed with respect to 

number of clusters. The comparative analysis is 

given in Fig. 18. It is observed MDP possesses 

lesser packet drop fraction than Dynamic 

Clustering-Based VANET [28] due to effective 

handoff. 

Fig. 14.  Average synchronization delay vs. number 

of machines. 

Fig. 15.  Effect of load on execution time for MDP 

and Moset. 

Fig. 16.  Effect of handoff on PDR in MDP and 

Dynamic Clustering-Based VANET. 
 

Fig. 17.  Effect of load balancing on throughput in 

MDP and Dynamic Clustering-Based VANET. 
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5. CONCLUSION 

An effective methodology for the computation 

and communication in a mobile cluster is proposed 

using mobile distributed pipes (MDP). This 

technique shows better performance compared to 

the present techniques like DP [11], Dynamic 

Clustering-Based VANET [28], and Moset [6] in 

terms of synchronization time, speedup, task time, 

memory requirements, throughput, packet drop 

fraction, and packet delivery ratio (PDR). The 

future work of parallel computing in mobile cluster 

involves extending distributed computing to a 

larger span of mobile grids. 
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