
Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

ANALYZING THE EFFICIENCY OF PROGRAM THROUGH
VARIOUS OOAD METRICS

MR. S. PASUPATHY 1 AND DR. R. BHAVANI 2

1 Associate Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.
2 Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.

e-mail: 1pasuannamalai@gmail.com , 2shahana_1992@yahoo.co.in

ABSTRACT

Software plays an important role in this today’s fast moving world. As everything being
computerized, each and every activity must be programmed to lead a successful life. In business
environment, to maintain the successful path, many new techniques and technologies have been
implemented. Of those, programming for business needs, many new kinds of technologies have been
emerged. One of the most useful and easiest technologies to implement is OOAD (Object-Oriented
Analysis and Design).
OOAD is most powerful and easy, since the program developed in this object-oriented environment
seems to be simple and performs better compared to any other programming language. Object-
Oriented technology is becoming increasingly popular in industrial software development
environments. Object-Oriented Metrics are the measurement tools adapted to the Object Oriented
Paradigm to help manage and foster quality in software development.
In this research paper, we investigate several object oriented metrics proposed by various researchers.
Based on the investigation, we propose a new methodology to determine the program efficiency and
the quality. Our proposed methodology will produce the result based on the measurement carried out
in the programming section.

Keywords: Business Environment, Object-Oriented environment, Object-Oriented Metrics, OOAD,
Software.

1. INTRODUCTION

The design and development of software using
object oriented paradigm is gaining popularity
day by day. Object Oriented Analysis and
Design of software provide many benefits to
both the program designer and the user. Object
Orientation contributes to the solution of many
problems associated with the development and
quality of software product. This technology
promises greater programmer productivity,
better quality of software and lesser
maintenance cost.

Object-Oriented technology is becoming one of
the new emerging technologies in this today’s
computerized world. This technology helps in
the development of software product of higher
quality and lower maintenance costs. Since the
traditional software metrics aims at the
procedure-oriented software development so it

cannot fulfill the requirement of the object-
oriented software, as a result a set of new object
oriented software metrics came into existence.
Object Oriented metrics are the measurement
tools adapted to the Object Oriented paradigm
to help manage and foster quality in software
development.

Object Oriented Software development requires
a different approach from more traditional
functional decomposition and data flow
development methods. While the functional
and data flow approaches commence by
considering the systems behavior and/or data
separately, object oriented analysis approaches
the problem by looking for system entities that
combine them. Object oriented analysis and
design focuses on objects as the primary agents
involved in a computation; each class of data
and related operations are collected into a single
system entity. There are several object-oriented
programming languages that supports object

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN:

1817-3195

347

oriented paradigm. Most commonly used are
Java, C++, C Sharp, Vb.net. Each
programming languages consists of a unique
compiler and interpreter to check the program
for errors. When the result shows null, then the
program is said to be of good quality.
Otherwise, it is not so.

The most important skill in Object-Oriented
Analysis and Design is assigning
responsibilities to objects. That determines
how objects interact and what classes should
perform what operations. Certain tried-and-true
solutions to design problems have been
expressed as principles of best practice, often in
the form of Design Patterns. A Design Pattern
is a named problem solution formula that
applies excellent design principles. All software
Analysis and Design is preceded by the analysis
of requirements. One of the basic principles of
good design is to defer decisions as long as
possible. The more you know before you make
a design decision, the more likely it will be that
the decision is a good one.

Analysis:

� Analysis is a broad term. In Software
development, we are primarily
concerned with two forms of analysis.

� Requirements Analysis is discovering
the requirements that a system must
meet in order to be successful.

� Object Analysis is investigating the
object in a domain to discover
information important to meet the
requirements

Design:

� Design emphasizes a conceptual
solution that fulfills the requirements.
A design is not an implementation,
although a good design can be
implemented when it is complete.

� There are subsets of design, including
architectural design, object design, and
database design.

Object-Oriented Analysis:

� The emphasis is on finding and
describing the objects (or concepts) in
the problem domain.

� In a Library Information System, some
of the concepts include Book, Library,
and Patron.

Object-Oriented Design:

� The emphasis is defining software
objects and how they collaborate to
fulfill the requirements.

� In a Library Information System, a
Book software object may have a title
attribute and a getChapter method.

In this research paper, we have to propose a
methodology with OOAD Metrics to analysis
the program efficiency and to determine the
quality of the program. The OOAD Metrics
defined in this paper, will evaluate the lines of
code in the program to examine the quality of
the program.

2. RELATED WORK

In paper [1], Halstead reported that a full survey
of software quality metrics was outside the
scope of the article; instead, they highlight
several notable approaches. Halstead et al.
proposed Software Science (which did not
prove accurate in practice [2]), to provide easily
measurable, universal source code attributes.

In paper [3], Gabel et al described that as these
large specifications are imprecise and difficult
to debug, this article focuses on a second class
of techniques that produce a larger set of
smaller and more precise candidate
specifications that may be easier to evaluate for
correctness. These specifications typically take
the form of two-state finite state machines that
describe temporal properties, e.g. “if event a
happens during program execution, event b
must eventually happen during that execution.”
Two state specifications are limited in their
expressive power; comprehensive API
specifications cannot always be expressed as a
collection of smaller machines.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN:

1817-3195

348

In paper [4], More recently, Nagappan and Ball
analyzed the relationship between software
dependences, code churn (roughly, the amount
that code has been modified as measured by
source control logs), and post-release failures in
the Windows Server 2003 operating system.

In paper [5], Graves et al described that they
show that relative code churn, or the amount of
churn in one module as compared to a
dependent module, is more predictive of errors
than absolute churn (which we use here). This
suggests that more sophisticated measures of
churn might be more predictive in our model.
They similarly attempt to predict errors in code
by mining source control histories.

In paper [6], Albrecht described that Function
Point Analysis (FPA) estimates value delivered
to a customer, who can help approximate, for
example, an application’s budget, the
productivity of a software team, the software
size or complexity, or amount of testing
necessary.

In paper [7], Chen et al tested the hypothesis
that generic recovery techniques, such as
process pairs, can survive most application
faults without using application-specific
information. They examined in detail the faults
that occur in three, large, open-source
applications: the Apache web server, the
GNOME desktop environment, and the My
SQL database.

In paper [8], Nair et al. described a case study
of combinatorial testing for a small subsystem
of a screen-based administrative database. The
system was designed to present users with input
screens, accept data, then process it and store it
in a database. The study was extremely limited
in that only one screen of a subsystem with two
known faults was involved, but pair wise
testing was sufficient to detect both faults. In
paper [9], Wallace and Kuhn reviewed 15 years
of medical device recall data gathered by the
US Food and Drug Administration (FDA) to
characterize the types of faults that occur in the
application domain. These applications include
any devices under FDA authority, but are
primarily small to medium sized embedded
systems, and would range from roughly 104 to
105 lines of code.

In paper[10], Kuhn and Reilly analyzed reports
in bug tracking databases for open source
browser and server software, the Mozilla web
browser and Apache server. Both were early
releases that were undergoing incremental
development. In paper [11], Richard stated that
Exhaustive testing of computer software was
intractable, but empirical studies of software
failures suggested that testing can in some cases
be effectively exhaustive.

In paper[12], Edgar Gabriel et al pointed that a
large number of MPI (Multiple Programming
Interface- like Multitasking) implementations
are currently available, each of which
emphasize different aspects of high-
performance computing or are intended to solve
a specific research problem. It also presented a
high-level overview the goals, design, and
implementation of Open MPI.

In this paper, the proposed method has to be
developed by consolidating the related papers
and also improve with more special features.

3. METHODOLOGY

3.1 Proposed Work
The aim of the research paper is to propose a
methodology to detect the program efficiency.
The efficiency of the program can be
determined by considering the Lines of Code
(LOC) in the program and the error rate
occurred in the program during the compilation
process.

The summary of the research work is described
below: In our previous research works, we
described the methodology to divide the
program into number of sub-programs to
identify the number of classes, methods,
identifiers and so on. Then the program has to
be compiled to detect for errors. From the
errors detected and the identified number of
modules, the error rate has been calculated.
From the calculated error rate, the quality of the
program has to be determined.

This research work is the extension of the
previous works. In this paper, the efficiency of
the program can be determined through

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN:

1817-3195

349

successive compilation. From the compilation
result, the program quality and the error rate has
to be calculated. Based on the calculated result,
the efficiency of the program can be determined
by considering the Lines of Code (LOC) in the
program.

The compilation result has to be stored with
various version names depending upon the
number of times the process can be carried out.
From the result, the comparison can be made
out as follows:

If the number of classes increases and the Lines
of code increases, the error rate increases, then
the program quality is not bad, since the ratio of
increase in error rate is directly proportional to
the ratio of increase in the program code.

Code α Error_Rate

If the number of classes and the Lines of code
remains constant, but the error rate gets
increase, then the program is in bad quality,
since the ratio of increase in error rate is
inversely proportional to the ratio of increase in
the program code.

Code α 1/ Error_Rate

Thus based on the comparison ratio, the
program efficiency has to be determined and
from the determination result, the program is
said to be used by the user or to drop the
program.

This proposed methodology also consists of an
algorithm to determine the efiiciency of the
program. The algorithm is given below with
proper explanation.

3.2 Algorithm

3.3 Algorithm Explanation
The algorithm described above works as
follows: The initial step is to develop a
configuration file to divide the program into
number of classes and functions. Then the
program is taken as input and using the
configuration file developed, the program is
splitted. Then the program is compiled
successively until the program becomes error-
free or the user gives the END instruction. The
compilation result is stored successively with
appropriate version. Then the program
efficiency is determined by stored result. With
the help of the result, the program is read from
first compilation result and the error rate is
noted. Then the program is read from next
compilation result and the error rate is noted.
From the two programs, the Lines of Code can
be identified and compare it. If the LOC
increases with the error rate, then the program
efficiency is good. Otherwise, the efficiency is
bad. Thus the program efficiency is
determined.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN:

1817-3195

350

4. EXPERIMENTAL SETUP

The proposed methodology is experimentally
verified by implementing the algorithm in a
business environment. For the developed
program in business, the proposed algorithm is
implemented and the efficiency of the program
can be determined. First, the program is
compiled for its result. From the result, the
efficiency is determined through the
implemented algorithm. From the experimental
result, it is proven that the proposed method
performs well.

Fig-1: Good Efficiency Program

Fig-2: Bad Efficiency Program

5. CONCLUSION

Object-Oriented programming is a modern and
powerful technology which will lead a
successful path in this today’s programming
world. This research paper presented some
object oriented metrics that will be used to
measure the program efficiency. The results of
the object oriented metrics is implemented on

various experiments and the results shows
comparatively good.

However, the metrics presented in this research
paper are by no means a complete set of object
oriented metrics. But this analysis can be used
as a reference by software developers and
managers for building a fault free, reliable and
easy to maintain software product based on
object-oriented technology. So future work will
be to refine the current metrics and define
additional metric

REFERENCES

[1] M. Halstead, Elements of Software
Science. New York: Elsevier, 1977.

[2] P. G. Hamer and G. D. Frewin, “M.H.
Halstead’s Software Science - a critical
examination,” in ICSE, 1982, pp. 197–206.

[3] M. Gabel and Z. Su, “Symbolic mining of
temporal specifications,” in ICSE, 2008,
pp. 51–60.

[4] N. Nagappan and T. Ball, “Using software
dependencies and churn metrics to predict
field failures: An empirical case study,” in
ESEM, 2007, pp. 364–373.

[5] T. L. Graves, A. F. Karr, J. S. Marron, and
H. Siy, “Predicting fault incidence using
software change history,” IEEE Trans.
Softw. Eng., vol. 26, no. 7, pp. 653–661,
2000.

[6] A. J. Albrecht, “Measuring application
development productivity,” in IBM
Application Development Symposium,
1979, pp. 83–92.

[7] Subhachandra Chandra and Peter, M.
Chen, Computer Science and Engineering
Division, Department of Electrical
Engineering and Computer Science,
University of Michigan, “Whither Generic
Recovery from Application Faults? A
Fault Study using Open-Source Software”,
pp. 97-106, June 2000.

[8] V.N. Nair, D.A. James, W.K. Erlich, and J.
Zevallos, “A Statistical Assessment of
Some Software Testing Strategies and
Application of Experimental Design
Techniques,” Statistica Sinica, vol. 8, no.
1, pp. 165- 184, 1998.

Good Efficient Program

0

10

20

30

40

50

60

70

1 2 3 4 5

Error Rate

L
in

es
 o

f
C

od
e

LOC

Error Rate

Bad Efficiency Program

0

10

20

30

1 2 3 4 5

Error Rate

L
in

es
 o

f C
od

e

LOC

Error Rate

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN:

1817-3195

351

[9] D.R. Wallace and D.R. Kuhn, “Failure
Modes in Medical Device Software: An
Analysis of 15 Years of Recall Data,” Int’l
J. Reliability, Quality and Safety Eng., vol.
8, no. 4,August 2001.

[10] D.R. Kuhn and M.J. Reilly, “An
Investigation of the Applicability of
Design of Experiments to Software
Testing,” Proc. 27th NASA/IEEE Software
Eng. Workshop, Dec. 2002.

[11] D. Richard Kuhn, Senior Member, IEEE,
Dolores R. Wallace, Member, IEEE
Computer Society, and Albert M. Gallo Jr.,
“Software Fault Interactions and
Implications for Software Testing” June
2004.

[12] Edgar Gabriel, Graham E. Fagg, George
Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay,
Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham,
Timothy S. Woodall Innovative
Computing Laboratory, University of
Tennessee, Open System Laboratory,
Indiana University, “Open MPI: Goals,
Concept, and Design of a Next Generation
MPI Implementation”. Sep 2004

