
Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

A MODIFIED LEMPEL–ZIV WELCH SOURCE CODING
ALGORITHM FOR EFFICIENT DATA COMPRESSION

1 MAHMOUD A. SMADI, 2 QASEM ABU AL-HAIJA

1, 2 Electrical Engineering Department, King Faisal University,

Saudi Arabia, Alhasa, 31982, P. O. Box 380

E-mail: 1 msmadi@kfu.edu.sa, 2 qalhaija@kfu.edu.sa

ABSTRACT

Lempel–Ziv Welch (LZW) algorithm is a well-known powerful data compression algorithm created by
Abraham Lempel, Jacob Ziv, and Terry Welch. The algorithm is designed to be fast to implement but is not
usually optimal because it performs only limited analysis of the data. A modified LZW algorithm on source
coding will be proposed in this paper to improve the compression efficiency of the existing algorithms.
Such method is to be implemented with appropriate modifications that gives the best performance and
satisfies the requirements of the applications.

Keywords: LZW algorithm, substitution compression, encoding/decoding process.

1. INTRODUCTION

Data compression seeks to reduce number of bits
used to store or transmit information. It
encompasses a wide variety of software and
hardware compression techniques [1], which can be
so unlike one another except that they compress
data. These techniques for data compression can
ease a variety of problems in storing and
transmitting large amount of data [2].

Because of the tremendous amount of digital data
used today in several applications in digital data
systems, i.e. video-on-demand, word processing
programs, digital signal processing etc., the channel
bandwidth and the disk drive that looked gigantic
become inadequate for most applications. To
provide transmission or storage facilities for the
data, we need an additional communication lines for
transmission or disk drives for storage. In addition
to these solutions, the auxiliary devices such as
modems, multiplexers … etc. have been
continuously upgraded to permit higher data
transfer capability [3].

The above ordinary solutions used in transmitting
or storing large amount of data require an additional
increase in organization equipment and operating
costs. One method that can be employed to improve
a portion of data storage and information transfer
problems is to seek about sophisticated algorithms
to search data for redundancy [2]. This redundancy
can be removed from the original data by
compression algorithms; consequently, the resulting

data is smaller than the original data (reduction the
quantity of data or information). After that, the
compressed data enters to the transmission medium
and then it is expanded to its original format at a
sink location or we store it on disk drives and then
it is expanded when it is needed.

Different compression performance will be
obtained by applying the context in different way.
For example, a compression method using fixed
dictionary has a high speed, but the compression
ratio is worse than that of methods using dynamic
dictionary. Hence, we search in this paper to
propose a variant matching procedure to improve
compression performance based on LZW algorithm.

2. DATA COMPRESSION TECHNIQUES

There are many classifications for data
compression schemes. These classifications depend
on the way in which the techniques treat the text to
be compressed. A text is constructed as a group of
characters, which are arranged in a random
sequence. The probability of occurrence of a
character in a text is not the same for all characters.
For example, in a typical English language the
probability of occurrence of the space and vowel
characters (e, o, a, i, u) is much higher than that of
other characters such as z or the question mark
character. By utilizing this fact, we can assign short
codes for most frequently occurring set of
characters, while long codes are assigned for
seldom occurring set of characters. This method of
data compression depends on the frequency of

Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

201

occurrence of the individual character in a text.
Therefore, it is classified as statistical data
compression. Several techniques are considered as
statistical data compression techniques such as
Shanno-Fano code, Huffman coding… etc.

Other methods achieve compression by replacing
groups of consecutive characters, or "phrase" with
shorter representations. These representations may
be indices to an actual dictionary (Lempel-Ziv 78)
[4] or pointers to previous occurrence groups
(Lempel-Ziv 77) [5]. Therefore, it is classified as a
dictionary compression technique. Several
techniques are considered as dictionary
compression method such as LZ77, LZ78, LZW,
LZSS, etc. [3]. The idea of developing efficient
compression techniques was starting to be fleshed
out in the late 1940s (i.e., the early years of
information theory). Researchers were exploring the
idea of information theory, information contents,
and redundancy. Redundant information in a
message takes extra bits to encode, and if we can
get rid of that extra information, we will reduce the
size of the message. After that, the idea of
developing algorithms for data compression was
really a great leap forward.

The first will-known method for effectively
coding symbols is known as Shannon-Fano coding
by Claude Shannon at Bell Labs and R. M. Fano at
MIT [1]. It depends on knowing the probability of
each symbol in a message. While Shannon-Fano
coding was a great leap forward, it had the
unfortunate luck to be quickly superseded by a
more efficient coding system: Huffman coding,
which is published in 1952. Huffman original work
spawned numerous minor variations [1], and it
dominated the coding world until the early 1980s.

Until 1980, most general-compression schemes
used statistical modeling. Nevertheless, in 1967 a
paper was published describing a semi-adaptive
dictionary coding technique and it is closed with the
remark that better compression could be obtained
by "replacing a repeated string by a reference to an
earlier occurrence." [6-8]. This idea was not
pursued until 1977, when Jacob-Ziv and Abraham-
Lempel described an adaptive dictionary encoder in
which they employ the concept of encoding future
segments of the input via maximum-length copying
from a buffer containing the recent past output in
the publication "A universal algorithm for
sequential data compression" in IEEE transaction
on Information Theory [5]. This paper, with its
1978 sequel in [4] triggered a flood of dictionary-
based compression researches, algorithms, and
programs.

Dig beneath the surface of any dictionary based
compression program, you will find the work of
Jacob Ziv and Abraham Lempel. For all practical
purposes, these two researchers gave birth to this
branch of information theory in the late 1970s.
Despite that, the publication of those two papers
entered the world of information theory in 1977 and
1978 respectively; it was some time before
programmers noticed their effects. The June 1984
issue of IEEE computer had an article entitled “A
Technique for High Performance Data
Compression" by Terry Welch [9]. His paper was a
practical description of LZ78 algorithm
implementation, which he called LZW. He
discussed the LZW compression algorithm and
explained that it is possible to use it in disk and
tape-drive controllers (i.e., hardware
implementation). All researchers seek to improve
the compression performance (i.e., memory
requirement, encoding-decoding speed,
compression ratio, etc.). Therefore, earlier schemes
in the literature tended to use small amount of
memory and CPU time, but recently both of these
become cheaper, and later schemes have
concentrated on achieving the best possible
compression.

Fig. 1: The Idea Of The Substitution Compression By
Using A Code To Old Information In Position A With

Length B.

Fig. 2: Core Of Substitution Compression.

Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

202

The basic idea behind a dictionary compression
technique is to replace an occurrence of string in the
data stream by a pointer to a previous occurrence of
the phrase. Since the pointer may have a shortest
length than the original string, this replacement
leads to more compact representation of the data.
The proposed compression algorithm will be
achieved as shown in Fig. 1. The first task in coding
a stream by substitution compression algorithm is to
find the string that is repeating. A matching
procedure is used to locate repeating strings in the
stream. The procedure compares the new incoming
strings with previously occurring strings store in a
buffer called dictionary, see Fig. 2. Compression
performance is determined by the matching
procedure. Therefore, a good choice of matching
method can affect both compression speed and
compression ratio. A main part of matching
procedure is the dictionary, which stores the
previous incoming stream that can record the source
characteristics or the context of the source.

3. PROPOSED COMPRESSION ALGORITHM

The scenario described in Welch's 1984 paper [9]
encodes sequences of 8-bit data as fixed-length 12-
bit codes. The codes from 0 to 255 represent 1-
character sequences consisting of the corresponding
8-bit character, and the codes 256 through 4095 are
created in a dictionary for sequences encountered in
the data as it is encoded. At each stage in
compression, input bytes are gathered into a
sequence until the next character would make a
sequence for which there is no code yet in the
dictionary. The code for the sequence (without that
character) is emitted, and a new code (for the
sequence with that character) is added to the
dictionary [10].

After importing the data as a text file the next
step is how to convert it to binary. To convert to
binary first characters musts convert to its ASCII
code values and then to binary. The ASCII values
range are 0�127 so it must be converted to 7-bit
(b6-b0) binary. A simple way to convert by
subtracting 64 from the ASCII value and if the
result is positive that means the MSB (Most
Significant Bit: b6) = 1, else b6 = 0 and keep the
value without subtraction and then subtract 32 and
retest the value if positive. The above procedure
will be applied on all bits until subtracting 1 from
ASCII value and find the last bit.

3.1 Encoding Process
At the beginning a specific length of the binary

code must be determined. We could just use a fixed

dictionary like 4096 location (12-bit code and 1 for
prefix) but in this case some problems will occur:

a) When a short length characters are input, the
codes will be so much great comparing to their
number so the size of text will dramatically
boost up.

b) Sometimes when the input is very long the
dictionary may not be enough.

To avoid these problems we propose an idea
which is to assign a variable dictionary size
depending on the input length. To determine the
appropriate dictionary size we consider the worst
case that could happen if the all possible
combination are exist in the code like: 01; 00 01
10 11; 000 001 010 011 100 101 110 111

The algorithm will go as follow:

• If input is 2 bits length it will give us a
maximum number of 2 symbols

• If input is 2 + 8 = 10 bits length it will give a
maximum number of 2 + 4 = 6 symbols

• If input is 2 + 8 + 24 = 36 bits length it will
give a maximum number of 2+ 4 + 8 = 14
symbols

• In general if input is 1.2 + 2.4 + 3.8 + … bits
length it will give a maximum number of 2 +
4 + 8 + … symbols

Mathematically, if the input is bits length
(where n is maximum symbol length) we will
assign a maximum number of symbols. But

, and 2n+1 symbols can be
represented using n+1 bits, so it will be true to
assume that for an input length of bits,
n+1 bits or less are needed to represent the possible
contained symbols. Table 1 below provides an
example on that.
 Following that, the compressed binary data has
to be converted into symbols. This operation is
needed because the PC will deal with 0 and 1 as a
bytes not a bits so the size of the file is zipped from
7 times the original size but it is still very much big.
So in converting to symbols the size is going to be
divided by 7.
 In the process of converting to symbols each 7
bits are returned to an integer value (0�127) and
then take the character that meet that value in
ASCII. But what will happen if the integer is zero?
The algorithm will return a NULL and it does not
exist so in decoding it won’t be seen and a loss in
data will happen. The solution is to convert each 6
bits to an integer and add an offset to get rid from

Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

203

the zero value and then return a symbol as follow:
6 bits (0�63) + 32 = (32�95) so that all
characters are included. But in this case the bits of
binary must be in multiple of 6 so the algorithm
adds bits in case that the zipped binary is not a
multiple of 6. Then the new text will be converted
and indication bytes will be added for the decoding.
We can simply use one byte to indicate the number
of zero’s that been added and two bits to indicate
the length of each code.

Table 1 : Variable Dictionary Size Example
Symbol
length

Input
binary
code
length
bits

Maximum
number of
symbols

Number
of bits
for
code

Number
of bits
for
code &
prefix

1 2 2 1 2
2 10 6 3 4
3 34 14 4 5
4 98 30 5 6
5 258 62 6 7
6 642 126 7 8
7 1538 254 8 9
8 3586 510 9 10
9 8194 1022 10 11
10 18434 2046 11 12
11 40962 4094 12 13
12 90114 8190 13 14
13 196610 16382 14 15
14 425986 32766 15 16

 Therefore, successively longer strings are
registered in the dictionary and made available for
subsequent encoding as single output values. One
can also note that the algorithm will perform better
on data with repeated patterns, so the initial parts of
a message will see little compression. As the
message grows, however, the compression ratio
tends asymptotically to the maximum as expected.

3.2 Decoding Process

The decoding algorithm works by reading a value
from the encoded input and outputting the
corresponding string from the initialized dictionary.
At the same time, it obtains the next value from the
input, and adds to the dictionary the concatenation
of the string just output and the first character of the
string obtained by decoding the next input value.
The decoder then proceeds to the next input value
(which was already read in as the "next value" in
the previous pass) and repeats the process until
there is no more input, at which point the final input
value is decoded without any more additions to the
dictionary.

Note that a reverse operations of the encoding
process have to be performed. So, after importing
the encoded data it will be converted to binary and
unzipped. This unzipping operation is much easier
than zipping and it doesn’t return values as string
but it just find the symbols and save them in array
and they’re printed after that in the button
command. Finally, we convert the unzipped binary
into symbols and output them as text file.

In this way, the decoder builds up an identical
dictionary to that one used by the encoder, and uses
it to decode input values. Thus the full dictionary
does not need be sent with the encoded data; just
the initial dictionary containing the single-character
strings is sufficient (and is typically defined earlier
within the encoder and decoder rather than being
explicitly sent with the encoded data.)

4. ILLUSTRATION EXAMPLE

The following example illustrates the proposed
modified LZW algorithm in action, showing the
status of the output and the dictionary at every
stage, both in encoding and decoding the data. This
example has been constructed to give reasonable
compression on a very short message. In real text
data, repetition is generally less pronounced, so
longer input streams are typically necessary before
the compression builds up efficiency. The massage
to be encoded (from an alphabet using only the
capital letters) is:

"ABBCBCABABCAABCAAB"

An 8-bit codes are needed to give sufficient
combinations to encompass this set of 18 values.
The dictionary is initialized with these 18 values.
As the dictionary grows, the codes will need to
grow in width to accommodate the additional
entries. A 8-bit code gives 64 possible combinations
of bits, so when the 65th dictionary word is created,
the algorithm will have to switch at that point from
8-bit strings to 9-bit strings (for all code values,
including those which were previously output with
only eight bits). Previously generated output is not
affected by the code-width change, but once a 9-bit
value is generated in the dictionary, it could
conceivably be the next code emitted, so the width
for subsequent output shifts to 9 bits to
accommodate that.

 4.1 Encoding
Buffer input characters in a sequence ω until ω +

next character is not in the dictionary. Emit the code
for ω, and add ω + next character to the dictionary.
Start buffering again with the next character. The

Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

204

encoding process based on the proposed algorithm
is illustrated in the table 2 below.

Table 2 : Encoding Process Example
 Dictionary
output index string
(0, A) 1 A
(0, B) 2 B
(2, C) 3 BC

(3, A) 4 BCA

(2, A) 5 BA

(4, A) 6 BCAA

(6, B) 7 BCAAB

As we can see, each codeword consists of an integer
and a character, i.e., (0, A): 1, (0, B): 2, (2, C): 3,
(3, A): 4, (2, A): 5, (4, A): 6, and (6, B): 7. Now
each character will be represented by 8 bits and the
number of bits n required to represent the integer
part of the codeword with index i will be

Therefore, the number of significant bits to
represent each integer is given in the table 3.

Table 3 : Number Of Significant Bits
index Index-1 bits number of

significant bits
1 0 0 1
2 1 1
3 2 10 2
4 3 11
5 4 100 3
6 5 101
7 6 110
8 7 111
9 8 1000 4
10 9 1001
11 10 1010
12 11 1011
13 12 1100
14 13 1101
15 14 1110
16 15 1111

Note that the actual encoded message is:

"0A0B10C11A010A100A110B" where each
character is replaced by its binary 8-bit ASCII code.
To calculate the compression efficiency of the
proposed algorithm we note that:

• Unencoded length = 18 symbols *8 bits/symbol
= 144 bits

• Encoded length = (1+8)+(1+8)+ (2+8)+(2+8)+
(3+8)+(3+8) +(3+8) = 71 bits.

Hence, the proposed modified LZW algorithm

has saved 73 bits out of 144, reducing the message
by almost 50%. If the message were longer, then
the dictionary words would begin to represent
longer and longer sections of text, allowing
repeated words to be sent very compactly.

4.2 Decoding
To decode a compressed message, one needs to

know in advance the initial dictionary used, but
additional entries can be reconstructed as they are
always simply concatenations of previous entries.
At each stage, the decoder receives a code χ; it
looks χ up in the table and outputs the sequence χ it
codes, and it conjectures χ +? as the entry the
encoder just added. Because the encoder emitted χ
for χ precisely since χ +? was not in the table, and
the encoder goes ahead and adds it. However, what
is the missing letter? It is the first letter in the
sequence coded by the next code Z that the decoder
receives. Therefore, the decoder looks up Z,
decodes it into the sequence ω, takes the first letter
z, and tacks it onto the end of χ as the next
dictionary entry.

For our example, the decoded (or decompressed)
message for the sequence (0, A) (0, B) (2, C) (3, A)
(2, A) (4, A) (6, B) will be readily obtained as given
in the below table

Table 4 : Decoding Process Example
 Dictionary
output index string
A 1 A
B 2 B
BC 3 BC

BCA 4 BCA

BA 5 BA

BCAA 6 BCAA

BCAAB 7 BCAAB

Hence, the decompressed message is:
"ABBCBCABABCAABCAAB" which is the
original text message. This works as long as the
codes received are in the decoder's dictionary, so
that they can be decoded into sequences. What
happens if the decoder receives a code Z that is not
yet in its dictionary? Since the decoder is always
just one code behind the encoder, Z can be in the

Journal of Theoretical and Applied Information Technology
 10th March 2014. Vol. 61 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

205

encoder's dictionary only if the encoder just
generated it, when emitting the previous code χ for
χ. Thus Z codes some ω that is χ +? And the
decoder can determine the unknown character as
follows [10]:

• The decoder sees χ and then Z.

• It knows χ codes the sequence χ and Z codes
some unknown sequence ω.

• It knows the encoder just added Z to code χ
+ some unknown character,

• And it knows that the unknown character is
the first letter z of ω.

• But the first letter of ω (= χ +?) must then
also be the first letter of χ.

• Therefore, ω must be χ + x, where x is the
first letter of χ.

• So the decoder figures out what Z codes
even though it's not in the table,

• In addition, upon receiving Z, the decoder
decodes it as χ + x, and adds χ + x to the
table as the value of Z.

This situation occurs whenever the encoder
encounters input of the form cScSc, where c is a
single character, S is a string and cS is already in
the dictionary, but cSc is not. The encoder emits the
code for cS, putting a new code for cSc into the
dictionary. Next, it sees cSc in the input (starting at
the second c of cScSc) and emits the new code it
just inserted. The argument above shows that
whenever the decoder receives a code not in its
dictionary, the situation must look like this.

Although input of form cScSc might seem
unlikely, this pattern is common when the input
stream is characterized by significant repetition. In
particular, long strings of a single character (which
are common in the kinds of images LZW is often
used to encode) repeatedly generate patterns of this
sort.

5. CONCLUSION

In this paper we proposed an efficient matching

algorithm based on Lempel-Ziv technique that
improved the compression process. The
performance of the proposed algorithm is studied
in order to draw a comparison between its
performance and the performance of the exciting
compression techniques. We showed that the
proposed algorithm has a compression efficiency of
50% achieved even we applied it on a short

message text. Finally, the algorithm can be
implemented with appropriate modifications that
satisfies the requirements of many data compression
applications.

ACKNOWLEDGMENT

Authors would like to thank the Deanship of

Scientific Research at King Faisal University
(KFU), Alhas, Saudi Arabia for supporting this
research.

REFERENCES:

[1] M. Nelson, The data compression books.
Prentice Hall, 1996.

[2] J. Weiss and D. Shremp, “Putting data on diet,”
IEEE spectrum, vol. 30, pp.36-39, Aug. 1993.

[3] G. Held and T. R. Marshell, Data Compression,
John Wiley, New York, 1991.

[4] J. Ziv and A. Lempel, “Compression of
individual sequence via variable-rate coding,”
IEEE Trans. on Inform. Theory, vol. IT-22, pp.
75-81, Jan. 1978.

[5] J. Ziv and A. Lempel, “A universal algorithm
for sequential data compression,” IEEE Trans.
on Inform. Theory, vol. IT-23, pp. 337-343,
May 1977.

[6] Uyematsu, T.; Kuzuoka, S.,"Conditional
Lempel-Ziv complexity and its application to
source coding theorem with side information,"
IEEE International Symposium on Information
Theory, vol. 29, no. 4, pp. 142, 2003.

[7] Savari, S.A. ,"Redundancy of the Lempel-Ziv
string matching code," IEEE Transactions on
Information Theory, vol.44, no.2, pp.787-791,
Mar 1998.

[8] Yuriy A. Reznik, Wojciech Szpankowski, "On
the Average Redundancy Rate of the Lempel-
Ziv Code with K-Error Protocol," dcc, pp.373,
Data Compression Conference (DCC '00),
2000.

[9] Welch, T.A., "A Technique for High-
Performance Data Compression," IEEE Trans.
On Computer, vol. 17, no. 6, pp. 8–19, June
1984.

[10] www. wikipedia.org.

