Journal of Theoretical and Applied Information Technology
10™ March 2014. Vol. 61 No.1 N

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

A MODIFIED LEMPEL-ZIV WELCH SOURCE CODING
ALGORITHM FOR EFFICIENT DATA COMPRESSION

'MAHMOUD A. SMADI,* QASEM ABU AL-HAIJA
1.2 Electrical Engineering Department, King Faisal Wémsity,

Saudi Arabia, Alhasa, 31982, P. O. Box 380
E-mail: ! msmadi@kfu.edu.sa galhaija@kfu.edu.sa

ABSTRACT

Lempel-Ziv Welch (LZW) algorithm is a well-known werful data compression algorithm created by
Abraham Lempel, Jacob Ziv, and Terry Welch. Thealgm is designed to be fast to implement butas n
usually optimal because it performs only limiteclgsis of the data. A modified LZW algorithm on soel
coding will be proposed in this paper to improve ttompression efficiency of the existing algoritahms
Such method is to be implemented with appropriatelifitations that gives the best performance and
satisfies the requirements of the applications.

Keywords: LZW algorithm, substitution compression, encoding/decoding process.

1. INTRODUCTION data is smaller than the original data (reductlom t
quantity of data or information). After that, the
Data compression seeks to reduce number of bitempressed data enters to the transmission medium
used to store or transmit information. Itand then it is expanded to its original format at a
encompasses a wide variety of software arsink location or we store it on disk drives andnthe
hardware compression techniques [1], which can bieis expanded when it is needed.
so unlike one another except that they compress
data. These techniques for data compression ca
ease a variety of problems in storing an(i
transmitting large amount of data [2].

Different compression performance will be

Ptained by applying the context in different way.

or example, a compression method using fixed

dictionary has a high speed, but the compression
Because of the tremendous amount of digital datatio is worse than that of methods using dynamic

used today in several applications in digital datdictionary. Hence, we search in this paper to

systems, i.e. video-on-demand, word processimyopose a variant matching procedure to improve

programs, digital signal processing etc., the cehnncompression performance based on LZW algorithm.

bandwidth and the disk drive that looked gigantic

become inadequate for most applications. T@. DATA COMPRESSION TECHNIQUES

provide transmission or storage facilities for the o

data, we need an additional communication lines for Th€re are many classifications for data

transmission or disk drives for storage. In additio ©OMPression schemes. These classifications depend

to these solutions, the auxiliary devices such &' the way in which the techniques treat the text t
modems, multiplexers ... etc. have beel® compressed. A text is constructed as a group of

continuously upgraded to permit higher dat&haracters, which are_.arranged in a random
transfer capability [3]. sequence. The probability of occurrence of a

character in a text is not the same for all charact
The above ordinary solutions used in transmittingor example, in a typical English language the
or storing large amount of data require an add#ionprobability of occurrence of the space and vowel
increase in organization equipment and operatingharacters (e, o, a, i, u) is much higher than dliat
costs. One method that can be employed to improwgher characters such as z or the question mark
a portion of data storage and information transfefharacter. By utilizing this fact, we can assibors
problems is to seek about sophisticated algorithmgdes for most frequently occurring set of
to search data for redundancy [2]. This redundan@haracters, while long codes are assigned for
can be removed from the original data byeldom occurring set of characters. This method of
compression algorithms; consequently, the resultingata compression depends on the frequency of

s
200

Journal of Theoretical and Applied Information Technology
10™ March 2014. Vol. 61 No.1 N

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

occurrence of the individual character in a text. Dig beneath the surface of any dictionary based
Therefore, it is classified as statistical dat@ompression program, you will find the work of
compression. Several techniques are considered Jaob Ziv and Abraham Lempel. For all practical
statistical data compression techniques such psrposes, these two researchers gave birth to this
Shanno-Fano code, Huffman coding... etc. branch of information theory in the late 1970s.

: . . Despite that, the publication of those two papers
Other methods achieve compression by replacin . : :

X " . .ehtered the world of information theory in 1977 and
groups of consecutive characters, or "phrase” wi 78 respectively: it was some time before
shorter representations. These representations may. P Y; d their eff The J 1984
be indices to an actual dictionary (Lempel-Ziv 78 rogrammers noticed their effects. The June
[4] or pointers to previous occurrence grou ssue of IEEE computer had an article entitled “A

P P g psrechnique for High Performance Data

ey omorermon et SaneZomBession by Tery Weeh 1 His paper was
y P que. ractical description of LZ78 algorithm

techniques are considered as dictionar plementation, which he called LZW. He

compression method such as LZ77, LZ78, LZW,,. . .
LZSS, etc. [3]. The idea of developing eﬁicientdlscussed the LZW compression algorithm and

X : . eéplained that it is possible to use it in disk and
compression techniques was starting to be flesh e-drive controllers (e hardware
out in the late 1940s (i.e., the early years o P o

) : ; implementation). All researchers seek to improve
information theory). Researchers were exploring th . .

)) ; . ; the compression performance (i.e., memory
idea of information theory, information contents,re Uirement encoding-decodin speed
and redundancy. Redundant information in a q ' 9 9 beed,

. : compression ratio, etc.). Therefore, earlier scteeme
message takes extra bits to encode, and if we c

n .

X . ! . @ the literature tended to use small amount of
get rid of that extra information, we will redgduet emory and CPU time, but recently both of these
size of the message. After that, the idea

. ; . ecome cheaper, and later schemes have
developing algorithms for data compression Waloncentrated on achieving the best possible

really a great leap forward. .
yag P compression.

The first will-known method for effectively

coding symbols is known as Shannon-Fano codir Position: A

by Claude Shannon at Bell Labs and R. M. Fano . Length ‘B Data Stream .
MIT [1]. It depends on knowing the probability of .. xxx00001100 XXX....xxx00001100 XXX....
each symbol in a message. While Shannon-Fai v

coding was a great leap forward, it had the

unfortunate luck to be quickly superseded by

more efficient coding system: Huffman coding,

which is published in 1952. Huffman original work After

spawned numerous minor variations [1], and i W
dominated the coding world until the early 1980s. xxx00001100xx%.... xxx(code)XXx.......

Until 1980, most general-compression schemes
used statistical modeling. Nevertheless, in 1967 aFig. 1: Theldea Of The Substitution Compression By
paper was pub“shed describing a Semi_adaptiveusingACOdeTO Old Information In Position A With
dictionary coding technique and it is closed with t Length B.
remark that better compression could be obtaine—
by "replacing a repeated string by a referencento
earlier occurrence." [6-8]. This idea was no
pursued until 1977, when Jacob-Ziv and Abrahan From Dictionary
Lempel described an adaptive dictionary encoder

which they employ the concept of encoding futur RN |‘_’
segments of the input via maximum-length copyin :
from a buffer containing the recent past output il : Pattern

Dictionary

the publication "A universal algorithm for ' D]]]]—r
sequential data compression" in IEEE transactic
on Information Theory [5]. This paper, with its
1978 sequel in [4] triggered a flood of dictionary-
based compression researches, algorithms, and
programs.

Fig. 2: Core Of Substitution Compression.

s
201

Journal of Theoretical and Applied Information Technology
10™ March 2014. Vol. 61 No.1 N

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

The basic idea behind a dictionary compressiodictionary like 4096 location (12-bit code and t fo
technique is to replace an occurrence of strirthén prefix) but in this case some problems will occur:
data stream by a pointer to a previous occurrefice
the phrase. Since the pointer may have a shortest
length than the original string, this replacement
leads to more compact representation of the data.
The proposed compression algorithm will be
achieved as shown in Fig. 1. The first task in ngdi b) Sometimes when the input is very long the
a stream by substitution compression algorithroist dictionary may not be enough.
find the string that is repeating. A matching T d th bl i
procedure is used to locate repeating strings én th 'Oh avol ese problems vt\)lle p(;gp_ose an idea
stream. The procedure compares the new incomi?ﬁ@'C IS to assign a variable dictionary size
strings with previously occurring strings storean d pendllng on the Input length. To d_etermme the
buffer called dictionary, see Fig. 2. Compressioﬁ‘ppmp”ate dictionary size we consider the worst
performance is determined by the matchin ase th"?‘t could _happen if th? .aII. possible
procedure. Therefore, a good choice of matchin mb.lnatlon are exist in the code like:1; @0 01
method can affect both compression speed a 11; 000001 010011100101 110111
compression ratio. A main part of matching The algorithm will go as follow:
procedure is the dictionary, which stores the
previous incoming stream that can record the sourée
characteristics or the context of the source.

When a short length characters are input, the
codes will be so much great comparing to their
number so the size of text will dramatically
boost up.

If input is 2 bits length it will give us a
maximum number of 2 symbols

* Ifinputis 2 + 8 = 10 bits length it will give a
3. PROPOSED COMPRESSION ALGORITHM maximum number of 2 + 4 = 6 symbols

The scenario described in Welch's 1984 paper [9] |f input is 2 + 8 + 24 = 36 bits length it will
encodes sequences of 8-bit data as fixed-length 12- give a maximum number of 2+ 4 + 8 = 14
bit codes. The codes from O to 255 represent 1- symbols
character sequences consisting of the corresponding .))
8-hit character, and the codes 256 through 4095 dre In general if inputis 1.2 + 2.4 + 3.8 + ... bits
created in a dictionary for sequences encountered i length it will give a maximum number of =~ 2 +
the data as it is encoded. At each stage in 4*8+ ... symbols

compression, input bytes are gathered into I@Iathematically, if the input iE7_, k 2* bits length
sequence until the next character would make =l

sequence for which there is no code yet in th@vhere n is maximum symbol length) we wil

dictionary. The code for the sequence (without th&tSSI9n a maximum number%&zl 2" symbols. But
character) is emitted, and a new code (for th8i=: 2°=2"""—2, and 2" symbols can be
sequence with that character) is added to tHgpresented using+1 bits, so it will be true to
dictionary [10]. assume that for an input length @%_, k 2° bits,
n+1 bits or less are needed to represent the possible
Eontained symbols. Table 1 below provides an
xample on that.
Following that, the compressed binary data has

be converted into symbols. This operation is

After importing the data as a text file the nex
step is how to convert it to binary. To convert t
binary first characters musts convert to its ASCI
code values and then to binary. The ASCII valu

rgnge aL(_a 9127ASO !t mlust be converted to 7[:)bitneeded because the PC will deal with 0 and 1 as a
(Bl-)tO) i lnarg‘.l ¢ S'Ep eAngﬁ/ tol conv((jert_f tﬁ' bytes not a bits so the size of the file is zipfreth
subtracting rom the value and It tN€7"yimes the original size but it is still very muliy.

result is positive that means the MSB (Most . . ; PR :
Significant Bit:) = 1, else p= 0 and keep the d_c\)/iar:egobr;vsrtlng to symbols the size is going to be

value without subtraction and then subtract 32 an
retest the value if positive. The above procedur&
will be applied on all bits until subtracting 1 fro
ASCII value and find the last bit.

In the process of converting to symbols each 7
ts are returned to an integer value>(@27) and
then take the character that meet that value in
ASCII. But what will happen if the integer is zero?
. The algorithm will return a NULL and it does not
3.1 Encoding Process B ~ exist so in decoding it won't be seen and a loss in
At the beginning a specific length of the binaryyata will happen. The solution is to convert each 6
code must be determined. We could just use a fixggs to an integer and add an offset to get ridnfro

202

Journal of Theoretical and Applied Information Technology
10™ March 2014. Vol. 61 No.1 N

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

the zero value and then return a symbol as follow: Note that a reverse operations of the encoding
6 bits (0263) + 32 = (395) so that all process have to be performed. So, after importing
characters are included. But in this case theddits the encoded data it will be converted to binary and
binary must be in multiple of 6 so the algorithmunzipped. This unzipping operation is much easier
adds bits in case that the zipped binary is not than zipping and it doesn’t return values as string
multiple of 6. Then the new text will be convertedbut it just find the symbols and save them in yarra

and indication bytes will be added for the decodingand they're printed after that in the button

We can simply use one byte to indicate the numbeommand. Finally, we convert the unzipped binary

of zero’s that been added and two bits to indicat@to symbols and output them as text file.

the length of each code. In this way, the decoder builds up an identical

Table 1 : Variable Dictionary Size Example dictionary to that one used by the encoder, and use

Symbol | Input Maximum | Number| Number it to decode input vaIues._Thus the full dictionf';lr_y

length | binary | number of| of bits | of bits doe; not n_egd be sent V\."t.h the en_coded data; just
code symbols | for for thg mmgl dlct|_onary conte}mlng.the smglle-cha_tmc
length code code & | Strings is sufficient (and is typically defined kar _
bits prefix Wlthl_n_ the enco_der and decoder rather than being

1 5 > 1 > explicitly sent with the encoded data.)

2 10 6 3 4 4. ILLUSTRATION EXAMPLE

i gg ;g g g The following example illustrates the proposed

modified LZW algorithm in action, showing the

> 258 62 6 ! status of the output and the dictionary at every

6 642 126 7 8 stage, both in encoding and decoding the data. This

7 1538 254 8 9 example has been constructed to give reasonable

8 3586 510 9 10 compression on a very short message. In real text

9 8194 | 1022 10 11 data, repetition is generally less pronounced, so

10 18434 | 2046 11 12 longer input streams are typically necessary before

11 40962 | 4094 12 13 the compression builds up efficiency. The massage

12 90114 | 8190 13 14 to be encoded (from an alphabet using only the

13 196610/ 16382 14 15 capital letters) is:

14 425986| 32766 15 16

"ABBCBCABABCAABCAAB"

Therefore, successively longer strings are An 8-bit codes are needed to give sufficient
registered in the dictionary and made available fortombinations to encompass this set of 18 values.
subsequent encoding as single output values. Ofi@e dictionary is initialized with these 18 values.
can also note that the algorithm will perform betteAs the dictionary grows, the codes will need to
on data with repeated patterns, so the initialspaiit grow in width to accommodate the additional
a message will see little compression. As thentries. A 8-bit code gives 64 possible combination
message grows, however, the compression rataf bits, so when the 65 dictionary word is created,
tends asymptotically to the maximum as expected.the algorithm will have to switch at that point rino

8-bit strings to 9-bit strings (for all code values
3.2 Decoding Process including those which were previously output with

The decoding algorithm works by reading a valuenly eight bits). Previously generated output i$ no
from the encoded input and outputting theffected by the code-width change, but once a 9-bit
corresponding string from the initialized dictiopar value is generated in the dictionary, it could
At the same time, it obtains the next value fro thconceivably be the next code emitted, so the width
input, and adds to the dictionary the concatenatidor subsequent output shifts to 9 bits to
of the string just output and the first charactethe accommodate that.
string obtained by decoding the next input value.)

The decoder then proceeds to the next input valuél Encodmg . .

(which was already read in as the "next value” in BUffer input characters in a sequercentil o +
the previous pass) and repeats the process u xt character is not in the dictionary. Em_|t t.bele
there is no more input, at which point the finglub or , and a.dd” + next (_:haracter to the dictionary.
value is decoded without any more additions to that@rt buffering again with the next character. The
dictionary.

203

Journal of Theoretical and Applied Information Technology
10™ March 2014. Vol. 61 No.1 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645

www.jatit.org

E-ISSI¥17-3195

encoding process based on the proposed algorithm Unencoded length = 18 symbols *8 bits/symbol
is illustrated in the table 2 below.

Table 2 : Encoding Process Example

= 144 bits
e Encoded length = (1+8)+(1+8)+ (2+8)+(2+8)+
(3+8)+(3+8) +(3+8) = 71 bits.

Dictionary

tput ind tri
OLTpY index Stng Hence, the proposed modified LZW algorithm
0, A) 1 A , .
0. B) > B has saved 73 bits out of 144, reducing the message
2’ 3 BC by almost 50%. If the message were longer, then
53, ,i)) 2 =CA the dictionary words would begin to represent

) longer and longer sections of text, allowing
(2, A) 5 BA repeated words to be sent very compactly.
(4, A) 6 BCAA

4.2 Decoding

(6, B) 7 BCAAB

To decode a compressed message, one needs to
know in advance the initial dictionary used, but

As we can see, each codeword consists of an integglditional entries can be reconstructed as they are

and a character, i.e., (0, A): 1, (0, B): 2, @ 3,

always simply concatenations of previous entries.

(3,A): 4, (2,A):5, (4, A):6,and (6, B): Row At each stage, the decoder receives a cgde

each character will be represented by 8 bits aad thpoksy up in the table and outputs the sequenite
number of bitsn required to represent the integercodes, and it conjecturegs +? as the entry the
part of the codeword with indexwill be

Therefore,

{1’
n= .
log, i,

the number of significant bits toreceives. Therefore,

i=1
i>=1

represent each integer is given in the table 3.

Table 3 : Number Of Sgnificant Bits

encoder just added. Because the encoder enjtted
for y precisely sincey +? was not in the table, and
the encoder goes ahead and adds it. However, what
is the missing letter? It is the first letter ineth
sequence coded by the next code Z that the decoder
the decoder looks up Z,
decodes it into the sequenee takes the first letter

z, and tacks it onto the end gf as the next
dictionary entry.

index Index-1| bits number q
significant bits For our example, the decoded (or decompressed)
1 0 0 1 message for the sequence (0, A) (0, B) (2, CA)3,
> 1 1 (2, A) (4, A) (6, B) will be readily obtained asvgn
3 > 10 > in the below table
4 3 11 Table 4 : Decoding Process Example
5 4 100 3 Dictionary
6 5 101 output index string
7 6 110 A 1 A
8 7 111 B 2 B
9 8 1000 4 BC 3 BC
10 9 1001 BCA 4 BCA
7 Tuiom BA ° B
13 12 1100 BCAA 6 BCAA
14 13 1101 BCAAB 7 BCAAB
15 14 1110
16 15 1111 Hence, the decompressed message is:
"ABBCBCABABCAABCAAB" which is the

Note that the actual encoded message i§iginal text message. This works as long as the

"0AOB10C11A010A100A110B"

where

€aCthcodes received are in the decoder's dictionary, so

character is replaced by its binary 8-bit ASCIl €0d {1,5¢ they can be decoded into sequences. What

To calculate the compression. efficiency of thappens if the decoder receives a code Z thattis no
proposed algorithm we note that: yet in its dictionary? Since the decoder is always
just one code behind the encoder, Z can be in the

s
204

Journal of Theoretical and Applied Information Technology

10" March 2014. Vol. 61 No.1 B
© 2005 - 2014 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

encoder's dictionary only if the encoder justmessage text. Finally, the algorithm can be

generated it, when emitting the previous cgder implemented with appropriate modifications that

x. Thus Z codes some that isy +? And the satisfies the requirements of many data compression
decoder can determine the unknown character applications.

follows [10]:

ACKNOWLEDGMENT

* The decoder segsand then Z.

» It knowsy codes the sequengeand Z codes
some unknown sequenae

Authors would like to thank the Deanship of
Scientific Research at King Faisal

University

(KFU), Alhas, Saudi Arabia for supporting this
» It knows the encoder just added Z to cqde research.

+ some unknown character,

« And it knows that the unknown character ifREFERENCES.

the first letter z ofo.

[1]
* But the first letter ofw (= x +?) must then
also be the first letter of

* Therefore,o must bey + x, where x is the
first letter ofy.

[3]

* So the decoder figures out what Z codef]
even though it's not in the table,

* In addition, upon receiving Z, the decoder
decodes it ag + x, and addg + x to the 5]

table as the value of Z.

This situation occurs whenever the encoder
encounters input of the form c¢ScSc, where c is a
single character, S is a string and ¢S is already [6]
the dictionary, but cSc is not. The encoder erhigs t
code for ¢S, putting a new code for cSc into the
dictionary. Next, it sees cSc in the input (staytat
the second c of cScSc) and emits the new code it
just inserted. The argument above shows th 1
whenever the decoder receives a code not in its
dictionary, the situation must look like this.

Although input of form cScSc might seem
unlikely, this pattern is common when the inpuf8]
stream is characterized by significant repetition.
particular, long strings of a single character @hhi
are common in the kinds of images LZW is often
used to encode) repeatedly generate patternssof thi
sort. [9]

5. CONCLUSION

In this paper we proposed an efficient matchin
algorithm based on Lempel-Ziv technique tha
improved the compression process. The
performance of the proposed algorithm is studied
in order to draw a comparison between its
performance and the performance of the exciting
compression techniques. We showed that the
proposed algorithm has a compression efficiency of
50% achieved even we applied it on a short

205

2] J. Weiss and D. Shremp, “Putting data on diet,

M. Nelson, The data compression books.
Prentice Hall, 1996.

IEEE spectrum, vol. 30, pp.36-39, Aug. 1993.

G. Held and T. R. Marshell, Data Compression,
John Wiley, New York, 1991.

J. Ziv and A. Lempel, “Compression of
individual sequence via variable-rate coding,”
IEEE Trans. on Inform. Theory, vol. IT-22, pp.
75-81, Jan. 1978.

J. Ziv and A. Lempel, “A universal algorithm
for sequential data compression,” IEEE Trans.
on Inform. Theory, vol. IT-23, pp. 337-343,
May 1977.

Uyematsu, T.; Kuzuoka, S.,"Conditional
Lempel-Ziv complexity and its application to
source coding theorem with side information,"
IEEE International Symposium on Information
Theory, vol. 29, no. 4, pp. 142, 2003.

Savari, S.A. ,"Redundancy of the Lempel-Ziv
string matching code," IEEE Transactions on
Information Theory, vol.44, no.2, pp.787-791,
Mar 1998.

Yuriy A. Reznik, Wojciech Szpankowski, "On
the Average Redundancy Rate of the Lempel-
Ziv Code with K-Error Protocol," dcc, pp.373,
Data Compression Conference (DCC '00),
2000.

Welch, T.A.,, "A Technique for High-
Performance Data Compression," IEEE Trans.
On Computer, vol. 17, no. 6, pp. 8-19, June
1984.

O]www. wikipedia.org.

