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ABSTRACT 
 

Lempel–Ziv Welch (LZW) algorithm is a well-known powerful data compression algorithm created by 
Abraham Lempel, Jacob Ziv, and Terry Welch. The algorithm is designed to be fast to implement but is not 
usually optimal because it performs only limited analysis of the data. A modified LZW algorithm on source 
coding will be proposed in this paper to improve the compression efficiency of the existing algorithms. 
Such method is to be implemented with appropriate modifications that gives the best performance and 
satisfies the requirements of the applications. 
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1. INTRODUCTION  
 

Data compression seeks to reduce number of bits 
used to store or transmit information. It 
encompasses a wide variety of software and 
hardware compression techniques [1], which can be 
so unlike one another except that they compress 
data. These techniques for data compression can 
ease a variety of problems in storing and 
transmitting large amount of data [2]. 

Because of the tremendous amount of digital data 
used today in several applications in digital data 
systems, i.e. video-on-demand, word processing 
programs, digital signal processing etc., the channel 
bandwidth and the disk drive that looked gigantic 
become inadequate for most applications. To 
provide transmission or storage facilities for the 
data, we need an additional communication lines for 
transmission or disk drives for storage. In addition 
to these solutions, the auxiliary devices such as 
modems, multiplexers … etc. have been 
continuously upgraded to permit higher data 
transfer capability [3]. 

The above ordinary solutions used in transmitting 
or storing large amount of data require an additional 
increase in organization equipment and operating 
costs. One method that can be employed to improve 
a portion of data storage and information transfer 
problems is to seek about sophisticated algorithms 
to search data for redundancy [2]. This redundancy 
can be removed from the original data by 
compression algorithms; consequently, the resulting 

data is smaller than the original data (reduction the 
quantity of data or information). After that, the 
compressed data enters to the transmission medium 
and then it is expanded to its original format at a 
sink location or we store it on disk drives and then 
it is expanded when it is needed. 

Different compression performance will be 
obtained by applying the context in different way. 
For example, a compression method using fixed 
dictionary has a high speed, but the compression 
ratio is worse than that of methods using dynamic 
dictionary. Hence, we search in this paper to 
propose a variant matching procedure to improve 
compression performance based on LZW algorithm. 

 

2. DATA COMPRESSION TECHNIQUES 

There are many classifications for data 
compression schemes. These classifications depend 
on the way in which the techniques treat the text to 
be compressed. A text is constructed as a group of 
characters, which are arranged in a random 
sequence. The probability of occurrence of a 
character in a text is not the same for all characters. 
For example, in a typical English language the 
probability of occurrence of the space and vowel 
characters (e, o, a, i, u) is much higher than that of 
other characters such as z or the question mark 
character.  By utilizing this fact, we can assign short 
codes for most frequently occurring set of 
characters, while long codes are assigned for 
seldom occurring set of characters. This method of 
data compression depends on the frequency of 
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occurrence of the individual character in a text. 
Therefore, it is classified as statistical data 
compression. Several techniques are considered as 
statistical data compression techniques such as 
Shanno-Fano code, Huffman coding… etc.  

Other methods achieve compression by replacing 
groups of consecutive characters, or "phrase" with 
shorter representations. These representations may 
be indices to an actual dictionary (Lempel-Ziv 78) 
[4] or pointers to previous occurrence groups 
(Lempel-Ziv 77) [5]. Therefore, it is classified as a 
dictionary compression technique. Several 
techniques are considered as dictionary 
compression method such as LZ77, LZ78, LZW, 
LZSS, etc. [3]. The idea of developing efficient 
compression techniques was starting to be fleshed 
out in the late 1940s (i.e., the early years of 
information theory). Researchers were exploring the 
idea of information theory, information contents, 
and redundancy. Redundant information in a 
message takes extra bits to encode, and if we can 
get rid of that extra information, we will reduce the 
size of the message. After that, the idea of 
developing algorithms for data compression was 
really a great leap forward. 

The first will-known method for effectively 
coding symbols is known as Shannon-Fano coding 
by Claude Shannon at Bell Labs and R. M. Fano at 
MIT [1]. It depends on knowing the probability of 
each symbol in a message. While Shannon-Fano 
coding was a great leap forward, it had the 
unfortunate luck to be quickly superseded by a 
more efficient coding system: Huffman coding, 
which is published in 1952. Huffman original work 
spawned numerous minor variations [1], and it 
dominated the coding world until the early 1980s. 

Until 1980, most general-compression schemes 
used statistical modeling. Nevertheless, in 1967 a 
paper was published describing a semi-adaptive 
dictionary coding technique and it is closed with the 
remark that better compression could be obtained 
by "replacing a repeated string by a reference to an 
earlier occurrence." [6-8]. This idea was not 
pursued until 1977, when Jacob-Ziv and Abraham-
Lempel described an adaptive dictionary encoder in 
which they employ the concept of encoding future 
segments of the input via maximum-length copying 
from a buffer containing the recent past output in 
the publication "A universal algorithm for 
sequential data compression" in IEEE transaction 
on Information Theory [5]. This paper, with its 
1978 sequel in [4] triggered a flood of dictionary- 
based compression researches, algorithms, and 
programs. 

Dig beneath the surface of any dictionary based 
compression program, you will find the work of 
Jacob Ziv and Abraham Lempel. For all practical 
purposes, these two researchers gave birth to this 
branch of information theory in the late 1970s. 
Despite that, the publication of those two papers 
entered the world of information theory in 1977 and 
1978 respectively; it was some time before 
programmers noticed their effects. The June 1984 
issue of IEEE computer had an article entitled “A 
Technique for High Performance Data 
Compression" by Terry Welch [9]. His paper was a 
practical description of LZ78 algorithm 
implementation, which he called LZW. He 
discussed the LZW compression algorithm and 
explained that it is possible to use it in disk and 
tape-drive controllers (i.e., hardware 
implementation). All researchers seek to improve 
the compression performance (i.e., memory 
requirement, encoding-decoding speed, 
compression ratio, etc.). Therefore, earlier schemes 
in the literature tended to use small amount of 
memory and CPU time, but recently both of these 
become cheaper, and later schemes have 
concentrated on achieving the best possible 
compression. 

 

Fig. 1: The Idea Of The Substitution Compression By 
Using A Code To Old Information In Position A With 

Length B. 

 

Fig. 2: Core Of Substitution Compression. 
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The basic idea behind a dictionary compression 
technique is to replace an occurrence of string in the 
data stream by a pointer to a previous occurrence of 
the phrase. Since the pointer may have a shortest 
length than the original string, this replacement 
leads to more compact representation of the data. 
The proposed compression algorithm will be 
achieved as shown in Fig. 1. The first task in coding 
a stream by substitution compression algorithm is to 
find the string that is repeating. A matching 
procedure is used to locate repeating strings in the 
stream. The procedure compares the new incoming 
strings with previously occurring strings store in a 
buffer called dictionary, see Fig. 2. Compression 
performance is determined by the matching 
procedure. Therefore, a good choice of matching 
method can affect both compression speed and 
compression ratio. A main part of matching 
procedure is the dictionary, which stores the 
previous incoming stream that can record the source 
characteristics or the context of the source. 

 

3. PROPOSED COMPRESSION ALGORITHM 

The scenario described in Welch's 1984 paper [9] 
encodes sequences of 8-bit data as fixed-length 12-
bit codes. The codes from 0 to 255 represent 1-
character sequences consisting of the corresponding 
8-bit character, and the codes 256 through 4095 are 
created in a dictionary for sequences encountered in 
the data as it is encoded. At each stage in 
compression, input bytes are gathered into a 
sequence until the next character would make a 
sequence for which there is no code yet in the 
dictionary. The code for the sequence (without that 
character) is emitted, and a new code (for the 
sequence with that character) is added to the 
dictionary [10]. 

After importing the data as a text file the next 
step is how to convert it to binary. To convert to 
binary first characters musts convert to its ASCII 
code values and then to binary. The ASCII values 
range are 0�127 so it must be converted to 7-bit 
(b6-b0) binary. A simple way to convert by 
subtracting 64 from the ASCII value and if the 
result is positive that means the MSB (Most 
Significant Bit: b6) = 1, else b6 = 0 and keep the 
value without subtraction and then subtract 32 and 
retest the value if positive.  The above procedure 
will be applied on all bits until subtracting 1 from 
ASCII value and find the last bit. 

 

3.1 Encoding Process 
At the beginning a specific length of the binary 

code must be determined. We could just use a fixed 

dictionary like 4096 location (12-bit code and 1 for 
prefix) but in this case some problems will occur: 

a) When a short length characters are input, the 
codes will be so much great comparing to their 
number so the size of text will dramatically 
boost up. 

b) Sometimes when the input is very long the 
dictionary may not be enough. 

To avoid these problems we propose an idea 
which is to assign a variable dictionary size 
depending on the input length. To determine  the 
appropriate dictionary size  we consider the worst 
case that could happen if the all possible 
combination are exist in the code like:   01; 00 01 
10 11;  000 001 010 011 100 101 110 111 

The algorithm will go as follow:  

• If input is 2 bits length it will give us a 
maximum number of 2 symbols 

• If input is 2 + 8 = 10 bits length it will give a 
maximum number of 2 + 4 = 6 symbols  

• If input is 2 + 8 + 24 = 36 bits length it will 
give a maximum number of 2+ 4 + 8 = 14 
symbols 

• In general if input is 1.2 + 2.4 + 3.8 + … bits 
length it will give a maximum number of     2 + 
4 + 8 + … symbols 

Mathematically, if the  input is bits length 
(where n is maximum symbol length) we will 
assign a maximum number of symbols. But 

, and 2n+1 symbols can be 
represented using n+1 bits, so it will be true to 
assume that for an input length of        bits, 
n+1 bits or less are needed to represent the possible 
contained symbols. Table 1 below provides an 
example on that. 
   Following that, the  compressed binary data has 
to be converted into symbols. This operation is 
needed because the PC will deal with 0 and 1 as a 
bytes not a bits so the size of the file is zipped from 
7 times the original size but it is still very much big. 
So in converting to symbols the size is going to be 
divided by 7.  
   In the process of converting to symbols each 7 
bits are returned to an integer value (0�127) and 
then take the character that meet that value in 
ASCII. But what will happen if the integer is zero? 
The algorithm will return a NULL and it does not 
exist so in decoding it won’t be seen and a loss in 
data will happen. The solution is to convert each 6 
bits to an integer and add an offset to get rid from 
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the zero value and then return a symbol as follow:  
6 bits ( 0�63) + 32 = (32�95) so that all 
characters are included. But in this case the bits of 
binary must be in multiple of 6 so the algorithm  
adds bits in case that the zipped binary is not a 
multiple of 6. Then the new text will be  converted 
and indication bytes will be added for the decoding. 
We can simply use one byte to indicate the number 
of zero’s that been added and two bits to indicate 
the length of each code.  
  

Table 1 : Variable Dictionary Size Example 
Symbol 
length  

Input 
binary 
code 
length  
bits 

Maximum 
number of 
symbols 

Number 
of bits 
for 
code 

Number 
of bits 
for 
code  &  
prefix 

1 2 2 1 2 
2 10 6 3 4 
3 34 14 4 5 
4 98 30 5 6 
5 258 62 6 7 
6 642 126 7 8 
7 1538 254 8 9 
8 3586 510 9 10 
9 8194 1022 10 11 
10 18434 2046 11 12 
11 40962 4094 12 13 
12 90114 8190 13 14 
13 196610 16382 14 15 
14 425986 32766 15 16 
 
   Therefore, successively longer strings are 
registered in the dictionary and made available for 
subsequent encoding as single output values. One 
can also note that the algorithm will perform better 
on data with repeated patterns, so the initial parts of 
a message will see little compression. As the 
message grows, however, the compression ratio 
tends asymptotically to the maximum as expected. 
 
3.2 Decoding Process 

The decoding algorithm works by reading a value 
from the encoded input and outputting the 
corresponding string from the initialized dictionary. 
At the same time, it obtains the next value from the 
input, and adds to the dictionary the concatenation 
of the string just output and the first character of the 
string obtained by decoding the next input value. 
The decoder then proceeds to the next input value 
(which was already read in as the "next value" in 
the previous pass) and repeats the process until 
there is no more input, at which point the final input 
value is decoded without any more additions to the 
dictionary. 

Note that  a reverse operations of the encoding 
process have to be performed. So, after importing 
the encoded data it will be converted to binary and 
unzipped. This unzipping operation  is much easier 
than zipping and it doesn’t return values as string 
but it just find the symbols and save them in  array 
and they’re printed after that in the button 
command. Finally, we convert the unzipped binary 
into symbols and output them as text file.  

In this way, the decoder builds up an identical 
dictionary to that one used by the encoder, and uses 
it to decode input values. Thus the full dictionary 
does not need be sent with the encoded data; just 
the initial dictionary containing the single-character 
strings is sufficient (and is typically defined earlier 
within the encoder and decoder rather than being 
explicitly sent with the encoded data.) 

4. ILLUSTRATION EXAMPLE 

The following example illustrates the proposed 
modified LZW algorithm in action, showing the 
status of the output and the dictionary at every 
stage, both in encoding and decoding the data. This 
example has been constructed to give reasonable 
compression on a very short message. In real text 
data, repetition is generally less pronounced, so 
longer input streams are typically necessary before 
the compression builds up efficiency. The massage  
to be encoded (from an alphabet using only the 
capital letters) is: 

"ABBCBCABABCAABCAAB" 

An 8-bit codes are needed to give sufficient 
combinations to encompass this set of 18 values. 
The dictionary is initialized with these 18 values. 
As the dictionary grows, the codes will need to 
grow in width to accommodate the additional 
entries. A 8-bit code gives 64 possible combinations 
of bits, so when the 65th  dictionary word is created, 
the algorithm will have to switch at that point from 
8-bit strings to 9-bit strings (for all code values, 
including those which were previously output with 
only eight bits). Previously generated output is not 
affected by the code-width change, but once a 9-bit 
value is generated in the dictionary, it could 
conceivably be the next code emitted, so the width 
for subsequent output shifts to 9 bits to 
accommodate that.  

 

 4.1 Encoding 
Buffer input characters in a sequence ω until ω + 

next character is not in the dictionary. Emit the code 
for ω, and add ω + next character to the dictionary. 
Start buffering again with the next character. The 
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encoding process based on the proposed algorithm 
is illustrated in the table 2 below.  

Table 2 : Encoding Process Example 
 Dictionary 
output index string 
(0, A) 1 A 
(0, B) 2 B 
(2, C) 3 BC 

(3, A) 4 BCA 

(2, A) 5 BA 

(4, A) 6 BCAA 

(6, B) 7 BCAAB 

 

As we can see, each codeword consists of an integer 
and  a character, i.e.,  (0, A): 1,  (0, B): 2,  (2, C): 3,  
(3, A): 4,  (2, A): 5,  (4, A): 6, and  (6, B): 7. Now 
each character will be represented by 8 bits and the 
number of bits n required to represent the integer 
part of the codeword with index i will be 

 
 
Therefore, the number of significant bits to 
represent each integer is given in the table 3. 
 

Table 3 : Number Of Significant Bits 
index Index-1 bits number of 

significant bits 
1 0 0 1 
2 1 1 
3 2 10 2 
4 3 11 
5 4 100 3 
6 5 101 
7 6 110 
8 7 111 
9 8 1000 4 
10 9 1001 
11 10 1010 
12 11 1011 
13 12 1100 
14 13 1101 
15 14 1110 
16 15 1111 

 
Note that the actual encoded message is: 

"0A0B10C11A010A100A110B" where each 
character is replaced by its binary 8-bit ASCII code.  
To calculate the compression efficiency of the 
proposed algorithm we note that: 
 

• Unencoded length = 18 symbols *8 bits/symbol 
= 144 bits 

• Encoded length = (1+8)+(1+8)+ (2+8)+(2+8)+ 
(3+8)+(3+8) +(3+8) = 71 bits. 
 
Hence, the proposed  modified LZW algorithm  

has saved 73 bits out of 144, reducing the message 
by almost 50%. If the message were longer, then 
the dictionary words would begin to represent 
longer and longer sections of text, allowing 
repeated words to be sent very compactly. 

 

4.2 Decoding 
To decode a compressed message, one needs to 

know in advance the initial dictionary used, but 
additional entries can be reconstructed as they are 
always simply concatenations of previous entries. 
At each stage, the decoder receives a code χ; it 
looks χ up in the table and outputs the sequence χ it 
codes, and it conjectures χ +? as the entry the 
encoder just added. Because the encoder emitted χ 
for χ precisely since  χ +? was not in the table, and 
the encoder goes ahead and adds it. However, what 
is the missing letter? It is the first letter in the 
sequence coded by the next code Z that the decoder 
receives. Therefore, the decoder looks up Z, 
decodes it into the sequence ω, takes the first letter 
z, and tacks it onto the end of χ as the next 
dictionary entry. 

For our example, the decoded (or decompressed) 
message for the sequence  (0, A) (0, B) (2, C) (3, A) 
(2, A) (4, A) (6, B) will be readily obtained as given 
in the below table  

Table 4 : Decoding Process Example 
 Dictionary 
output index string 
A 1 A 
B 2 B 
BC 3 BC 

BCA 4 BCA 

BA 5 BA 

BCAA 6 BCAA 

BCAAB 7 BCAAB 

 

Hence, the decompressed message is: 
"ABBCBCABABCAABCAAB" which is the 
original text message. This works as long as the 
codes received are in the decoder's dictionary, so 
that they can be decoded into sequences. What 
happens if the decoder receives a code Z that is not 
yet in its dictionary? Since the decoder is always 
just one code behind the encoder, Z can be in the 
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encoder's dictionary only if the encoder just 
generated it, when emitting the previous code χ for 
χ. Thus Z codes some ω that is χ +? And the 
decoder can determine the unknown character as 
follows [10]: 

• The decoder sees χ and then Z.  

• It knows χ codes the sequence χ and Z codes 
some unknown sequence ω.  

• It knows the encoder just added Z to code χ 
+ some unknown character,  

• And it knows that the unknown character is 
the first letter z of ω.  

• But the first letter of ω (= χ +?) must then 
also be the first letter of χ.  

• Therefore, ω must be χ + x, where x is the 
first letter of χ.  

• So the decoder figures out what Z codes 
even though it's not in the table,  

• In addition, upon receiving Z, the decoder 
decodes it as χ + x, and adds χ + x to the 
table as the value of Z.  

This situation occurs whenever the encoder 
encounters input of the form cScSc, where c is a 
single character, S is a string and cS is already in 
the dictionary, but cSc is not. The encoder emits the 
code for cS, putting a new code for cSc into the 
dictionary. Next, it sees cSc in the input (starting at 
the second c of cScSc) and emits the new code it 
just inserted. The argument above shows that 
whenever the decoder receives a code not in its 
dictionary, the situation must look like this. 

Although input of form cScSc might seem 
unlikely, this pattern is common when the input 
stream is characterized by significant repetition. In 
particular, long strings of a single character (which 
are common in the kinds of images LZW is often 
used to encode) repeatedly generate patterns of this 
sort. 

 
 

5. CONCLUSION 
 
In this paper we proposed an efficient matching 

algorithm based on Lempel-Ziv technique that 
improved the compression process. The 
performance of the proposed algorithm is studied  
in order to draw a comparison between its 
performance and the performance of the exciting 
compression techniques. We showed that the  
proposed algorithm has a compression efficiency of 
50% achieved even we applied it on a short 

message text. Finally,  the algorithm can be 
implemented with appropriate modifications that 
satisfies the requirements of many data compression  
applications. 
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