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ABSTRACT 
 

A Genetic Algorithm (GA) is a computer based search optimization technique that uses the Darwinian 
“Theory of Evolution” as a model for finding exact and approximate solutions. GAs belong to a large 
family of heuristic algorithms called Evolutionary algorithms (EA) which are being increasingly utilized 
for solving complex optimization and search problems. The large computation time consumed by a GA 
implemented in software makes it unsuitable for real time applications. This hurdle is overcome by shifting 
the implementation to hardware, which drastically speeds up the time factor, thus presenting a scope for 
real time applications. Major issues to be addressed in hardware implementation are silicon utilization, 
scalability, providing flexibility and reduced computational delays. This work presents a customizable 
Complete Hardware Evolution (CHE) based GA architecture. Along with the generic modules for the 
genetic operators of the GA, modules named Flush and Replace Memory (FRM), Memory Module (MM), 
and a sorting module form the main components of this architecture. These modules can facilitate System 
on Programmable Chip (SoPC) implementation for different applications of GA. The coding is done using 
Verilog Hardware Description Language (HDL) and simulated using Xilinx ISE 9.1i simulator. Each 
module is separately simulated and synthesized for a Commercial Off The Shelf (COTS) Field 
Programmable Gate Array (FPGA). The resource utilization and the critical path delay of the modules are 
evaluated and presented for Xilinx Virtex – 4 FPGA. 
Keywords: Genetic Algorithm, Complete Hardware Evolution, FPGA, Sopc, Computational Delay, 

Resource Utilization.. 
 
1. INTRODUCTION  
 
Genetic Algorithms (GAs) are adaptive methods 
which are used to solve a variety of search and 
optimisation problems. They are based on the 
genetic processes of biological organisms [1, 2]. 
Over many generations, natural populations are said 
to have evolved according to the principles of 
natural election and “survival of the fittest”, first 
clearly stated by Charles Darwin in “The Origin of 
Species” [3]. By mimicking this process, genetic 
algorithms are able to evolve solutions to real world 
problems, if they have been suitably encoded. GAs 
are used to design bridge structures, for maximum 
strength/weight ratio, or to determine the least 
wasteful layout for cutting shapes from cloth, or to 
schedule and organise a managerial problem. They 
are also be used for online process control, such as 
in a chemical plant, or load balancing on a multi-
processor computer system, for design of layout on 

PCB, design of electronic systems, communication 
networks, scheduling and resource allocation, in 
robotics for trajectory planning, neural networks, 
design of adaptive filters in signal processing, in 
combinatorial optimization for set covering, 
travelling salesman, routing, bin packing, graph 
colouring and partitioning. Having such a varied 
domain of applications, it still has not attained a 
remarkable edge in real time implementations. It is 
mostly applied in an off – line manner. This is 
because of the huge computation time involved in 
the process of evolution [4]. 
 Evolution has different meanings for 
biologists, engineers, geneticists, software 
developers and priests. But whatever the definition, 
change is a common element that appears in all of 
them. Change is an important attribute of all 
dynamic complex systems, anything else is 
subjective interpretation. Evolutionary computation 
relies heavily on this attribute called 'change' [5]. 
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Software accommodates this change quiet easily 
but hardware based systems are not flexible. 
Changes are very difficult once designed and 
fabricated. However, a general purpose GA engine 
requires certain parts of its design to be easily 
configurable. Thus hardware based GA applications 
were not feasible until the advent of reconfigurable 
devices. The motivation for implementing a GA in 
hardware stems from the fact that they are very 
much CPU intensive, while also being intrinsically 
parallel algorithms. The basic operations of a GA 
can be executed in a pipelined fashion, which could 
also be replicated for different members of the 
population [6]. An added advantage with hardware 
implementation is the elimination of the need for 
complex time and resource consuming protocols 
needed by an equivalent software implementation 
to interface with the main application [7]. So 
hardware implementation is presented as a solution 
to overcome this hurdle of huge computation times 
and increase the viability of these algorithms. 
 
 By shifting the implementation to 
hardware, a scope for real time applications is 
presented, as drastic speed - up in terms of 
computation time is now possible. Hence, it follows 
that a hardware implementation of GA would be 
appreciable for problems too complex for software. 
The first hardware based GA using Field 
Programmable Gate Arrays (FPGAs) was presented 
by Scott et.al, in 1995 [4].Evolutionary techniques 
have made use of unconventional properties of the 
physical device, yielding designs that defy 
conventional analysis [8]. It is this unrestricted 
model that interests all researchers. FPGA 
implementation combines the speed and massive 
parallelism of hardware with the flexibility of 
software. They are conducive to computational 
modeling and allow a vast number of configurations 
that compute different functions [9]. This has paved 
a path for GA to be applied to real time applications 
through a hardware implemented GA. But hardware 
evolution has several aspects that need not be 
addressed in software evolution, like scalability, 
flexibility, transient effects, feedback loops, 
propagation delays, signal loss, power dissipation, 
etc. The presented work is a generic architecture 
whose modules can be customized to suit different 
applications. They have been synthesized for the 
Xilinx Virtex – 4 Commercial Off The Shelf 
(COTS) FPGA. The modules performing the 
genetic operators are portable as they are available 
as a net list of gates after synthesis. 

2. RELATED WORK 

D. Scott et al. [4] in 1995 presented the first 
working implementation of a hardware based 
genetic algorithm. The board consisted of eight 
FPGA’s, shared memory and a PC on which the 
genetic algorithm was run. The HGA was designed 
with parameterized modules to allow scalability, 
providing easy implementation. Pipelining and 
parallelism were employed to achieve improvement 
in speed. The selection module was parallelized and 
the selection-crossover-fitness modules were 
replicated to achieve speed – ups in the pipelined 
structure. A simple crossover operator and selection 
algorithm was designed. The benefits of hardware 
were combined with the benefits of software GA for 
the first time.  

Gunnar Tufte et al. [10] in 1999 proposed a new 
approach to evolvable hardware called Complete 
Hardware Evolution (CHE). The main feature of 
that implementation was that a hardware pipeline 
for the genetic evolution process was achieved. 
Control hardware was created for communication 
between the PC and the external boards. The 
problem of memory handling was solved by using 
LogiBlock from Xilinx Foundation Series. This 
CAD tool automatically generated the storage 
modules. A 4 x 1 multiplexor based on functional 
evolution was tested and validated.  

Shruthi Narayanan et al [11] developed modules to 
implement a GA in Verilog and VHDL in 
compatibility with the MATLAB tool box. 
Simulations for two fitness functions were 
presented and compared with the Genetic 
Algorithm Optimization Toolbox (GAOT). 

Zhiguo Buo et al. [12] had proposed a new 
approach for circuit design optimization by GA, 
where mixed constraints on circuit complexity, 
power and time delay were considered. The fitness 
function in their work aimed to accept solutions 
with 100% correctness of the target circuit, and 
with maximal evaluating values about complexity, 
power and time delay. They had used two functions 
F1 and F2 for calculating fitness. The former was a 
ratio of correct outputs to all test data, and the latter 
was an evaluating function of circuit complexity, 
power and time delay. Here, a two dimensional 
array of gates was used to extrinsically evolve a full 
adder circuit using Eclipse SDK 3.1.1 with jre 1.6.0 
on a 2.67 GHz CPU. Optimisation on fitness, 
complexity and power calculations were also 
presented. This evolution had taken about 27 sec for 
350 generations when evolved in software. This is 
proof that extrinsic based evolutions take a huge 
computation time. 
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Michalis Vavouras et al. [6] implemented an 
improved version of the HGA known as 
parameterized HGA (P-HGAv1) on the XUPV2P 
platform where the depth of the shared memory was 
increased to support large population sizes. In order 
to create a flexible and low cost design, the 
embedded Power PC of this FPGA as well as 
special-purpose cores like multipliers from the 
Xilinx Core Generator were utilized.  The block 
RAM on the board was used for memory. To the 
first implemented architecture [2], a new module 
was added, the fitness evaluation module, which 
consisted of built-in multiplier blocks and adders, a 
controller and a multiplexer. The multipliers were 
implemented in a pipeline manner.  

Pradeep R. Fernando et al. [7] presented a 
customizable FPGA core of a general purpose GA 
engine. The core was presented as a gate - level net 
list which could be tailored to suit the user’s 
requirement. Also, additional hardware resources 
like Power PC and external Block RAM were 
utilized. Fitness evaluation module was replaced by 
a look – up table which consisted of the required 
results for the different chromosomes. The block 
memory was used to store the lookup based fitness 
evaluation module. Hardware implementation of 
this soft core was able to achieve the global optima, 
or within 3.7% of the global optima. 

Swarnalatha and Shanthi [13] had presented a CHE 
based architecture which was designed for 
optimisation of single variable functions. Three 
functions were used to test the ability of the 
architecture to optimize. The fitness evaluation 
module was required to evaluate the optimum value 
of the single variable to suit the function under 
consideration. The design used five modules along 
with one memory module, totally constructed on the 
Configurable Logic Block (CLB) logic of the 
FPGA. Resource utilization for the different 
functions implemented varied from 0% - 94% 
approximately. This architecture was proposed as 
an application specific system. The same 
architecture would not support other real world 
applications because of the following hurdles. 

 
• Limitation on the number of 

generations through which that 
architecture could traverse. 

• The exhaustive usage of the limited 
number of available I/O blocks. 

 These limitations have been overcome in 
the present work by enhancing the architecture by 

adding some extra modules called Flush and 
Replace Memory (FRM) which incorporates elitism 
in its operation and a sorting module (Figure.1). 
These modifications result in a customizable 
framework which is generic and hence can be 
adapted to suit any application. In contrast, to all 
the reported hardware systems which use external 
hardware / software support like Power PC, Nios 
processor or use boards with multiple FPGAs with 
interfaced external memory, the present framework 
implements the different operations of the GA, i.e. 
chromosome generation, selection, crossover, 
mutation and storage, all on a single FPGA, leading 
to a SoPC implementation. The design issues 
related to the proposed architecture are presented in 
the next section. 

3. DESIGN ISSUES 
 
The literature shows that hardware based GA 
systems are being developed in various styles for 
different application. The contribution of this paper 
is focused towards developing a complete SoPC 
architecture for implementing GA, on just a single 
COTS FPGA. 
 
 Behavioral modeling of the complete 
framework is done using the Hardware Description 
Language (HDL), Verilog. Synthesis and 
simulation of the HDL code is executed using 
Xilinx ISE 9.1i simulator [14]. Every module is 
indigenously modeled and implemented on the 
CLB of a single off-the-shelf FPGA. The designed 
architecture aims to achieve the following criteria 
in hardware. 

• The flexibility that is inherently 
available with software 

• A customizable generic framework 
• Achieving scalability with respect to 

logic slices and I/O blocks 
• Achieving significant reduction in 

computational delay, leading to a 
drastic speed – up 

 The flexibility available with the soft 
implementation is now required to be incorporated 
into this hardware implementation. For each of the 
circuit to be evolved, the bit size requirements for 
the encoded genome, the bit size requirements for 
fitness values and the size of the required memory 
array are different. Thus, the size of each of these 
variables has to be decided as per the requirement. 
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Since the code is in HDL, such variations can be 
incorporated into the design. 
 
 In hardware structures memory access is a 
critical bottleneck with respect to speed of 
computation. High computational speed is a 
requirement of this architecture. Thus, the memory 
is also built into the FPGA itself. With such 
population based algorithms as the GA, this would 
result in high silicon utilization hindering the 
creation of SoPC.  This hurdle is explicitly 
established through the presented results of Table 1. 
The synthesis results of Table.1. are for a scaled up 
application of GA wherein the length of the 
chromosome would run to a few hundred bits using 
the architecture presented in [13]. The tabulated 
results show that with each generational run the 
resource utilization is linearly increasing and the 
device utilization ratio is exceeding 100%. This 
indicates that the chip does not support generational 
runs of the order of just 9 runs when the 
chromosome length is increased. The linear 
increase is witnessed for both logic utilization and 
I/O blocks. It is this limitation that is being handled 
in the proposed architecture. 
 
 In the enhanced framework presented, 
some extra behavior based modules are 
incorporated. These are named as Flush and 
Replace Memory (FRM) and Sorting - a module for 
sorting the contents of the memory. The FRM 
incorporates the elitism property of the genetic 
algorithm. With this modification, the memory size 
does not linearly grow with scaling in the number 
of generations and also supports scalability. The 
memory requirement remains the same as that of 
the initial population, for every generational run. 
Hence, a huge conservation in resource utilization 
is achieved enabling SoPC characteristics for the 
proposed architecture. The results and the 
operational flow of these blocks are presented in 
the next section. 

4. THE PROPOSED SOPC ARCHITECTURE 

FOR GA 

The proposed architecture consists of six main 
modules, which could be built as a SoPC on any 
COTS FPGA. The required memory module is also 
placed within the CLBs of the FPGA. The results 
obtained are presented in this section. Figure 1 
shows the block diagram of the proposed system.  
The process can be divided into three levels viz, 
 

• The generation of the initial population 
• The memory handling section 

• The genetic operators 
 

 
Figure. 1 Block Schematic of the Proposed 

Architecture. 
 

4.1 The generation of the initial population 

 
 The generic process involved is initiated 
from the Random Number Generator (RNG). 
Random number generation is of great importance 
for the proper operation of the GA. A Linear 
Feedback Shift Register (LFSR) is used here, as it 
is easy to implement and produces fairly good 
pseudo-randomness. The LFSR is constructed by 
concatenating a series of single bit registers. 
Random bits are selectively ex- or and fed back to 
the registers. Thus for each clock a random bit 
string is generated.  The RNG generates the initial 
population, of the required size. The seed for the 
RNG is programmable, which means that the user 
can supply this input parameter. This would enable 
different convergence characteristics for each 
generation. These chromosomes are then passed on 
to an array of 2 – dimensional registers in the 
memory module. A 64 bit Linear Feedback Shift 
Register (LFSR) is synthesized on a Virtex – 4 
FPGA (XC4VLX200) and the results are presented 
in Table.2. The critical path delay of the system is 
obtained as 6.339 ns. Any changes to the size of the 
chromosome can be easily incorporated as the 
coding is in HDL. 
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4.2  The Memory Section 
  
 This section comprises of a memory 
module and a module for sorting its contents in the 
descending order of fitness values. The FRM 
module is also developed in conjunction with this 
section of the architecture. 
 

• Memory Module (MM): The memory 
module consists of two separate memories, one for 
the chromosomes (Chromosome Memory) and the 
other for the storage of their fitness values (Fitness 
Memory). The initial population of randomly 
generated chromosomes is stored in the 
chromosome memory. Since memory is also on – 
chip, this can be accessed at full clock speed thus 
eliminating the crisis of slow memory access. But, 
this accommodation would occupy significant 
physical area. Thus, the area overhead or silicon 
utilization on the FPGA is scaled up but 
computational speeds get drastically reduced.  The 
memory is a collection of 2 – D resisters which can 
be indexed as per requirement.  Now the individual 
chromosomes may be passed to the fitness 
evaluation module for fitness calculation.  
 

• Sorting Module (SRM): After the 
evaluation of fitness, for the chromosomes of the 
whole population, the chromosomes and their 
corresponding fitness values are arranged in 
descending order of their fitness by the sorting 
block in the MM. This is required for flushing out 
the least fit chromosomes to accommodate better 
child chromosomes. 

 
• Flush and Replace Module (FRM): This 

module incorporates elitism into the system. This 
block is mainly responsible for the slice logic 
conservation advantage of this CHE 
implementation. This checks and compares the two 
least fit genomes of the population with the two 
child genomes newly generated. If the fitness of the 
new genomes is better than the existing genomes of 
the population, then the generated genomes flush 
out the weakest two genomes and occupy their 
position in the population. The corresponding 
fitness values are also suitably substituted. The 
resulting new population is now called, the next 
generation, over which the iterative process of 
evolution continues. Thus the best chromosomes 
are retained in the population and the weaker are 
made better. 
 

 These modules are modeled and 
synthesized for a population size of 32 
chromosomes, on a Virtex – 4 FPGA 
(XC4VLX200). The resources utilization for this 
level is presented in Table.3. The critical path delay 
of this module is achieved as 4.317ns. 
 
4.3  The genetic operators 
 
 The genetic operators viz, selection, 
crossover and mutation can be implemented in 
accordance to the application under consideration. 
There are a huge number of variants which are 
available in literature. The choice of operators 
would depend on the application.  Any specific 
choice of selection, crossover and mutation can be 
designed and attached to this framework.  Since the 
population size here is 32 a 5 bit (25 = 32) RNG is 
used to randomly select two pairs of parent 
chromosomes for crossover. The selection method 
used here is tournament selection and the crossover 
is single point crossover. The process involved in 
this level is enumerated here. These can be used for 
any application but needs to be customized as per 
specifications of the problem at hand. 
 

• RNG: 5 bit: The five bit RNG generates 
two random numbers these numbers are used to 
index to the chromosome memory and the 
corresponding two chromosomes can be chosen to 
be operated on, by the selection module.  
 

• Tournament Selection (TS): The 
selection module selects two chromosomes as 
parents for recombination based on the indexing 
provided by the 5 – bit RNG. The highest fit 
chromosome out of the two chromosomes selected 
as probable parents, is chosen as one of the parent. 
The selection of both the parents is executed in this 
manner. In TS, every chromosome has an equal 
probability of being chosen as a parent. Thus, even 
the weak chromosomes have a chance to participate 
in the process. After selection, the two parents are 
passed on to the crossover module. 
 

• Crossover and Mutation Module: The 
crossover operator is mainly responsible for the 
search aspect of the genetic algorithm. The 
crossover module operates on the two selected 
parent chromosomes to give two new off - springs. 
The CM implemented here is designed to perform 
single point cross over on the selected parents. The 
resulting child chromosomes are then transferred to 
the mutation module. The operation of mutation is 
performed by the mutation module. To adopt the 
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concept of introducing variation into the genome, 
mutation is applied to alter the genes randomly with 
a certain probability. The mutation module 
introduces single bit flip operation, based on a 
probability condition.  

 
 After the evaluation of the child 
chromosomes by the fitness evaluation module they 
can be sent to be handled by the Flush and Replace 
Module. This process would continue until the 
desired objective of any application is satisfied. 
  
 Hardware realisation of these modules are 
implemented and presented by all hardware 
implementation in literature [7, 11, and 15] and 
hence synthesis report of this section is not 
presented. The FRM module together with the 
sorting block is designed to accomplish the job of 
comparison and replacement. This helps in the 
conservation of silicon with the passage of each 
generation. The number of registers required to 
store the population and their fitness does not scale 
- up with each passing generation. The constantly 
increasing scale of integration supports scalability, 
but the constraint on the number of I/O blocks 
available with each COTS FPGA is still a critical 
hardware constraint to be handled by the user. This 
critical limitation is also addressed by these 
modules. The drastic reduction in computational 
delay is an advantage of most hardware 
implementations. Additionally, since this 
architecture is designed as a SoPC, it eliminates all 
complicated communication protocols, interfaces 
and other hardware resources. 
 
The contributions made may be summarized as 
 

• Customizable SoPC architecture for GA 

• No additional hardware/ software 
resources are utilised 

• Computational delays of the order of 
nanoseconds is achieved 

• Conservation on the limited number of 
available I/O blocks 

• Memory requirements for the 
chromosomes and their fitness remain the 
same irrespective of the number of 
generations traversed to reach the optimum 

• Architecture supports evolution with no 
limit on the number of generations 

 
5. CONCLUSION 

 
 Hardware based generic framework for 
realising a GA which can be customized, is 
modelled and presented. All the modules are 
indigenously developed and synthesized 
successfully, for a COTS FPGA, using Verilog 
HDL. It is a generic framework which would 
enable SoPC architectures for any real world 
application of GA. No other hardware / software 
resources are required for this implementation. The 
architecture can be adapted to support any kind of 
genetic operators that an application may require. 
Thus a concrete step towards SoPC architectures 
for GA has been accomplished. When a fitness 
evaluation module for any specific application is 
realised in hardware and integrated with this 
framework a complete SoPC for the application 
would be achieved. Results obtained show that 
resource utilisation on the chip for this framework 
is well below 50%, and computational delays are of 
the order of only a few nanoseconds. These 
advantages would definitely help real time 
applications of GA a reality in the future. 
 

 
Table.1.Resource Utilization For The Architecture Presented In [13] On A Spartan 3 FPGA. 

 
Resources Available on 

the FPGA 
Utilization 
for just 5 
generations  
 

Utilizatio
n in % 

Utilization 
for just 9 
generations  
 

Utilizatio
n in % 

 
Slices 

 
27648 

 

 
18432 

 
66.66% 

 
40290 

 
145.72% 

4 I/p 
LUT’S 

 
55296 

 
32703 

 
59.14% 

 
71886 

 
130.02% 

 
 

IOB’s 
 

 
633 

 
180 

 
28.43% 

 
324 

 
51.1% 
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Table. 2. Resource Utilization For The Random Number Generator (RNG) (Figure.1) On A Virtex – 4FPG

 
 
 
 
 
 

 
Table.3.Resource Utilization For The Memory Section (Figure.1) On A Virtex - 4 FPGA 

  
Resources Available on 

the FPGA 
Utilization Utilization in %. 

Slices 89088 41,287 46% 
4 I/P LUT’S 178176 72,199 40% 

IOB’s 960 68 7% 
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