
Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

531

A CUSTOMIZABLE SoPC ARCHITECTURE FOR GA BASED
ON COMPLETE HARDWARE EVOLUTION

1 A. SWARNALATHA, 2 A.P. SHANTHI

1Dept. of Electronics and Communication Engineering,
St. Joseph’s College of Engineering,

Anna University, Chennai, India.
2Dept. of Computer Science and Engineering,

Anna University, Chennai, India.

E-mail: 1swarnalatha7@gmail.com , 2apshanthi@annauniv.edu

ABSTRACT

A Genetic Algorithm (GA) is a computer based search optimization technique that uses the Darwinian
“Theory of Evolution” as a model for finding exact and approximate solutions. GAs belong to a large
family of heuristic algorithms called Evolutionary algorithms (EA) which are being increasingly utilized
for solving complex optimization and search problems. The large computation time consumed by a GA
implemented in software makes it unsuitable for real time applications. This hurdle is overcome by shifting
the implementation to hardware, which drastically speeds up the time factor, thus presenting a scope for
real time applications. Major issues to be addressed in hardware implementation are silicon utilization,
scalability, providing flexibility and reduced computational delays. This work presents a customizable
Complete Hardware Evolution (CHE) based GA architecture. Along with the generic modules for the
genetic operators of the GA, modules named Flush and Replace Memory (FRM), Memory Module (MM),
and a sorting module form the main components of this architecture. These modules can facilitate System
on Programmable Chip (SoPC) implementation for different applications of GA. The coding is done using
Verilog Hardware Description Language (HDL) and simulated using Xilinx ISE 9.1i simulator. Each
module is separately simulated and synthesized for a Commercial Off The Shelf (COTS) Field
Programmable Gate Array (FPGA). The resource utilization and the critical path delay of the modules are
evaluated and presented for Xilinx Virtex – 4 FPGA.
Keywords: Genetic Algorithm, Complete Hardware Evolution, FPGA, Sopc, Computational Delay,

Resource Utilization..

1. INTRODUCTION

Genetic Algorithms (GAs) are adaptive methods
which are used to solve a variety of search and
optimisation problems. They are based on the
genetic processes of biological organisms [1, 2].
Over many generations, natural populations are said
to have evolved according to the principles of
natural election and “survival of the fittest”, first
clearly stated by Charles Darwin in “The Origin of
Species” [3]. By mimicking this process, genetic
algorithms are able to evolve solutions to real world
problems, if they have been suitably encoded. GAs
are used to design bridge structures, for maximum
strength/weight ratio, or to determine the least
wasteful layout for cutting shapes from cloth, or to
schedule and organise a managerial problem. They
are also be used for online process control, such as
in a chemical plant, or load balancing on a multi-
processor computer system, for design of layout on

PCB, design of electronic systems, communication
networks, scheduling and resource allocation, in
robotics for trajectory planning, neural networks,
design of adaptive filters in signal processing, in
combinatorial optimization for set covering,
travelling salesman, routing, bin packing, graph
colouring and partitioning. Having such a varied
domain of applications, it still has not attained a
remarkable edge in real time implementations. It is
mostly applied in an off – line manner. This is
because of the huge computation time involved in
the process of evolution [4].
 Evolution has different meanings for
biologists, engineers, geneticists, software
developers and priests. But whatever the definition,
change is a common element that appears in all of
them. Change is an important attribute of all
dynamic complex systems, anything else is
subjective interpretation. Evolutionary computation
relies heavily on this attribute called 'change' [5].

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

532

Software accommodates this change quiet easily
but hardware based systems are not flexible.
Changes are very difficult once designed and
fabricated. However, a general purpose GA engine
requires certain parts of its design to be easily
configurable. Thus hardware based GA applications
were not feasible until the advent of reconfigurable
devices. The motivation for implementing a GA in
hardware stems from the fact that they are very
much CPU intensive, while also being intrinsically
parallel algorithms. The basic operations of a GA
can be executed in a pipelined fashion, which could
also be replicated for different members of the
population [6]. An added advantage with hardware
implementation is the elimination of the need for
complex time and resource consuming protocols
needed by an equivalent software implementation
to interface with the main application [7]. So
hardware implementation is presented as a solution
to overcome this hurdle of huge computation times
and increase the viability of these algorithms.

 By shifting the implementation to
hardware, a scope for real time applications is
presented, as drastic speed - up in terms of
computation time is now possible. Hence, it follows
that a hardware implementation of GA would be
appreciable for problems too complex for software.
The first hardware based GA using Field
Programmable Gate Arrays (FPGAs) was presented
by Scott et.al, in 1995 [4].Evolutionary techniques
have made use of unconventional properties of the
physical device, yielding designs that defy
conventional analysis [8]. It is this unrestricted
model that interests all researchers. FPGA
implementation combines the speed and massive
parallelism of hardware with the flexibility of
software. They are conducive to computational
modeling and allow a vast number of configurations
that compute different functions [9]. This has paved
a path for GA to be applied to real time applications
through a hardware implemented GA. But hardware
evolution has several aspects that need not be
addressed in software evolution, like scalability,
flexibility, transient effects, feedback loops,
propagation delays, signal loss, power dissipation,
etc. The presented work is a generic architecture
whose modules can be customized to suit different
applications. They have been synthesized for the
Xilinx Virtex – 4 Commercial Off The Shelf
(COTS) FPGA. The modules performing the
genetic operators are portable as they are available
as a net list of gates after synthesis.

2. RELATED WORK

D. Scott et al. [4] in 1995 presented the first
working implementation of a hardware based
genetic algorithm. The board consisted of eight
FPGA’s, shared memory and a PC on which the
genetic algorithm was run. The HGA was designed
with parameterized modules to allow scalability,
providing easy implementation. Pipelining and
parallelism were employed to achieve improvement
in speed. The selection module was parallelized and
the selection-crossover-fitness modules were
replicated to achieve speed – ups in the pipelined
structure. A simple crossover operator and selection
algorithm was designed. The benefits of hardware
were combined with the benefits of software GA for
the first time.

Gunnar Tufte et al. [10] in 1999 proposed a new
approach to evolvable hardware called Complete
Hardware Evolution (CHE). The main feature of
that implementation was that a hardware pipeline
for the genetic evolution process was achieved.
Control hardware was created for communication
between the PC and the external boards. The
problem of memory handling was solved by using
LogiBlock from Xilinx Foundation Series. This
CAD tool automatically generated the storage
modules. A 4 x 1 multiplexor based on functional
evolution was tested and validated.

Shruthi Narayanan et al [11] developed modules to
implement a GA in Verilog and VHDL in
compatibility with the MATLAB tool box.
Simulations for two fitness functions were
presented and compared with the Genetic
Algorithm Optimization Toolbox (GAOT).

Zhiguo Buo et al. [12] had proposed a new
approach for circuit design optimization by GA,
where mixed constraints on circuit complexity,
power and time delay were considered. The fitness
function in their work aimed to accept solutions
with 100% correctness of the target circuit, and
with maximal evaluating values about complexity,
power and time delay. They had used two functions
F1 and F2 for calculating fitness. The former was a
ratio of correct outputs to all test data, and the latter
was an evaluating function of circuit complexity,
power and time delay. Here, a two dimensional
array of gates was used to extrinsically evolve a full
adder circuit using Eclipse SDK 3.1.1 with jre 1.6.0
on a 2.67 GHz CPU. Optimisation on fitness,
complexity and power calculations were also
presented. This evolution had taken about 27 sec for
350 generations when evolved in software. This is
proof that extrinsic based evolutions take a huge
computation time.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

533

Michalis Vavouras et al. [6] implemented an
improved version of the HGA known as
parameterized HGA (P-HGAv1) on the XUPV2P
platform where the depth of the shared memory was
increased to support large population sizes. In order
to create a flexible and low cost design, the
embedded Power PC of this FPGA as well as
special-purpose cores like multipliers from the
Xilinx Core Generator were utilized. The block
RAM on the board was used for memory. To the
first implemented architecture [2], a new module
was added, the fitness evaluation module, which
consisted of built-in multiplier blocks and adders, a
controller and a multiplexer. The multipliers were
implemented in a pipeline manner.

Pradeep R. Fernando et al. [7] presented a
customizable FPGA core of a general purpose GA
engine. The core was presented as a gate - level net
list which could be tailored to suit the user’s
requirement. Also, additional hardware resources
like Power PC and external Block RAM were
utilized. Fitness evaluation module was replaced by
a look – up table which consisted of the required
results for the different chromosomes. The block
memory was used to store the lookup based fitness
evaluation module. Hardware implementation of
this soft core was able to achieve the global optima,
or within 3.7% of the global optima.

Swarnalatha and Shanthi [13] had presented a CHE
based architecture which was designed for
optimisation of single variable functions. Three
functions were used to test the ability of the
architecture to optimize. The fitness evaluation
module was required to evaluate the optimum value
of the single variable to suit the function under
consideration. The design used five modules along
with one memory module, totally constructed on the
Configurable Logic Block (CLB) logic of the
FPGA. Resource utilization for the different
functions implemented varied from 0% - 94%
approximately. This architecture was proposed as
an application specific system. The same
architecture would not support other real world
applications because of the following hurdles.

• Limitation on the number of

generations through which that
architecture could traverse.

• The exhaustive usage of the limited
number of available I/O blocks.

 These limitations have been overcome in
the present work by enhancing the architecture by

adding some extra modules called Flush and
Replace Memory (FRM) which incorporates elitism
in its operation and a sorting module (Figure.1).
These modifications result in a customizable
framework which is generic and hence can be
adapted to suit any application. In contrast, to all
the reported hardware systems which use external
hardware / software support like Power PC, Nios
processor or use boards with multiple FPGAs with
interfaced external memory, the present framework
implements the different operations of the GA, i.e.
chromosome generation, selection, crossover,
mutation and storage, all on a single FPGA, leading
to a SoPC implementation. The design issues
related to the proposed architecture are presented in
the next section.

3. DESIGN ISSUES

The literature shows that hardware based GA
systems are being developed in various styles for
different application. The contribution of this paper
is focused towards developing a complete SoPC
architecture for implementing GA, on just a single
COTS FPGA.

 Behavioral modeling of the complete
framework is done using the Hardware Description
Language (HDL), Verilog. Synthesis and
simulation of the HDL code is executed using
Xilinx ISE 9.1i simulator [14]. Every module is
indigenously modeled and implemented on the
CLB of a single off-the-shelf FPGA. The designed
architecture aims to achieve the following criteria
in hardware.

• The flexibility that is inherently
available with software

• A customizable generic framework
• Achieving scalability with respect to

logic slices and I/O blocks
• Achieving significant reduction in

computational delay, leading to a
drastic speed – up

 The flexibility available with the soft
implementation is now required to be incorporated
into this hardware implementation. For each of the
circuit to be evolved, the bit size requirements for
the encoded genome, the bit size requirements for
fitness values and the size of the required memory
array are different. Thus, the size of each of these
variables has to be decided as per the requirement.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

534

Since the code is in HDL, such variations can be
incorporated into the design.

 In hardware structures memory access is a
critical bottleneck with respect to speed of
computation. High computational speed is a
requirement of this architecture. Thus, the memory
is also built into the FPGA itself. With such
population based algorithms as the GA, this would
result in high silicon utilization hindering the
creation of SoPC. This hurdle is explicitly
established through the presented results of Table 1.
The synthesis results of Table.1. are for a scaled up
application of GA wherein the length of the
chromosome would run to a few hundred bits using
the architecture presented in [13]. The tabulated
results show that with each generational run the
resource utilization is linearly increasing and the
device utilization ratio is exceeding 100%. This
indicates that the chip does not support generational
runs of the order of just 9 runs when the
chromosome length is increased. The linear
increase is witnessed for both logic utilization and
I/O blocks. It is this limitation that is being handled
in the proposed architecture.

 In the enhanced framework presented,
some extra behavior based modules are
incorporated. These are named as Flush and
Replace Memory (FRM) and Sorting - a module for
sorting the contents of the memory. The FRM
incorporates the elitism property of the genetic
algorithm. With this modification, the memory size
does not linearly grow with scaling in the number
of generations and also supports scalability. The
memory requirement remains the same as that of
the initial population, for every generational run.
Hence, a huge conservation in resource utilization
is achieved enabling SoPC characteristics for the
proposed architecture. The results and the
operational flow of these blocks are presented in
the next section.

4. THE PROPOSED SOPC ARCHITECTURE

FOR GA

The proposed architecture consists of six main
modules, which could be built as a SoPC on any
COTS FPGA. The required memory module is also
placed within the CLBs of the FPGA. The results
obtained are presented in this section. Figure 1
shows the block diagram of the proposed system.
The process can be divided into three levels viz,

• The generation of the initial population
• The memory handling section

• The genetic operators

Figure. 1 Block Schematic of the Proposed

Architecture.

4.1 The generation of the initial population

 The generic process involved is initiated
from the Random Number Generator (RNG).
Random number generation is of great importance
for the proper operation of the GA. A Linear
Feedback Shift Register (LFSR) is used here, as it
is easy to implement and produces fairly good
pseudo-randomness. The LFSR is constructed by
concatenating a series of single bit registers.
Random bits are selectively ex- or and fed back to
the registers. Thus for each clock a random bit
string is generated. The RNG generates the initial
population, of the required size. The seed for the
RNG is programmable, which means that the user
can supply this input parameter. This would enable
different convergence characteristics for each
generation. These chromosomes are then passed on
to an array of 2 – dimensional registers in the
memory module. A 64 bit Linear Feedback Shift
Register (LFSR) is synthesized on a Virtex – 4
FPGA (XC4VLX200) and the results are presented
in Table.2. The critical path delay of the system is
obtained as 6.339 ns. Any changes to the size of the
chromosome can be easily incorporated as the
coding is in HDL.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

535

4.2 The Memory Section

 This section comprises of a memory
module and a module for sorting its contents in the
descending order of fitness values. The FRM
module is also developed in conjunction with this
section of the architecture.

• Memory Module (MM): The memory
module consists of two separate memories, one for
the chromosomes (Chromosome Memory) and the
other for the storage of their fitness values (Fitness
Memory). The initial population of randomly
generated chromosomes is stored in the
chromosome memory. Since memory is also on –
chip, this can be accessed at full clock speed thus
eliminating the crisis of slow memory access. But,
this accommodation would occupy significant
physical area. Thus, the area overhead or silicon
utilization on the FPGA is scaled up but
computational speeds get drastically reduced. The
memory is a collection of 2 – D resisters which can
be indexed as per requirement. Now the individual
chromosomes may be passed to the fitness
evaluation module for fitness calculation.

• Sorting Module (SRM): After the
evaluation of fitness, for the chromosomes of the
whole population, the chromosomes and their
corresponding fitness values are arranged in
descending order of their fitness by the sorting
block in the MM. This is required for flushing out
the least fit chromosomes to accommodate better
child chromosomes.

• Flush and Replace Module (FRM): This

module incorporates elitism into the system. This
block is mainly responsible for the slice logic
conservation advantage of this CHE
implementation. This checks and compares the two
least fit genomes of the population with the two
child genomes newly generated. If the fitness of the
new genomes is better than the existing genomes of
the population, then the generated genomes flush
out the weakest two genomes and occupy their
position in the population. The corresponding
fitness values are also suitably substituted. The
resulting new population is now called, the next
generation, over which the iterative process of
evolution continues. Thus the best chromosomes
are retained in the population and the weaker are
made better.

 These modules are modeled and
synthesized for a population size of 32
chromosomes, on a Virtex – 4 FPGA
(XC4VLX200). The resources utilization for this
level is presented in Table.3. The critical path delay
of this module is achieved as 4.317ns.

4.3 The genetic operators

 The genetic operators viz, selection,
crossover and mutation can be implemented in
accordance to the application under consideration.
There are a huge number of variants which are
available in literature. The choice of operators
would depend on the application. Any specific
choice of selection, crossover and mutation can be
designed and attached to this framework. Since the
population size here is 32 a 5 bit (25 = 32) RNG is
used to randomly select two pairs of parent
chromosomes for crossover. The selection method
used here is tournament selection and the crossover
is single point crossover. The process involved in
this level is enumerated here. These can be used for
any application but needs to be customized as per
specifications of the problem at hand.

• RNG: 5 bit: The five bit RNG generates
two random numbers these numbers are used to
index to the chromosome memory and the
corresponding two chromosomes can be chosen to
be operated on, by the selection module.

• Tournament Selection (TS): The
selection module selects two chromosomes as
parents for recombination based on the indexing
provided by the 5 – bit RNG. The highest fit
chromosome out of the two chromosomes selected
as probable parents, is chosen as one of the parent.
The selection of both the parents is executed in this
manner. In TS, every chromosome has an equal
probability of being chosen as a parent. Thus, even
the weak chromosomes have a chance to participate
in the process. After selection, the two parents are
passed on to the crossover module.

• Crossover and Mutation Module: The
crossover operator is mainly responsible for the
search aspect of the genetic algorithm. The
crossover module operates on the two selected
parent chromosomes to give two new off - springs.
The CM implemented here is designed to perform
single point cross over on the selected parents. The
resulting child chromosomes are then transferred to
the mutation module. The operation of mutation is
performed by the mutation module. To adopt the

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

536

concept of introducing variation into the genome,
mutation is applied to alter the genes randomly with
a certain probability. The mutation module
introduces single bit flip operation, based on a
probability condition.

 After the evaluation of the child
chromosomes by the fitness evaluation module they
can be sent to be handled by the Flush and Replace
Module. This process would continue until the
desired objective of any application is satisfied.

 Hardware realisation of these modules are
implemented and presented by all hardware
implementation in literature [7, 11, and 15] and
hence synthesis report of this section is not
presented. The FRM module together with the
sorting block is designed to accomplish the job of
comparison and replacement. This helps in the
conservation of silicon with the passage of each
generation. The number of registers required to
store the population and their fitness does not scale
- up with each passing generation. The constantly
increasing scale of integration supports scalability,
but the constraint on the number of I/O blocks
available with each COTS FPGA is still a critical
hardware constraint to be handled by the user. This
critical limitation is also addressed by these
modules. The drastic reduction in computational
delay is an advantage of most hardware
implementations. Additionally, since this
architecture is designed as a SoPC, it eliminates all
complicated communication protocols, interfaces
and other hardware resources.

The contributions made may be summarized as

• Customizable SoPC architecture for GA

• No additional hardware/ software
resources are utilised

• Computational delays of the order of
nanoseconds is achieved

• Conservation on the limited number of
available I/O blocks

• Memory requirements for the
chromosomes and their fitness remain the
same irrespective of the number of
generations traversed to reach the optimum

• Architecture supports evolution with no
limit on the number of generations

5. CONCLUSION

 Hardware based generic framework for
realising a GA which can be customized, is
modelled and presented. All the modules are
indigenously developed and synthesized
successfully, for a COTS FPGA, using Verilog
HDL. It is a generic framework which would
enable SoPC architectures for any real world
application of GA. No other hardware / software
resources are required for this implementation. The
architecture can be adapted to support any kind of
genetic operators that an application may require.
Thus a concrete step towards SoPC architectures
for GA has been accomplished. When a fitness
evaluation module for any specific application is
realised in hardware and integrated with this
framework a complete SoPC for the application
would be achieved. Results obtained show that
resource utilisation on the chip for this framework
is well below 50%, and computational delays are of
the order of only a few nanoseconds. These
advantages would definitely help real time
applications of GA a reality in the future.

Table.1.Resource Utilization For The Architecture Presented In [13] On A Spartan 3 FPGA.

Resources Available on

the FPGA
Utilization
for just 5
generations

Utilizatio
n in %

Utilization
for just 9
generations

Utilizatio
n in %

Slices

27648

18432

66.66%

40290

145.72%

4 I/p
LUT’S

55296

32703

59.14%

71886

130.02%

IOB’s

633

180

28.43%

324

51.1%

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

537

Table. 2. Resource Utilization For The Random Number Generator (RNG) (Figure.1) On A Virtex – 4FPG

Table.3.Resource Utilization For The Memory Section (Figure.1) On A Virtex - 4 FPGA

Resources Available on

the FPGA
Utilization Utilization in %.

Slices 89088 41,287 46%
4 I/P LUT’S 178176 72,199 40%

IOB’s 960 68 7%

REFERENCES:

[1]. Dimitris Fouskakis & David Draper,
“Stochastic optimisation: a review”,
International Statistical Review, 70, 3, pp. 315
– 349, 2002.

[2]. Nicholas J. Radcliffe & Patrick D. Surry,
“Fundamental limitations on search algorithms:
Evolutionary computing in perspective”,
Computer science today: Recent trends &
development, Ed. J. van Leeuven, Springer –
Verlag LNCS 1000, pp. 275 – 291, 1995.

[3]. Charles Darwin, “On the origin of species by
means of natural selection”, published on 24
November 1859.

[4]. Scott, S.D., Samal, A., Seth, S., “HGA: a
hardware-based genetic algorithm”, in: Proc. of
3rd ACM/SIGDA Int. Symp. on FPGAs, pp.
53–59. 1995.

a. (doi:10.1109/FPGA.1995.241945)
[5]. Cesar Ortega and Andy Tyrrell. “Evolvable

Hardware for Fault – Tolerant Applications”.
IEE Colloquium on Evolvable Hardware
Systems. Digest No: 98/233. Pg. 4/1 – 4/5.
March 1988.

[6]. M. Vavouras, K. Papadimitriou, and I.
Papaefstathiou. “High Speed FPGA - Based
Implementations of a Genetic Algorithm”.
IEEE Conference on Embedded Computer
Systems Architecture Modelling and
Simulation. Pg. 9 – 16. July 2009.

[7]. Pradeep R. Fernando, Srinivas Katkoori, Didier
Keymeulen, Ricardo Zubulum, Adrian Stoica,
“Customizable FPGA IP Core Implementation
of a General – Purpose Genetic Algorithm
Engine”. IEEE Transactions on Evolutionary
Computation. Pg. 133 – 149. February 2010.

[8]. Thompson and P. Layzell. Analysis of
unconventional evolved electronics.
Communications of the ACM, 42(4):71{79,
1999.

[9]. Karthik Raman and Andreas Wagner, “The
Evolvability of programmable

a. hardware”, J.R Soc. Interface, Volume 8 no. 55
269-281. 2011. (doi: 10.1098/rsif.2010.0212)

[10]. Tufte, G., Haddow, P.C., “Prototyping A
GA Pipeline for complete hardware evolution”,
The First NASA/DOD Workshop on Evolvable
Hardware, pp.18–25. 1999.
(doi:10.1109/EH.1999.785431)

[11]. Narayanan, S., Purdy, C., “Hardware
implementation of genetic algorithm modules
for intelligent systems”, Proc. 2005 IEEE
International Midwest Symp.Circuits and
systems (MWSCAS 05), pp. 1733–1736.
(doi:10.1109/MWSCAS.2005.1594455)

[12]. Zhiguo Bao, Takahiro Watanabe, “A new
approach for circuit design optimisation using
genetic algorithm”, 2008 International SoC
Design conference. Volume 1 pp 1 – 383 to 1 –
386. (doi:10.1109/SOCDC.2008.4815652)

[13]. Swarnalatha, A., Shanthi, A.P.,
“Optimization of single variable functions
using complete hardware evolution.”Applied
Soft Computing, Volume 12, Issue 4, pp. 1322
– 1329. 2012.
(doi:10.1016/j.asoc.2011.12.001).

[14]. Xilinx, Inc. at www.xilinx.com.
[15]. M. Salmani Jelodar, M. Kamal, S. M.

Fakhraie, M. Nili Ahmadabadi, “SOPC-Based
Parallel Genetic Algorithm”, proceedings of
2006 IEEE Congress on Evolutionary
Computation, pp – 2800- 2806.

Resources Available on
the FPGA

Utilization Utilization in %.

Slices 89088 49 0.05%
4 I/P LUT’S 178176 88 0.04%

IOB’s 960 128 13%

