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ABSTRACT 
 

Liver segmentation from CT volumes has been a challenging problem due to the high inter-organs intensity 
similarity, the intra-liver intensity variability, and the partial volume effect. In this paper, we perform an 
extensive review of the liver segmentation literature from CT and MRI. Furthermore, we propose a 
Bayesian model for a robust and reproducible semi-automatic technique for liver segmentation from CT 
volumes. We train our model and validate it using 44 clinical volumes for patients with various types of 
liver abnormality including tumor. Our segmentation results show a robust and clinically acceptable liver 
volume for all the 44 clinical cases we have with average area overlap accuracy over 87%. Our method is 
superior to all state of the art methods that has only been validated on less number of subjects as we show 
during the literature survey. 
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1. INTRODUCTION  
 

Liver tumor is one of the most common types of 
tumors that cause death in the world. In 2010, over 
18000 people died because of liver cancer in United 
States [1]. Surgical intervention is one of the 
ultimate treatment options. Surgery planning is an 
important step of successful tumor removal. 
Planning includes quantification of the tumor size, 
its location, and trajectories during surgery, and the 
effect of tumor removal on other neighboring 
organs such as the gall bladder and the percentage 
of the surgery success. 

Liver segmentation from abdominal Computed 
Tomography (CT) volumes is an important step in 
many diagnostic and surgical procedures. It is also 
useful in building many related computer aided 
diagnosis, computer guided surgery systems, 
building anatomical atlases for the abdominal area, 
and many other applications. Various challenges 
face liver segmentation from abdominal area 
including: high inter-organs intensity similarity in 
the abdominal area, partial volume effect where 
organs’ boundaries are ill-defined, multi-segment of 
the liver especially in the lower portion, the location 
of the gallbladder and its great intensity similarity 
with the liver, the confusing internal structure of the 
liver and many other challenges as illustrated in 
Figure 1. 

Many researchers work on liver segmentation 
from abdominal area. However, each technique has 

its own strength and weakness. Campadelli et al [2] 
presented a thorough survey of these techniques 
with a comparative study. 

 
 

Figure 1. A Sample CT Scan Of The Abdominal Area 
Showing Some Challenges Of Liver Segmentation. 

In our previous paper [3], we presented a fully 
automated liver segmentation from abdominal area 
based on a Markov Random Field for liver 
detection and a Gradient Vector Flow (GVF) snake 
model for boundary refinement. However, we only 
had 13 clinical cases at that time. In this paper, we 
validate our work on a significantly larger dataset 
including 44 cases. 

On the other hand, quantitative segmentation 
validation methods are among the open issues in the 
literature. Many validation methods including area 
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overlap, Dice measure, and Hausdroff distances are 
usually used for validation. However, visual 
validation of the cases by an expert is still a 
necessary measure for the validity of the 
segmentation method as discussed in our previous 
work [4]. In this work, we validate our method 
using both careful visual examination by an expert 
radiologist and using one quantitative measure for 
error and accuracy with one ground truth. 

The rest of this paper is organized as follows: 
Section 2 presents an exhaustive literature survey 
for liver segmentation. Section 3 presents our 
proposed technique and our classifier. Section 4 
presents our data and experimental validation 
methods and then we conclude in section 5. 

2. LITERATURE SURVEY 

Liver segmentation has been tackled by many 
researchers for various computer aided diagnosis 
and surgery applications. Many surveys exist in the 
literature for exhaustive review of the literature 
such [2]. Here we mention some recent related 
techniques. 

Liu et al. [5],[6] used gradient vector flow 
(GVF) field as an external force. Active contours 
are obtained by defining curves whose shape and 
location are guided by two forces: internal forces 
that are derived from pixels on the curve to impose 
desirable properties on the curve shape and external 
forces that are derived from image characteristics to 
limit the curve to certain locations in the image. 
Zhou et al. [7] proposed a probabilistic model for 
liver segmentation from CT which was evaluated 
on 152 subjects. Lim et al. [8] proposed liver 
segmentation for volume estimation from CT. They 
analyzed the intensity distribution to obtain a priori 
model to determine the coherent regions of liver. 
They utilized morphological filters and a labeling-
based search algorithm to obtain the liver contour, 
which then leads to liver volume estimation.  

Ciecholewski and Debski [9] utilized the lumbar 
section of the spine as an initial reference to 
perform liver segmentation from CT. Then they 
constructed a finite number of joint poly-lines that 
resulted in two polygons representing the liver 
segments. Rikxoort et al. [10] started with pre-
processing steps to determine the vertical scan 
range of the liver and to rotate the scan so that the 
subject is in supine position. Then they performed 
voxel labeling with K-nearest-neighbor. A final 
smoothing filter is then applied to obtain a fine 
segmentation. They only evaluated the system on 
10 test cases. Saddi et al. [11] estimated the pose 
and global shape properties with a statistical shape 

model to learn shape features of the liver. Then 
they used a template to recover local deformations. 
They only validated their method on 10 cases. 
Slagmolen et al. [12] built an atlas based on 20 
cases using non-rigid registration. Susomboon et al. 
[13] utilized intensity and texture information to 
generate probability images that aid in segmenting 
the liver for new cases. They tested their method 
with 10 cases. Ma and Yang [14] proposed a two-
step scheme: estimation of the statistical parameter 
vector of a mixture Gaussian distribution by the 
Expectation Maximization (EM) algorithm, and 
then using morphological filters to remove foreign 
components and apply image hole-filling. 

Liu et al. [15] proposed an adaptive method that 
utilizes a bi-class Support Vector Machine (SVM) 
after applying adaptive thresholding and Kmeans 
clustering. Size of data was limited. Freiman et al. 
[16] presented a new algorithm for nearly automatic 
liver segmentation and volume estimation from 
abdominal CT images and its validation. They used 
a multi-resolution iterative scheme that repeatedly 
applied smoothed Bayesian classification to 
identify the liver and other organs. They evaluated 
their method with two retrospective studies on 56 
validated CT images. They obtained 0.98 and 0.99 
correlation for liver volume estimation, with mean 
volume differences of 5.36 and 2.68% with respect 
to manual ground truth estimation, and mean 
volume variability for different initial seeds of 0.54 
and 0.004%, respectively.  

Platero et al. [17] segmented liver from MR 
images based on 3D anisotropic diffusion 
processing. They obtained an initial segmentation 
using edge detection techniques (Canny edge 
detector), histogram analysis and binary 
morphological post-processing. Then they applied 
an active contour to refine the segmentation. They 
computed the undirected partial Hausdroff distance 
between the boundary of the computed 
segmentation and the boundary of the manual 
segmentation and obtained error of 2.3 mm for 95% 
percentile and 2.8 mm for 99%. Selver et al. [18] 
pre-processed the images by removal of the fat 
tissues, spine, ribs, and right kidney. Then they 
used k-means and MLP classifier for liver 
segmentation followed by smoothing operators. On 
20 subjects, they obtained a success rate of 94% for 
segmentation. Cheng et al. [19] proposed using a 
level set approach for liver segmentation from MRI 
images. They combine shape prior knowledge with 
the improved Chan-Vese's model, which may 
overcome the leakage and over-segmentation 
problems. Foruzan et al. [20] estimated the initial 
liver boundary from CT images with an 
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Expectation Maximization (EM) algorithm, 
elimination of the ribs and heart, applying double 
thresholding, and then a final labeling step. They 
also evaluated their method on 10 CT cases and 
obtained an average overlap error of 15.3%. 

Luo et al.  [21] proposed a three step automated 
technique: texture filters, then a support vector 
machines (SVM) to classify based on texture 
analysis, and then post processing morphological 
operators. Zhao et al  [22] proposed a method by 
initially removing the ribs and spine based on 
thresholds, and then utilized a neural network to 
perform the segmentation and the morphological 
post processing. Our proposed method is unique 
because it deals with clinical data and seamlessly 
incorporates within the radiologist or technician 
routine to perform a quick and highly robust liver 
segmentation.  

Zhang et al. [23] segmented the liver from CT 
scans with a Statistical Shape Model (SSM) 
integrated with an optimal-surface-detection 
strategy. They built an average liver shape model 
with a training set. Then they used subspace 
initialization of the SSM and shape model 
deformation to adapt to the liver contour through an 
optimal-surface-detection. Zayane et al. [24] built a 
priori knowledge model of location and shape of 
the liver from a training set of CT images. Then 
they applied the Greatest Connected Component 
(GCC) algorithm to detect the largest connected 
component, which is assumed to be the liver. Few 
morphological operators are then applied for image 
filling.  

Masoummi et al. [25] used mathematical 
morphology to enhance the image through 
reserving edges and reducing noise. They trained 
the MLP neural networks to extract the features of 
the liver region to avoid over-segmentation. These 
extracted features were used to monitor the quality 
of the segmentation using the watershed transform 
and adjust the required parameters automatically. 
The average accuracy, based on Jaccard 
coefficients, was 0.94. 

Few research efforts has been proposed by 
directly working on 3D volumes rather than slice-
by-slice fashion such as Okada et al. [26], who 
developed an atlas-based liver segmentation 
method from 3D CT volumes. They performed 
voxel-based segmentation with a Probabilistic Atlas 
(PA) to an initial region for subsequent Statistical 
Shape Model (SSM) fitting to 3D CT images. They 
utilized a Multi-Level SSM (ML-SSM) to improve 
the reconstruction accuracy especially for largely 
deformed liver. The whole shape was divided into 
patches. For each patch, the principle Component 

Analysis was applied. They introduced a new 
constraint (adhesiveness constraint) for overlap 
regions among patches. Through this method, they 
demonstrated that segmentation accuracy improved 
by using PA and ML-SSM. However, the Jaccard 
similarity measure and average distance were 0.86 
(± 0.05) and 2.15 (± 0.62) mm on average, 
respectively. Dawant et al. [27] used a level-set 
approach and a dynamically adapted speed 
function. They trained an anatomic atlas to reduce 
leakage at the liver-rib interface.  

Wimmer et al. [28] proposed a two-stage liver 
segmentation from CT scans. A manual delineation 
of cross-sections of the anatomical structure in 2D 
multi-planer reconstruction views is constructed. 
Then an initial 3D surface was reconstructed using 
radial basis functions. Then they applied a level set 
algorithm incorporating a new combination of 
image information and shape information. They 
validated their method on only 10 CT scans. 
Kainmüller et al. [29] presented a combination of a 
constrained free-form and statistical deformable 
model for liver segmentation. Furukawa et al. [30] 
trained a maximum a posterior probability 
estimation. Then they used a combination of the 
probability density function of a Gaussian mixture 
distribution and a prior probability derived from a 
probabilistic atlas of the liver. Then they used level 
set for better final segmentation.  

Seghers et al. [31] modeled an object as a set of 
landmarks augmented with local appearance 
models to perform 3D liver segmentation on 10 
cases. Yussof and Burkhardt [32] used anisotropic 
diffusion to filter the original liver volume from 3D 
CT. Then they applied thresholding to preserve all 
tissues that have the same intensities for liver. They 
also performed morphological operators to 
ultimately obtain a smooth fine liver region with a 
graph-cut technique. They also evaluated their 
method on 10 cases. Lu et al. [33] initialized a 
deformable model with a manually created simple 
mesh model for the liver. They formulated the 
deformation of the shape to adapt to the boundary 
by minimizing a local cost function associated with 
each model vertex. The experimental results 
demonstrated the effectiveness of the proposed 
algorithm. 

 
3. PROPOSED METHOD 
 

Our method utilizes a Bayesian classifier to 
segment the liver from the surrounding structures. 
We ask the user for some interaction to guarantee a 
robust and clinically acceptable segmentation 
result. Figure 2 shows the workflow of our method. 
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Figure 2. Workflow Of Our Liver Segmentation 
Technique. 

 
3.1 Preprocessing 
 

Our clinical CT volumes contain a set of images 
that span the abdominal area from the chest down 
to the pelvis in axial views. We initially perform a 
clinically approved preprocessing step known as 
window/level enhancement. 

Window/Level enhancement is based on the 
physical properties of the tissue being scanned by 
the CT. This enhancement is achieved by 
converting the intensity values of the image into 
Hounsfield units  [34]. Each material has physically-
approved Hounsfield values that are based on the 
physical intensity of that material. HU values are 
quantitative measure of the transparency of a 
material to X-rays. Table 1 shows some of the 
known material with the corresponding Hounsfield 
values. Window/level enhancement aims at 
enhancing specific Hounsfield values (HU) over the 
rest of the values in the signal. Figure 3 shows the 
window/level application filter. We convert to 
Hounsfield values (HU) from DICOM intensity 
values (I): 
 

InterceptscaleSlopeyxIyxHU += Re*),(),(    (1) 

 
where ),( yxI  is the DICOM intensity values at the 

2D image location x, y. ),( yxHU  is the 

corresponding Hounsfield value. Both 
scaleSlopeRe  and Intercept  are two parameters 

supplied from the DICOM header for each slice 
within the abdominal volume. 

 
Figure 3. Window/Level Filter Applied On Hounsfield 

(HU) Values. 
 

Once the volume is enhanced upon the clinical 
standard, the radiologist uses our viewer to browse 
over the volume. Because our data is clinical, there 
are many slices that do not have the liver in them. 
In some cases, as much as half the abdominal 
volume does not have the liver because clinical 
abdominal standard is to acquire the whole area 
from the chest down to the pelvis. Thus, the 
radiologist (or the technician) browses over the 
cases from top where the heart appears down to the 
last slice that shows the liver. In each slice, she 
draws an oval that contains the liver (and some 
other structures). We then apply our Bayesian 
Model for segmentation. 

 
3.2 Bayesian Model 
 

We design a Bayesian classifier that learns its 
parameters from a set of training data. Our 
classifier maximizes the posterior probability 

)|( Icp for each pixel in the input image I  (oval 

selected by the radiologist): 
 

)|(maxarg IcpL
I

=    (2) 

where L is the outcome of our classifier at each 
pixel in the input image I , c is a binary random 
variable where 1=c for a liver pixel and 0=c for 
a non-liver pixel. Using Bayesian: 
 

)(

)()|(
)|(

Ip

cXpcIp
Icp =    (3) 

where )|( cIp  is the likelihood of a pixel to be in 

each class (liver/non-liver), )(cp is the prior 

Table 1. Hounsfield values for some material. 
 

Material Hounsfield 

Air -1000 

Fat -120 

Water 0 

Muscle +40 

Bone +1000 
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probability for liver/non-liver classes, and )( Ip is 

the marginal probability over the classes (liver/non-
liver). 

As a standard practice, to maximize the posterior 
probability, we maximize the logarithm of the 
posterior: 
 

)]|(ln[maxarg IcpL
I

=   (4) 

where 

)](ln[

)]()|(ln[

]
)(

)()|(
ln[)]|(ln[

Ip

cxpcIp

Ip

cXpcIp
Icp

=

=
  (5) 

 
However, )](ln[ Ip is a constant and thus can be 

ignored. Thus, 
 

)]()|(ln[)]|(ln[ cxpcIpIcp α  (6) 

 
Reducing this, we conclude: 
 

( ))](ln[)|(ln[maxarg cpcIpL
I

+α  (7) 

 
We then model both the likelihood )|( cIp  as 

Gaussian distributions where: 
 

2

2

2

)(

2

1
)|( σ

µ

πσ

−
−

=
I

ecIp    (8) 

 
where µ and 2σ are the mean and variance of the 

classes c={liver, non-liver}. Both parameters are 
learned from a set of data points (1500 points (750 
point of each class) that were manually selected 
from a set of liver images. 
 
3.3 Post processing 
 

Two post processing steps were performed. A 2D 
median filter to eliminate the salt and pepper noise 
resulting from some pixels with similar intensity 
levels for structures surrounding the liver (happen 
to be inside the selected oval). Then we apply an 
image filling operation [35] to close the holes 
inside the liver resulting from the internal structure 
of the liver. 
 
4. DATA AND RESULTS 

 
We collect our data from our collaborating 

radiology center. We obtain 44 clinical cases that 

have various abnormality types with some normal 
cases. Our data is anonymized before removal from 
the radiology center location. Patient consents were 
taken for each of the cases. Each case consists of a 
full volume of the abdominal area starting from the 
chest down to the pelvis. Some of the cases contain 
up to 120 slides while other might include as few as 
50 slides. Images are in DICOM format with 512 x 
512 x 5 mm per voxel.  

We obtain the ground truth from one radiologist 
and currently working on having three more 
radiologists to manually segment each case. Our 
ground truth was performed as a contour 
surrounding the liver by software that we develop 
upon the convenience of the radiologist. 

We run our method on all the 44 cases and 
obtained the full volume of each case. Figure 4 
shows a sample a middle slice at each step in our 
proposed work flow (Figure 2). 

One strength aspect of our method is that it works 
on all slices whether the liver is small (lower slices) 
or big (middle slices) which makes it clinically 
suitable because radiologist are concerned with 
accuracy more than fully automating the workflow. 
Figure 4 shows a set of sample slices from various 
abdominal levels. 

 
 

We validate our proposed method in two ways: 
qualitative and quantitative. Segmentation accuracy 
quantitative techniques have positives and 
negatives and there is no one technique that 

 

  
 

  
 

  
 

Figure 4. Slices (Window/Level) Enhanced With 
Respective Output. 
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provides optimum sense of the meaning of accuracy 
[36]. 

For qualitative validation, we ask our radiologist 
to thoroughly view each slice in each of the 44 
cases and record the result of the segmentation as 
one of two choices: clinically acceptable or not. By 
this decision, there is a rational factor to what is 
clinically acceptable or not. However, the 
radiologist can determine that. Our radiologist 
approved all cases as clinically acceptable cases. 

Table 2 shows the summary of two quantitative 
measures that we call accuracy and error: 
 

G

GR
Accuracy

∩=    (9) 

 

G

GRGR
Error

∩−∪=    (10) 

 
where R and G are areas of our method’s and the 
gold standard segmentation results, respectively. 

We randomly selected ten cases to give a sense of 
the quantitative accuracy. However, full results and 
thorough statistical analysis will appear in an 
extended version of this paper due to size 
limitation. We achieved an average of 87% area 
overlap.  
 
5. CONCLUSION 
 

In this paper, we proposed a robust, reliable, and 
clinically acceptable method for liver segmentation 
from CT volumes. We proposed a Bayesian-based 
classifier to model the posterior probability 
distribution of the image intensity. Then we assign 
a binary class for each pixel of being a liver or not. 
Our experimental validation on 44 cases shows a 
perfect clinical satisfaction from our collaborating 
radiologist who manually validated our 
segmentation for each case. We also provide two 
quantitative measures for the segmentation 
compared to a manual segmentation by an expert 
radiologist and achieved an average area overlap 
over 87%. Furthermore, we provided an extensive 
literature survey for liver segmentation from 
abdomen radiology images. 

We work on obtaining three more manual 
segmentations to provide reliable ground truth that 
takes into consideration the inter-observer variability 
in liver segmentation. Moreover, we currently 
prepare for a thorough clinical study on the 
statistical significance of the inter-observer 
variability and reliability of liver segmentation from 
CT volumes. 
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